
Scientia Iranica B (2015) 22(4), 1625{1634

Sharif University of Technology
Scientia Iranica

Transactions B: Mechanical Engineering
www.scientiairanica.com

Evolving binary-weights neural network using hybrid
optimization algorithm for color space conversion

C.Y. Chen�

Department of Information and Telecommunications Engineering, Ming Chuan University, Taoyuan, Taiwan, ROC.

Received 22 May 2014; accepted 11 May 2015

KEYWORDS
Arti�cial neural
networks;
Neuroevolution;
Evolutionary
algorithms;
PSO;
Color space converter.

Abstract. Arti�cial Neural Networks (ANNs) are applied to many complex real-world
problems, ranging from image recognition to autonomous robot control. However, to design
a neural network that can implement special task, it is necessary to select an appropriate
biological neuron model, meanwhile, good learning algorithm should be adopted to achieve
the expected goal. Neuroevolution is a form of machine learning that uses Evolutionary
Algorithms (EAs) to train ANNs. EAs, for the learning algorithm used by neural networks,
can provide alternative and complementary solution, which can avoid the frequently
happened issues of \getting stuck in local minimum" during the iteration process made
by gradient-based learning algorithms. In this paper, a method using Hybrid PSO-based
Learning Algorithm (HPLA) to evolve the connection weights and network parameters of
Binary-Weights Neural Network (BWNN) will be introduced. The extracted knowledge
from trained BWNN can then be used to construct high-speed shift-and-add based Color
Space Converter (CSC) hardware architecture. The experimental results in this research
also show that the performance of implemented hardware architecture is good at RGB
to YCbCr color space converting, and it also has the advantages of high-speed and low-
complexity.
© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Color spaces is a method by which di�erent colors
can be speci�ed, created and visualized. There are
many existing color spaces and most of them represent
each color as a point in a three dimensional coordinate
system. Di�erent color spaces have historically evolved
for di�erent applications. RGB, YUV and YCbCr are
common color spaces in use. YUV and YCbCr are
adopted in video codec and transmission (for example,
JPEG, MPEG, etc.), while RGB is adopted for display,
so the conversion between them is unavoidable [1].

In many Digital Signal Processing (DSP) algo-
rithms, multiplier coe�cients are oating-point num-

*. Tel.: +886-3-350-7001#3737;
Fax: +886-3-359-3879
E-mail address: chingyi@mail.mcu.edu.tw

bers, rational numbers, or real numbers. However,
when implementing DSP algorithms, �xed-point coe�-
cient operations are often preferred over oating-point
due to lower complexity and power consumption [2].
When we are to realize Color Space Converter (CSC)
from RGB to YCbCr, we will meet two dilemmas in the
hardware circuit design; �rst, the conversion formula
contains many oating-point operations; next, in the
conversion formula, many multiplication operations
will be met. If multiplier is used in the hardware
architecture to realize the multiplication operation
function, then massive operation time and hardware
area will have to be consumed. In order to solve bad
e�ciency problem of traditional oating-point based
CSC architecture, when it is used for color conversion,
there are lots of di�erent solutions proposed by scholars
in the academy [1,3,4]. The LUT method is one of
the high e�cient methods especially for embedded



1626 C.Y. Chen/Scientia Iranica, Transactions B: Mechanical Engineering 22 (2015) 1625{1634

systems [3]. In Ref. [4], Li et al. have proposed
a method using Genetic Algorithm (GA) to evolve
automatically shift-and-add based CSC. Such method
is simple and e�ective, and it can also get high-speed
CSC architecture. However, in its design process, only
image quality is considered instead of considering the
hardware resource consumed, hence, the number of
adder used will be too much.

ANNs have been fruitfully used in a variety of
�elds, including economics, �nance, meteorology, and
engineering. Constructing neural networks involves
di�cult optimization problems, such as �nding a net-
work architecture appropriate for the application at
hand, and �nding an optimal set of weight values for
the network to solve the problems [5]. The training
process of ANNs consists of two tasks, the �rst one
is the selection of an appropriate architecture for the
problem, and the second is the adjustment of the
connection weights of the network. However, ANNs
have their own limitations. They are easy to fall
into local minimum and sometimes hard to adjust the
architecture. When there are many local minima,
a neural network using a hill-climbing algorithm for
optimization may stall on a di�erent minimum on each
run of the network.

Neuroevolution is a method for modifying neural
network weights, topologies in order to learn a speci�c
task. Various evolutionary computation methods, such
as GA, Genetic Programming (GP) and Evolution
Strategies (ES) etc. could be applied to evolve a neural
network on its topological architecture, connection
weights and activation functions, or even groups of
learning rules [6]. With the development of computer
technology, these methods have already achieved huge
progress and exhibited a merging tendency [7,8]. GA
has been used to solve each of these optimization
problems. In weight optimization, the set of weights
is represented as a chromosome, and a genetic search

is applied to the encoded representation to �nd a
set of weights that best �ts the training data [5].
Koza provides an alternative method to representing
ANNs [9], under the framework of GP, which enables
modi�cation of not only the weights, but also the
architecture for a neural network. In [10], the authors
use ES to learn the weights of the neural network
instead of learning the method of the network.

Among lots of computing techniques, Particle
Swarm Optimization (PSO) has characteristics, such
as less parameters setting, robustness and high conver-
gence speed. It is inspired by insect swarms and has
proven to be a competitor to GA when it comes to
optimization problems. Successful applications of PSO
to some optimization problems, such as function mini-
mization and ANNs design [11-13]. However, the main
problem with PSO is that it prematurely converges [14-
15] to stable point, which is not necessarily minimum.

In this study, a method using neuroevolution
strategy to realize multiplierless CSC architecture will
be introduced. The complementary characteristics
between PSO and GA are used to construct high e�-
ciency hybrid evolutionary learning algorithm, which is
then used to train BWNN (shown in Figure 1). After
BWNN training is �nished, the extracted knowledge
from neural network can then be used to construct
high-speed shift-and-add based CSC circuit hardware
architecture. In the proposed hybrid learning algo-
rithm, the elite strategy has been adopted to retain
some particles with superior �tness in the population
but sort out particles with bad �tness; moreover, the
ones with better �tness are selected to reorganize and
disturb their encoding strings through crossover and
mutation procedures so as to replace the particles
sorted out in the population. Through this method,
diversi�cation of particles in the population can be
enhanced, and the premature convergence of PSO can
be avoided too.

Figure 1. Evolving connection weights in a binary-weights neural network.



C.Y. Chen/Scientia Iranica, Transactions B: Mechanical Engineering 22 (2015) 1625{1634 1627

The composition of the rest of the paper is as
follows. A review for the ANNs and an introduction for
BWNN are given in Section 2. Section 3 is concerned
with the color conversion formulas and the description
of the proposed method. Then the multiplierless
CSC implementation and the results and analysis are
presented in Section 4. Finally, Section 5 concludes the
paper.

2. Binary-weights neural network

ANNs are parallel computing machines that learn from
examples and by interaction instead of by program-
ming. They are inspired by biology, and composed
of elements with functionality similar to a biological
neuron. The ANNs can be made in many di�erent
ways and can try to mimic the brain in many di�erent
ways. Basically, ANNs are widely used in functional
approximation and pattern classi�cation applications
due to their capability for modeling complex and highly
nonlinear functions.

A multilayer neural network consists of a layer
of input units, one or more layers of hidden units,
and one output layer of units. Each connection
between nodes has a weight associated with it. The
learning process in multilayer neural network is usually
implemented by training data set, because the learning
process is achieved by iteratively adjusting the connec-
tion weights. The error calculations used to train a
multilayer neural network are very important. Like
least square, the sum-of-squared error is calculated
by looking at the squared di�erence between what
the network's output for training data and the target
value. Formally the equation is the same as one-half
the traditional least squares error. For a given set of
input vectors fxtg, t = 1; 2; :::; N and desired vectors
fdtg, the error function is as follows:

E(w) =
1
2

NX
t=1

�
y(xt; w)� dt�2 ; (1)

where N is the total number of training cased, y(xt; w)
is the observed output for the tth training case, and
the dt is the target output for that case.

BWNN introduced in this paper is of three-layer
architecture, which is, respectively, input layer, hidden
layer and output layer, as shown in Figure 2. The
weights of BWNN are only formed by binary digits
of 0 and 1. Input layer receives the input data, and
then the data is processed by hidden layer and sent to
output layer for �nal result output.

The BWNN can be represented mathematically
by the following equations:

nethj (x) =
pX
i=1

whji:xi; j = 0; 1; :::;m; whji 2 f0; 1g
(2)

Figure 2. The proposed architecture of BWNN.

yj(x) = f
�
nethj (x)

�
= f

 pX
i=1

whji:xi

!
=

 pX
i=1

whji:xi

!
� j; (3)

Y (x) = f

0@X
j

yj(x)

1A
=

0@0@(
mX
j=0

pX
i=1

whji:xi)� j

1A� n

1A+B; (4)

where p and m are two constants set by the user, wji
denotes a weight from the input to the hidden layer,
and B is a bias.

3. Using HPLA-based BWNN for CSC design

3.1. RGB to YCbCr conversion
The Red, Green and Blue (RGB) color space is widely
used throughout computer graphics. The image in
RGB color space is not suitable for image compression
applications, because the image in RGB color space is
highly correlated. In the YCbCr color space, image
data consists of three components: luminance (Y ),
blueness (Cb), and redness (Cr). The �rst component,
luminance, represents the intensity of the image, while
the Cb and Cr components called chrominance indicate
how much blue and red is used, respectively. The
YCbCr color space is a scaled and an o�set version of
the YUV color space. Y is de�ned to have a range of
16-235; Cb and Cr are de�ned to have a nominal range
of 16-240 [16]. The conversion from RGB to Y CbCr is
given by:



1628 C.Y. Chen/Scientia Iranica, Transactions B: Mechanical Engineering 22 (2015) 1625{1634

24 YCb
Cr

35 =

24 0:257 0:504 0:098
�0:148 �0:291 0:439
0:439 �0:368 �0:071

35� 24RG
B

35
+

24 16
128
128

35 : (5)

3.2. Hybrid PSO-based Learning Algorithm
(HPLA)

3.2.1. PSO basics
PSO is an evolutionary computation technique devel-
oped by Kenney and Eberhart in 1995 [17]. The
method has been developed through a simulation of
simpli�ed social models. PSO is based on swarms,
such as �sh schooling and bird ocking. According
to the research results for bird ocking, birds �nd
food by ocking (not by each individual). It must
also have a �tness evaluation function that takes the
particle's position and assigns to it a �tness value. The
position with the highest �tness value in the entire
run is called the global best (G). Each particle also
keeps track of its highest �tness value. The location
of this value is called its personal best (Pi). The basic
algorithm involves casting a population of particles over
the searching space, remembering the best (most �t)
solution encountered. At each iteration, every particle
adjusts its velocity vector, based on its momentum and
the inuence of both its best solution and the best
solution of its neighbors, and then computes a new
point to examine. The studies shows that the PSO has
more chance to \y" into the better solution areas more
quickly, so it can discover a reasonable quality solution
much faster than other evolutionary algorithms. The
original PSO formulate is described by the following
equations [17]:

Vi;n(t+ 1) =�:Vi;n(t) + r1:rand1: (Pi;n(t)� Li;n(t))

+ r2:rand2: (Gn(t)� Li;n(t)) ; (6)

Li;n(t+ 1) = Li;n(t) + Vi;n(t+ 1); (7)

where n is the dimensional number, i denotes the ith
particle in the population, V is the velocity vector, L is
the position vector and � is the inertia factor. r1 and r2
are the cognitive and social learning rates, respectively.

3.2.2. Real-coded GA
A genetic or evolutionary algorithm applies the prin-
ciples of evolution found in nature to the problem of
�nding an optimal solution to a solver problem. GA
was initially introduced by John Holland in seventies as
a special technique for function optimization [18]. It is
the most widely known type of evolutionary computa-
tion methods [4,19,20]. The basic operators used in GA
consist of selection, crossover, and mutation. GA pa-
rameters (such as population size, crossover probability

(Pc), and mutation probability (Pm) etc.) interact in
complex ways. There is evidence showing that the
probabilities of crossover and mutation are critical to
the success of GA [21]. Traditionally, determining what
probabilities of crossover and mutation should be used
is usually done by means of experimental methods.

An individual or solution to the problem to be
solved is represented by a list of parameters called
chromosome or genome. Genes and chromosomes are
the basic building blocks of the GA. The conventional
standard GA encodes the optimization parameters into
binary code string. The strings are combinations of
0 s and 1 s, which represent the value of a number.
During each generation, the chromosomes are evalu-
ated by a �tness function, which is a measure for the
quality of the solution. To create the next generation,
the individuals with higher �tness value will have
higher probability of being selected as candidates for
the next generation. In addition, new chromosomes
(called o�spring) are formed by either merging two
chromosomes from the current generation using the
crossover operator and modifying a chromosome using
the mutation operator.

To reduce computing time, several researchers
have tried to use real-coded values instead of binary bit
strings for implementing chromosome encoding. The
role and behavior of genetic operators in real-coded
GA are fundamentally di�erent from those in binary
encodings, although motivation of the operators and
the framework of GA are similar. It has been con�rmed
to have better performance than either binary or gray
encoding for constrained optimization problems [22-
24]. The crossover and mutation operator of real-coded
GA are described as follows.

Crossover operators. A crossover is a process
where new individuals are created from the information
contained within the parents. It is the main genetic
operator. The crossover operator of a real-coded
GA is constructed by borrowing the concept of linear
combination of strings from the area of convex set
theory, where the weighted average of two strings
(chromosomes) is calculated as follows [25-26]:

x0i = Uniform(0; 1):xi + (1�Uniform(0; 1)) :xi+1;
(8)

x0i+1 = (1�Uniform(0; 1)) :xi + Uni form(0; 1):xi+1:
(9)

Mutation operators. Random changes are generated
to the population in mutation. Mutation can create
a new genetic material in the population to maintain
the population diversity. This prevents the population
from converging towards a local optimum. For a point
xk, the mutated solution is as follows:



C.Y. Chen/Scientia Iranica, Transactions B: Mechanical Engineering 22 (2015) 1625{1634 1629

Figure 3. The ow chart of HPLA.

x0k = xk + rand�N(0; 1): (10)

3.2.3. Implementation of HPLA algorithm
In the introduced hybrid learning algorithm, when all
the particles follow Eqs. (6) and (7) to �nish velocities
and positions update, we will then retain particles with
better �tness in the population, then through crossover
and mutation operators by using Eqs. (8)-(10), a lot of
new particle strings are then generated so as to replace
particles sorted out due to bad �tness. By doing so, the
size of population is then retained unchanged. Figure 3
shows the ow chart of HPLA.

3.3. HPLA-based BWNN for CSC design
Figure 4 is the architectural diagram showing the use
of HPLA-based BWNN to realize multiplierless CSC.
Taking RGB to Y as example, the input value of
BWNN should be (R;G;B), and the output value
should be Y . If the initial solution of PSO is
f�1; �2; �3; ng, then after �nishing the training of
BWNN, the parameters set R = fwji; ng extracted
from BWNN can then be used to construct multi-
plierless CSC architecture expected to be obtained.
Similarly, as long as the same procedures are followed,
hardware architectures such as RGB to Cb and RGB
to Cr can be obtained too.

Figure 4. Multiplierless CSC design using HPLA-based
BWNN method.

3.3.1. Encoding strategy of particles
In our proposed learning algorithm, each particle is
a string encoded by four real number values. When
particle string is sent to �tness function to do �tness
value evaluation, the �rst three real number values in
particle string will all be converted into binary stings of
�xed length to be used as weights for connecting input
layer and hidden layer in BWNN. The last real number
value is then the number of bits to shift right for the
output value of the output neuron. Figure 5 shows the
example of the encoding of a particle.

3.3.2. Fitness function evaluation
When too many adders are used, more hardware
resources will be consumed during circuit synthesis,
hence, in this study, two indexes such as image quality
and hardware resource consumed will be considered at
the same time, and the designed �tness function is as
shown in Eq. (11):

	=

 
��

NX
i=1

jfi;desired�fi;obtainedj+� �NAdd

!�1

;
(11)

where N denotes the total number of training patterns,
NADD denotes the number of adders, parameters �
and � are constant between 0 and 1, and fi;obtained
is calculated using Eq. (5).

4. Performance evaluation

In this research, the required parameter set setting of
the HPLA-based BWNN is as follows: Pop size = 40,
M = 10, maxgen =100, Pc = 0:8, Pm = 0:1, � =
0:005, � = 1, m = 9, and the bias of BWNN B 2
f16; 128g. The search space of �1, �2, and �3 is in the
range of [0, 1023], and the search space of n is in the
range of [0, 31]. The training data set used by HPLA-
based BWNN consists of 729 data patterns which are
the sub-sampled data in the RGB color space. The
designed architectures were described in Verilog-HDL
and synthesized for Altera Cyclone II EP2C70 FPGA,
with the aid of the tool Quartus II.



1630 C.Y. Chen/Scientia Iranica, Transactions B: Mechanical Engineering 22 (2015) 1625{1634

Figure 5. A coded particle string.

When BWNN that is responsible for the imple-
mentation of color space conversion, such as RGB to
Y , RGB to Cb, and RGB to Cr, has been �nished
with training, the knowledge and related parameters
extracted from black boxes are shown respectively as
in Eqs. (12)-(14):

RGB to Y :

wTji =

240 0 0 0 0 0 0 0 0 1
0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 0 0

35 ;
xi =

24RG
B

35 ; n = 11; B = 16 (12)

RGB to Cb:

wTji =

240 0 1 1 0 1 0 0 1 0
0 0 0 0 1 0 1 0 0 1
0 0 1 0 0 0 0 1 1 1

35 ;
xi =

24�R�G
B

35 ; n = 11; B = 128 (13)

RGB to Cr:

wTji =

241 0 0 0 1 0 0 1 1 1
0 0 0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 1 0 0

35 ;

xi =

24 R
�G
�B

35 ; n = 11; B = 128 (14)

Eq. (15) shows the multiplierless CSC architecture from
BWNN framework introduced in this research:

Y =
�

((R� 9) + (G� 2) + (G� 3)

+ (G� 4) + (G� 5) + (G� 6)

+ (G� 7) + (G� 8) + (G� 9)

+ (B � 5) + (B � 6) + (B � 7))

� 11
�

+ 16;

Cb =
�

(�(R� 2)� (R� 3)� (R� 5)

� (R� 8)� (G� 4)� (G� 6)

� (G� 9) + (B � 2) + (B � 7)

+ (B � 8) + (B � 9))� 11
�

+ 128;



C.Y. Chen/Scientia Iranica, Transactions B: Mechanical Engineering 22 (2015) 1625{1634 1631

Cr =
�

((R) + (R� 4) + (R� 7) + (R� 8)

+ (R� 9)� (G� 8)� (G� 9)

� (B � 4)� (B � 7))� 11
�

+ 128: (15)

In order to enhance the processing e�ciency of the
mentioned CSC architecture on color space conversion,
in this study, how to perform pipelined design on the
electronic circuit architecture, described in Eq. (15),
will be further described too. The concept of pipelined
design has been widely applied in all kinds of engi-
neering �elds; for example, the production line of the
automobile plant is operated based on the concept
similar to pipeline processing. For the hardware circuit,
the application of pipeline architecture is similar to
the production line in the automobile plant, and the
data in massive processing is similar to the objects
in the production line of a plant. Moreover, several
functional units with special functions, for example,
sub-circuits, such as adder and subtractor, are used
to perform data processing. The processed data are
coordinated and integrated through register, and then
are sent to the next stage for subsequent processing.
According to Eq. (15), the circuit representation can
be designed into pipeline architecture, which is shown
in Figures 6-8. All these color conversion circuits
are divided into �ve stages, and the sub-circuit in
each stage is formed by signed adder; each stage

Table 1. Comparison of the time needed for processing
512�512 size color image using Nios II C/C++ language.

Method Time cost
(s)

Clock frequency
(MHz)

Traditional CSC 54 100
Proposed CSC 1.2 100

is set up with pipeline register at the data output
location of the path to store temporarily the processed
data.

Here, the calculation time needed for several
di�erent CSC architectures proposed in this paper in
processing single image will be compared so as to
understand the performance of the proposed methods
in performing color conversion. The related comparison
results are as shown in Table 1. When we are executing
traditional oating-point based CSC software programs
in Nios II processor, the color conversion processing
time needed for single 512 � 512 size image was 54 s.
However, if the proposed CSC architecture is used
instead to implement the same conversion task, the
time needed will be only 1.2 s. Therefore, it is clear
that the CSC architecture realized in this study has a
very good performance, which is su�cient to deal with
the need of real-time image processing. In addition to
that, as compared to the CSC architecture used and
proposed by Li et al. in 2013 [4], which used 47 adders,
the proposed CSC architecture only needs 32 adders.
This shows signi�cant di�erence in the consumption of
hardware resource in both cases.

Figure 6. The pipelined architecture for RGB to Y .



1632 C.Y. Chen/Scientia Iranica, Transactions B: Mechanical Engineering 22 (2015) 1625{1634

Figure 7. The pipelined architecture for RGB to Cb.

Figure 8. The pipelined architecture for RGB to Cr.

When we further use Verilog-HDL to describe
circuit architectures, such as Figures 6-8, and download
them to Cyclone II FPGA chip, the performance data
of hardware circuit is then as shown in Table 2. From
the data listed in the table, it can be seen that the
hardware architecture realized in this research can have
a maximum operating frequency of 306 MHz in Cyclone
II FPGA chip, which shows better performance as
compared to the CSC circuit proposed by Bensaali and
Amira [27], CAST. Inc. [28], ALMA. Tech. [29], and
Amphion Ltd. [30], hence, it can be proved that the

Table 2. Performance comparison with existing CSC
hardware architecture.

Design parameters Speed
(Mhz)

Proposed CSC core 306

Bensaali and Amira [27] 234

CAST. Inc. [28] 112

ALMA. Tech. [29] 105

Amphion Ltd. [30] 90



C.Y. Chen/Scientia Iranica, Transactions B: Mechanical Engineering 22 (2015) 1625{1634 1633

Table 3. A comparison between color space conversion result and related performance for test images.

Computation time
Test image Conversion results RMSE Nios II Proposed CSC core

Y
Cb
Cr

0.3441
0.7222
0.1623

1.2 s 0.856 ms

Y
Cb
Cr

0.7803
0.5348
0.3991

1.2 s 0.856 ms

Y
Cb
Cr

0.4793
0.5483
0.2877

1.2 s 0.856 ms

above CSC circuit architecture has, in fact, excellent
characteristic and practical value.

Next, three 512�512 color images which are
frequently used for image quality test in the academy
were used to perform the experiencement so as to
compare the execution speed and image quality, which
are as shown in Table 3. From Table 3, it is clear
that when hardware method is used to realize CSC, the
processing speed will be far faster than that realized
by Nios II C/C++ software design method; in other
words, the color conversion task of the image can be
indeed processed in real time. In addition, RMSE index
in the table shows that the proposed CSC can retain
good image quality while doing color space conversion,
and the error between it and the result obtained from
Eq. (5) is relatively small (which is about in the range of
0.2�0.8), hence, in real application, almost no inuence
will be seen. The calculation of RMSE is shown in
Eq. (16):

RMSE =vuut1=(NM)
N�1X
i=0

M�1X
j=0

(fTemplate(i; j)�fobtained(i; j))2;
(16)

where M and N are the number of rows and columns
of the image.

5. Conclusion

In this paper, a method using HPLA-based BWNN to
design high-speed shift-and-add based CSC is intro-

duced. In the learning strategy, we have introduced
two consideration factors of RMSE and adder number
at the same time, hence, the realized circuit can,
under the minimal hardware consumption, still retain
a very good color conversion quality. In addition, the
proposed CSC architecture is pretty simple and has
very high execution speed; hence, it is very suitable
to be integrated into all kinds of image application
systems that need real time processing for taking care
of the task of fast color space conversion.

Acknowledgments

This research was supported by the National Science
Council of the Republic of China under Contract No.
NSC 102-2221-E-130 -021.

References

1. Yang, Y., Peng, Y. and Liu, Z. \A fast algorithm for
Y CbCr to RGB conversion", IEEE Trans. Consumer
Electron., 53(4), pp. 1490-1493 (2007).

2. Gustafsson, O. and Qureshi, F. \Addition aware quan-
tization for low complexity and high precision constant
multiplication", IEEE Signal Process. Lett., 17(2), pp.
173-176 (2010).

3. Webb, J.L.H. \E�cient table access form reversible
variable-length decoding", IEEE Trans. Circuits Syst.
Video Technol., 11(8), pp. 981-985 (2001).

4. Li, S.A., Chen, C.Y. and Chen, C.H. \Design of a shift-
and-add based hardware accelerator for color space
conversion", J. Real Time Image Process (2013). doi:
10.1007/s11554-013-0324-7



1634 C.Y. Chen/Scientia Iranica, Transactions B: Mechanical Engineering 22 (2015) 1625{1634

5. Zhang, B.T. and Muhenbein, H. \Evolving optimal
neural networks using genetic algorithms with Occam's
razor", Complex Syst., 7(3), pp. 199-220 (1993).

6. Li, S., Yuan, J., Yue, X. and Luo, J. \The binary-
weights neural network for robot control", Proceedings
of 2010 3rd RAS & EMBS, pp. 765-770 (2010).

7. Palmes, P.P., Hayasaka, T.C. and Usui, S. \Mutation-
based genetic neural network", IEEE Trans. Neural
Networks, 16(3), pp. 0587-600 (2005).

8. Yao, X. and Liu, Y. \A new evolutionary system
for evolving arti�cial neural networks", IEEE Trans.
Neural Networks, 8(3), pp. 694-713 (1997).

9. Koza, J.R., Genetic Programming: On the Program-
ming of Computers by Means of Neural Selection, MIT
Press (1992).

10. Berlanga, A., Isasi, P., Sanchis, A. and Molina, J.M.
\Neural networks robot controller trained with evolu-
tion strategies", Proceedings of the 1999 Congress on
Evolutionary Computation, pp. 413-419 (1999).

11. Ratnaweera, A., Saman, K. and Watson, H.C. \Self-
organizing hierarchical particle swarm optimizer with
time-varying acceleration coe�cients", IEEE Trans.
Evol. Comput., 8(3), pp. 240-255 (2004).

12. Juang, C.F. \A hybrid genetic algorithm and particle
swarm optimization for recurrent network design",
IEEE Trans. Syst. Man Cybernet., 32, pp. 997-1006
(2004).

13. Da, Y. and Ge, X.R. \An improved PSO-based ANN
with simulated annealing technique", Neurocomput.
Lett., 63, pp. 527-533 (2005).

14. Van den Bergh, F. and Engelbrecht, A.P. \A coopera-
tive approach to particle swarm optimization", IEEE
Trans. Evol. Comput., 8(3), pp. 225-239 (2004).

15. Premalatha, K. and Natarajan, A.M. \Hybrid PSO
and GA models for document clustering", Int. J.
Advance. Soft Comput. Appl., 2(3), pp. 1-19 (2010).

16. Hsu, R.L., Abdel-Mottaleb, M. and Jain, A.K. \Face
detection in color images", IEEE Trans. Pattern Anal.
Mach. Intell., 24(5), pp. 696-707 (2002).

17. Eberhart, R. and Kennedy, J. \Particle swarm opti-
mization", Proceedings of IEEE International Confer-
ence on Neural Network, pp. 1942-1948 (1995).

18. Holland, J.H., Adaptation in Natural and Arti�cial
Systems, University of Michigan Press, Ann Arbor, MI,
USA (1975).

19. Back, T., Evolutionary Algorithm: Comparisons of
Approaches, Chapman and Hall, Cambridge, UK
(1994).

20. Page, A.J. and Naughton, T.J. \Framework for task
scheduling in heterogeneous distributed computing

using genetic algorithms", Artif. Intell. Rev., 24(3-4),
pp. 415-429 (2005).

21. Ochoa, G., Harvey, I. and Buxton, H. \On recombi-
nation and optimal mutation rates", Proceedings of
Genetic and Evolutionary Computation Conference,
pp. 488-495 (1999).

22. Lee, K.Y. and Mohamed, P.S. \A Real-coded genetic
algorithm involving a hybrid crossover method for
power plant control system design", Proceedings of
the 2002 Congress on Evolutionary Computation, pp.
1069-1074 (2002).

23. Yalcinoz, T. and Altun, H. \Power economic dispatch
using a hybrid genetic algorithm", IEEE Power Eng.
Rev., 21(3), pp. 59-60 (2001).

24. Ramos, R.M., Saldanha, R.R., Takahashi, R.H.C. and
Moreira, F.J.S. \The real-biased multiobjective genetic
algorithm and its application to the design of wire
antennas", IEEE Trans. Magn., 39(3), pp. 1329-1332
(2003).

25. Kaelo, P. and Ali, M.M. \Integrated crossover rules
in real coded genetic algorithms", Eur. J. Oper. Res.,
176(1), pp. 60-76 (2007).

26. Ripon, K.S.N., Kwong, S. and Man, K.F. \A real-
coding jumping gene genetic algorithm (RJGGA)
for multiobjective optimization", Inform. Sciences,
177(2), pp. 632-654 (2007).

27. Bensaali, F. and Amira, A. \Design and e�cient
FPGA implementation of an RGB to YCrCb color
space converter using distributed arithmetic", Int. J.
Graph. Vis. Image Process., 5(1), pp. 37-47 (2004).

28. Application Note: CSC color space converter, CAST,
Inc., http://www.cast-inc.com (2002).

29. Datasheet: High performance color space converter,
ALMA Technologies, http://www.alma-tech.com
(2002).

30. Datasheet: Color space converters, Amphion semicon-
ductor Ltd, DS6400 V1.1, http://www.amphion.com
(2002).

Biography

Ching-Yi Chen received his PhD degree from
Tamkang University, New Taipei City, Taiwan, in 2006.
He joined the Department of Information and Telecom-
munications Engineering at Ming Chuan University
in 2007 as an Assistant Professor. Currently, he is
an Associate Professor at the department. His main
research interests include swarm intelligence, pattern
recognition, and embedded systems.




