
Scientia Iranica B (2015) 22(4), 1616{1624

Sharif University of Technology
Scientia Iranica

Transactions B: Mechanical Engineering
www.scientiairanica.com

Meta software engineering for information system
development projects

D. Samadhiya� and W.C. Chang

Department of Technology Management, Chung Hua University, 707, Sec2, Wufu Rd, Taiwan 30012.

Received 22 May 2014; received in revised form 27 October 2014; accepted 9 May 2015

KEYWORDS
Process engineering;
Structural method;
Process functionality.

Abstract. There is increasing demand for sophisticated software engineering processes in
today's software systems. In this regard, however, there is a multitude of di�erent processes
and each has various advantages and disadvantages some of which relate to the problem
domain or in the context of development. Computer software development processes have
to pass through many scenarios to be completed. There are many ways to solve a single
problem in software development. Sometimes, in structural engineering, the developer
is not able to decide which process will suit a particular problem. It can be said that
selecting a suitable process is a big issue in structural process software engineering, and
the problem of selecting a good candidate method is a big issue in structural process
engineering. The solution of such kinds of problem can be found in the work to be
done and the task to be performed by the operational process rather than by the process
structure. This paper introduces the notion of process operationality and proposes `process
architecture' to represent this operationality. Thus, Structural Process Engineering (SPE)
becomes Operational Process Engineering (OPE). Operationally close process architecture
is selected, adapted, enhanced, and restricted as needed. The task of construction consists
of putting together process features and structuring the new process.
© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Nowadays, information systems are the basis of many
activities in the real world, and due to requirements,
the complexity of these information system based
systems is increasing. On the other hand, development
time is reducing and new processes are being intro-
duced constantly. As a consequence, the traditional
rigid IS engineering processes are inadequate to provide
the necessary support in new IS developments. New
methods that are more 
exible and better adapted to
the situation of every IS development project must be
constructed. It is said that \Process engineering in
the �eld of information systems is the discipline to

*. Corresponding author.
E-mail addresses: samadhiya.durgesh@gmail.com (D.
Samadhiya); earnest@chu.edu.tw (W.C. Chang)

construct new processes from existing processes" [1].
These focus on the design, construction and evaluation
of processes, techniques and support tools for informa-
tion system development [2]. Numerous development
processes, based on a variety of paradigms, have been
proposed over the years. Of these, very few have been
successfully applied to the development of computer
based systems.

Since their introduction, various life cycle models
and speci�c supporting techniques have played an
important role in building software systems [3]. More
recently, the topic of software processes has received
increased attention from the software community. A
software design approach called \Evolution of Software
Processes" is based on the emerging view that software
processes - like software - also need to evolve, lest they
become obsolete [4,5]. The aim of this evolution is to
ful�ll the needs of the people who perform the process,



D. Samadhiya and W.C. Chang/Scientia Iranica, Transactions B: Mechanical Engineering 22 (2015) 1616{1624 1617

and the developmental and organizational goals to be
achieved. Another recent software design paradigm
that can be seen as a generalization of software process
evolution is process engineering. While there is a
great overlapping of process engineering and process
evolution activities, there are also some important
divergences. Basically, process evolution is oriented
more towards the improvement of existing processes
and process engineering more towards the construction
of new methods or processes.

Ralyte suggests that process engineering is facili-
tated if the goal of the process can be determined. In
this regard, the following questions have been raised [6]:

� How can assurances be provided that the process
to be enhanced, extended, or restricted is a good
candidate process?

� What are the chances that at the process engineering
intention stage, the process will have to be discarded
because its adaptation is very di�cult?

� Should not further exploratory work be undertaken
before committing to setting up process adaptation
intentions?

The solution to these questions is in structural meta
software engineering, but, the problem still arises that
no process is best in all the structures.

Figure 1 de�nes a process re-engineering process
model that provides guidelines to re-engineer an ex-
isting information system development process into a
reusable process. Figure 1 summarizes our process re-
engineering approach. In this paper, Section 1 includes
the introduction of the theme. Sections 2 and 3 explain
the brief terminology of structural meta software en-
gineering and operational meta software engineering.
Section 4 illustrates the motivation and contribution
of this paper, and Section 5 shows the preliminary

results of this contribution. The conclusions are found
in Section 6 of this paper.

2. Structural meta software engineering

Process Engineering (PE) and Structural Meta Soft-
ware Engineering (SMSE) focus on formalizing the use
of processes for systems development. The broader
term, process engineering, is de�ned as an engineering
discipline that designs, constructs and adapts pro-
cesses, techniques and tools for systems development; a
de�nition analogous to the IEEE de�nition of software
engineering [7]. In the real world, many information
systems development processes exist, but no method
is best for all situations. Structural meta software
engineering has been proposed for developing or tailor-
ing information system developing processes for speci�c
structural projects [8]. Structural meta software engi-
neering is \directed towards the controlled, formal and
computer-assisted construction of structural process
out of process fragments" [9]. A structural process
is an information system engineering process tailored
and tuned to a particular structure. Structural pro-
cesses are engineered in a formal and computer-assisted
manner out of standardized and proven building blocks
stored in an electronic data base. These building
blocks are called process storage and a process storage
is a description of an information system engineering
process, or any coherent part thereof [10,11].

Figure 2 shows a structural meta software en-
gineering process. In the introduction of process
engineering, we discussed the development towards
standardized information system engineering processes.
Despite various attempts regarding the \uni�ed" or
\universal" process, it is concluded that there is no
process which is best in all situations [12-16]. To
anticipate this problem, various approaches have been
proposed, which are positioned in the so-called \Struc-

Figure 1. Process engineering approach.



1618 D. Samadhiya and W.C. Chang/Scientia Iranica, Transactions B: Mechanical Engineering 22 (2015) 1616{1624

Figure 2. Structural meta software engineering process.

tural Process Spectrum" [17]. Despite the large number
of proposals that exist, there is some dissatisfaction
with the notion of structure. Bucher is concerned about
the poor understanding of the notion of a structure [18],
so, there is a need to �nd a way to reduce the number
of possible situations [19].

3. Motivation and contribution

As previously mentioned, Ralyte suggests that process
engineering is facilitated if the intention of the process
can be determined. In this regard, the following
questions have been raised [20]:

� How can assurances be provided that the process to
be enhanced, extended, or restricted is a good best
possible process?

� What are the chances that at the process engineering
intention stage, the process will have to be discarded
because its adaptation is very di�cult?

� Should not some further exploratory work be un-
dertaken before committing to setting up process
adaptation goals?

The solution of these questions can be found in the
work to be undertaken, and the task to be per-
formed rather than the structure of a process itself.
Every computer software process having a full cycle
consisting of requirements, design and construction
engineering and current state of the art in struc-
tural process engineering addresses the construction
engineering phase. The other two stages help us
to undertake further `exploratory work' referred to
by Ralyte. At the design stage, we introduce the
notion of process operationality and propose `process
architecture' as an abstraction of this operationality.
Thus, process engineering becomes Operational Meta
Software Engineering (OMSE). Operationally close

process architecture is selected, adapted, enhanced,
and restricted as needed. The task of construction
handles the putting together of process features and
of structuring the process. Thus, we see a di�erence
between structural process engineering and operational
process engineering. Last, but not least, it is necessary
to explain requirement engineering, which is upstream
to design engineering. Here, we introduce the notion
of a process goal. Once processes with similar goals to
those being engineered are found, a menu of processes
to be adapted, enhanced, and restricted is determined.
This is further re�ned in the design stage, where
architecture matching occurs. Again, a residue of
processes is found, and, at this stage, the architecture
of the new process emerges as a set of connected
functions. Finally, this architecture is engineered from
building blocks taken from the residue.

It can be noted that progressive selection in the
requirements and design stages include:

� The potential to assure that the method to be
enhanced, extended, or restricted is a good possible
process;

� Rejection of inappropriate processes; those having
dissimilar goals and dissimilar architectures are
rejected before the actual construction stage, which,
therefore, reduces the possibility of rejection;

� Enough exploratory work is done before committing
to process features.

Since project needs vary with projects, and
projects vary in their characteristics, the development
of methods may require speci�c adaptations. There-
fore, an engineering technique for this is required [21].
We can now state the aim of the thesis. We wish to
move to goal process engineering in order to explore
the context of structural process engineering more
fully. As a result, process selection for adaptation shall



D. Samadhiya and W.C. Chang/Scientia Iranica, Transactions B: Mechanical Engineering 22 (2015) 1616{1624 1619

be more appropriate and will assure that structural
process engineering is progressing purposefully. It will
considerably reduce the chance of process rejection at
later stages. For this task, a 3-stage life cycle for goal
process engineering is introduced.

In this life cycle, we introduce a process archi-
tecture matching phase that corresponds to our view
of operational process engineering. Then, the notion
of process architecture is explained through a meta-
model, and a set of operations is de�ned that enables
architecture matching. The two layers; design and con-
struction engineering, constitute the functional level of
process engineering. Once this is developed, we expect
to put an intentional level on top of the operational
level, which will further raise the abstraction in terms
of which process requirements will be expressed.

4. Preliminary results

4.1. Process development life cycle
As shown in Figure 3, we have developed a process
development life cycle for development. The require-
ments for the engineering stage consist of intention
matching. First, the goal of the process, To Be, is
elicited. The goal matching process uses matching
synonyms to identify intentionally similar processes
that reside in the process storage. These processes
become possible methods for the second stage of this
cycle.

In the design engineering stage, the process engi-
neer retrieves the architecture of each possible process
from process storage. The subset of these components
and inter-relationships that best meets the broad op-
erational needs of the process To-Be is selected. Such
selections are made from all possible processes and are
synthesized together into the architecture of the desired
process. In the construction stage, the architecture is
populated with instances of the process features needed
in the process.

4.2. Process architecture
We have de�ned process architecture as an abstraction
of the process that identi�es its components and inter-
relationships to highlight the externally visible opera-
tionality of the process. We use the class abstraction
as a way of formally de�ning process architecture, as
follows:

Process architecture

= fprocessjprocess performs function Fg:
The name, process architecture, re
ects the operation
performed by the class of processes abstracted in the
architecture.

The process architecture meta-model can be sum-
marized as an architecture implemented as process
organization, and this organization shows the features
of the process and their inter-relationships. An archi-
tecture can be atomic or complex, and architectures
can be related to one another by links. These links
form a successor or predecessor relationship between
architectures. Links are labeled by their execution
properties, Urgency and Necessity, respectively.

4.2.1. Process architecture matching process
In this design, the process engineer retrieves the process
architecture of each possible process and these possible
processes are obtained from the goal level, as shown
in Figure 3. The operational needs of this process are
matched with the operational expressions of the can-
didate processes and new desired process architecture
is made. In this process, only those that are useful
for the architecture should be selected and those that
are useless should be refused. The following operations
have been proposed to do this:

i) Given a named architecture, rename it;
ii) Create a new architecture;

iii) Delete an existing architecture;

Figure 3. The process development life cycle.



1620 D. Samadhiya and W.C. Chang/Scientia Iranica, Transactions B: Mechanical Engineering 22 (2015) 1616{1624

iv) Nest, N architectures within another one;
v) Un-nest architectures so that a nested architec-

ture becomes visible at a higher level of nesting;
vi) Change a link type;

vii) Make a sequence of architectures by introducing
an edge between them and de�ning their link
type. Link Type (LT) is used to elaborate the
nature of the relationship between operational
processes. It consists of two properties, Urgency
and Necessity.

viii) Eliminate a sequence.

4.2.2. Process architecture meta-model
For better understanding and to make the notion of a
process framework more precise, we have developed a
meta-model for it that identi�es the key concepts of a
process framework and their inter relationships. It also
forms a basis for deriving the graphical representation
of a process framework in this model. One framework
is related to other frameworks, and the relationship
between frameworks is de�ned in this meta-model. The
link type is an attribute of this relationship, which
takes on values from the set fIM, IC, DM, DCg that is:
`Immediate Must', `Immediate Can', `Deferred Must',
and `Deferred Can'. We have shown that a process
framework can be implemented as one or more process
organizations. We found an 1:N relationship between
a process framework and process organisation. Table 1
shows all types of link.

4.3. Operational process engineering
It is now time to explain the di�erence between
structural meta software engineering and operational
meta software engineering, as proposed. In the
fragment based structural meta software engineering
proposal [22], there are two fundamental elements:

a) Products and their structures;
b) Procedures and their execution order to develop the

products.

Products and their structure show that the in-
terest is in the structure of the products. Similarly,
since the structure of a process is largely determined
by the order of execution, the interest is in the process
structure. Therefore, we can conclude that structural
process engineering is centered round the structural

Table 1. Types of links.

Link type Urgency Necessity Abbreviation

1 Immediate Must IM
2 Immediate Can IC
3 Deferred Must DM
4 Deferred Can DC

aspects of processes. This focus on engineering the
structure of processes de-emphasizes what the process
does, and what task it is good for. In fact, determina-
tion of whether or not the process structure can carry
out the project task at hand is based on the experience
of the process engineer.

Operational process engineering puts the process
structure subordinate to process operationality. OMSE
asks for an explicit determination and representa-
tion of process operationality in the form of process
architectures. It is only after the architecture has
been built that the issue of process structure is to
be considered. In this sense, SMSE occupies the
downstream, construction engineering stage of our life
cycle.

5. An example of draw an object chart schema

We aim to match the operational processes stored in
the process storage with the operational structure,
To-Be. The core matching process is described in
this section. We start the operational meta software
engineering process by (see Figure 4) creating a new
operational process using the operation, create (draw
an object chart schema). At this moment, the op-
eration consists of a rectangle with no other details
available. The name of the created process is entered
in the rectangle. The values of the attributes and
relationships are as follows:

Name: Draw an object chart schema
Environment: Information systems, software devel-
opment
Input: Application concepts, list of events
Output: Class, object, associations
Concepts used: Object model, statechart
Related to: NIL
Implemented as: Subprocess
Interacts with: Application engineer/process engi-
neer
Process type: Complex

The process engineer searches the process storage
to retrieve the `Draw Object Model'. We look inside
the `Identify Class' and �nd two processes, `Identify
Attribute' and `Identify Service'. The process engineer
feels that the `Identify Class' is not useful but the

Figure 4. Create (draw) an object chart schema.



D. Samadhiya and W.C. Chang/Scientia Iranica, Transactions B: Mechanical Engineering 22 (2015) 1616{1624 1621

Figure 5. Partial operational process 1.

`Identify Attribute' and `Identify Service' are. The
following sequence of matching operations is applied
and the results are shown in Figure 5.

- Un-nest (identify attribute, identify class);
- Un-nest (identify service, identify class).

Now, other processes, i.e. Identify Object and Identify
Association, are found to be irrelevant in building the
desired process. The process engineer now processes
`Draw a Statechart Schema', as shown in Figure 4.
The process engineer applies the following matching
operations, one by one:

- Un-nest (identify state, draw statechart schema);
- Un-nest (identify state change, draw statechart

schema);
- Un-nest (identify triggers, draw statechart schema),
- Un-nest (cluster states, draw statechart schema).

The result is shown in Figure 6.
Links between operational process segments are

set up as follows:

- Sequence (identify state, identify attribute, im);
- Sequence (identify attribute, identify state, dc);
- Sequence (identify state, identify state change, DM);
- Sequence (identify state change, identify state, DC).

At this moment, the operational process of the new
process is as shown in Figure 7.

The process engineer now creates self loops to
allow iteration. The result is shown in Figure 8.

- Sequence (identify state, identify state, DC);
- Sequence (identify attribute, identify attribute, DC);
- Sequence (identify state change, identify state

change, DC).

To identify triggers, we must use the `Identify Service'
after the `Generate Event'. This is achieved as follows:

Eliminate (generate event, develop transaction,
DM);

- Sequence (generate event, identify service, DM);
- Sequence (identify service, develop transaction,

DM);
- Sequence (identify state change, identify triggers,

DM).

The result is shown in Figure 9.
To complete the integration of the `Object Model'

and `Statechart' additional operational processes, ad-
ditional links are de�ned, as follows:

Figure 6. Partial operational process 2.

Figure 7. Partial operational process 3.



1622 D. Samadhiya and W.C. Chang/Scientia Iranica, Transactions B: Mechanical Engineering 22 (2015) 1616{1624

Figure 8. Partial operational process 4.

Figure 9. Partial operational process 5.

Figure 10. The desired operational process: Draw an object chart schema.

- Sequence (identify triggers, cluster states, DM);
- Create (annotate state);
- Sequence (identify triggers, annotate state, DM);
- Create (de�ne �ring post condn spec);
- Sequence (de�ne �ring post condn spec, de�ne �ring

post condn spec, DC);
- Sequence (identify triggers, de�ne �ring post condn

spec, DM).

In Figure 10, the shaded operational processes show
the new operational process needed for introduction to
achieve the objective of `Objectchart'.

6. Conclusion and future work

A process organization represents process features and
their interconnections. The interest here is in process
concepts, inter-relationships between concepts, con-
straints, heuristics, guidelines and other such features
of a process. It can be seen that process organization
represents the structural aspects of processes. Alterna-
tively, it de�nes the input to be given to a computer
aided method engineering tool to engineer/implement
the required process. We have selected the generic
process model for representation of process organiza-
tions.



D. Samadhiya and W.C. Chang/Scientia Iranica, Transactions B: Mechanical Engineering 22 (2015) 1616{1624 1623

For the future, in order to �nalize construction-
design stage interaction, we are also developing a set of
operations for performing organization matching. This
will allow us to adapt process organizations determined
by architecture matching our structural needs.

Thereafter, we propose to develop the goal level.
The process goal refers to the goal that the process
ful�ls. We shall develop the process goal meta-model
and provide a precise de�nition of a goal. We aim to
associate a goal with each process and, as for archi-
tecture matching, develop the process goal matching
operations. Finally, the link between the goal and
architecture levels will be de�ned. Thus, the entire life
cycle of Figure 3 will be covered. Once tool support
is available, we will experiment with our technique to
establish its usefulness.

References

1. Harmsen, F. and Saeki, M. \Comparison of four
method engineering languages", In Proceedings of
the IFIP TC8, WG8.1/8.2 Working Conference on
Method Engineering on Method Engineering: Princi-
ples of Method Construction and Tool Support, Sjaak
Brinkkemper et al., Eds., Atlanta, Georgia, United
States, pp. 209-231 (Jan. 1996).

2. Brinkkemper, S. \Method engineering: Engineering of
information systems development methods and tools",
Journal of Information & Software Technology, 38, pp.
275-280 (1996).

3. Royce, W.W., Managing the Development of Large
Software Systems: Concepts and Techniques, Proceed-
inas WESCON (1970).

4. Bandinelli, S., Fuggetta, A., Lavazza, L., et al. \Mod-
eling and improving an industrial software process",
IEEE Trans. Soft. Engg, pp. 440-454 (1995).

5. Bassili, V., Zelkowitz, M., McGarry, F., et al. \SEL's
software process - improvement program", IEEE Soft-
ware, 12, pp. 83-87 (1995).

6. Ralyt�e, J., Deneck�ere, R. and Rolland, C., Towards
a Generic Model for Situational Method Engineering,
Proc. CAiSE 2003, J. Eder and M. Missiko�, Eds.,
LNCS 2681, Springer, pp. 95-110 (2003).

7. Brinkkemper, S., Personal Email Communication to
Authors (29 Sept. 2006).

8. Brinkkemper, S. \Method engineering: Engineering of
information systems development methods and tools",
Information and Software Technology, pp. 275-280
(1996).

9. Harmsen, F., Situational Method Engineering, Moret
Ernst & Young (1997).

10. Heym, M. \Method engineering: Speci�cation and
integration of development methods for information
systems", [in German: Methoden-Engineering: Spez-
i�kation und Integration von Entwicklungsmethoden

f�ur Informationssysteme], Dissertation, Hochschule St.
Gallen, Switzerland (1993).

11. Heym, M. and �Osterle, H. \Computer-aided method-
ology engineering", In Information and Software Tech-
nology, 35, pp. 345-354 (1993).

12. Malouin, J.L. and Landry, M. \The mirage of universal
methods in systems design", In Journal of Applied
Systems Analysis, 10, pp. 47-62 (1983).

13. Humphrey, W.S., Managing the Software Process,
Addison-Wesley, Reading, MA (1990).

14. Olle, T.W., Hagelstein, J., MacDonald, I.G., Rolland,
C., Sol, H.G., van Assche, F.J.M. and Verrijn-Stuart,
A.A. Information Systems Methodologies - A Frame-
work for Understanding, 2nd Edn., Addison-Wesley
(1991);
Vessey, I. and Glass, R.L. \Applications-based
methodologies", In Information Systems Management,
pp. 53-57 (Fall 1994).

15. Purba, S., Sawh, D. and Shah, B. How to Manage
a Successful Software Project - Methodologies, Tech-
niques, Tools, John Wiley & Sons, New York (1995).

16. Parkinson, J., 60 Minute Software - Strategies for
Accelerating the Information Systems Delivery Process,
John Wiley & Sons, New York (1996).

17. Harmsen, F., Brinkkemper, S. and Oei, H. \Situ-
ational method engineering for information system
projects", In Methods and Associated Tools for the
Information Systems Life Cycle, T.W. Olle, and A.A.
Verrijn Stuart, Eds., Proceedings of the IFIP WG8.1
Working Conference CRIS'94, North-Holland, pp. 169-
194, Amsterdam (1994).

18. Bucher, T., Klesse, M., Kurpjuweit, S. and Winter,
R. \Situational method engineering - On the di�eren-
tiation of \context" and \project type"", Situational
Method Engineering 2007, pp. 33-48 (2007).

19. B�orner, R. \Applying situational method engineering
to the development of service identi�cation methods",
16th Americas Conference on Information Systems,
Lima, Peru, forthcoming, Paper 18, pp. 1-10 (2010).

20. Ralyt�e, J., Deneck�ere, R. and Rolland, C. \Towards
a generic model for situational method engineering",
Proc. CAiSE 2003, J. Eder and M. Missiko�, Eds.,
LNCS 2681, Springer, pp. 95-110 (2003).

21. Anat, A. and Iris, R.B. \Semi-automatic composi-
tion of situational methods", Journal of Database
Management, 22(4), pp. 1-29 (2011). doi:10.4018/
jdm.2011100101

22. Brinkkemper, S., Saeki, M. and Harmsen, F., Assembly
Techniques for Method Engineering, Proc. CAiSE 98,
B. Pernici and C. Hanos, Eds., LNCS 1413, Springer,
pp. 381-400.

Biographies

Durgesh Samadhiya obtained a PhD degree from



1624 D. Samadhiya and W.C. Chang/Scientia Iranica, Transactions B: Mechanical Engineering 22 (2015) 1616{1624

Chung Hua University, Taiwan. He has published
and presented a number of papers in international
journals and at conferences. He has made signi�-
cant contributions to the area of software engineering
and networking, and completed many projects in this
�eld.

Wen-Chih Chang is Associate Professor in the De-
partment of Information Management at Chung Hua
University, Taiwan. His research interests include e-
learning, game-based learning, social network, learning
behavior analysis, and institutional research and data
analysis.




