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Abstract. Identifying hazardous locations on highways is a fundamental step in safety
improvement programs and projects since it provides decision makers with a basis for
allocating budgets and other resources in a cost-e�ective manner. Extensive research has
been conducted to identify such locations. However, most studies have ignored the spatial
characteristics of crash occurrences and the relative signi�cance of injury severity. In this
study, we develop a procedure for identifying hazardous locations on expressways based
on Geographically Weighted Regression (GWR) and Equivalent Property Damage Only
(EPDO). GWR is a spatial regression method that can re
ect spatial dependency and
heterogeneous relationships between crash occurrences and other explanatory variables.
EPDO is a comprehensive measure of crash occurrences weighted by the level of injury
severity. We apply this procedure to a case study in Gyeongbu Expressway in Korea. The
�ndings from our case study show that the procedure can identify hazardous locations
on roadways while re
ecting crash frequency and injury severity simultaneously with the
comprehensive measure.
© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Identifying hazardous locations (hotspots) and under-
standing the process of crash occurrences in those
locations are important for the appropriate allocation
of resources for safety improvements [1,2]. Failure to
identify true hazardous locations such as false positives
(i.e. identifying sites for safety improvements that
should not have been selected) or false negatives (i.e.
not identifying sites that should have been selected) re-
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duces the e�ectiveness of safety improvement projects
by wasting resources.

Hazardous locations on highways have been de-
�ned or ranked by various crash outcome measures,
including crash rate (crashes per vehicle miles trav-
eled), frequency, severity, density, or a combination
of these measures within divided highway segments.
Many recent studies have suggested determining these
locations based on the amount of excessive risk, which
can be estimated by the di�erence between observed
and expected counts [3-5]. However, the previous
models are limited in their ability to 1) measure
crash outcomes that can re
ect both severity and
occurrence and 2) re
ect the e�ect of spatial interaction
among tra�c crashes that occur in nearby segments
because the regression models are speci�ed based on
the assumption of independence between samples.
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In this study, we use the Equivalent Property
Damage Only (EPDO) method, which considers the
total number of crashes weighted by the severity of
each crash [6]. Geographically Weighted Regression
(GWR) is then applied to modeling EPDO as an
outcome variable. GWR is used to model spatially
varying relationships in the geographic space [7].
Based on these two methods, this study proposes
a procedure for identifying hazardous locations on
expressways in Korea. The result is then compared
to hazardous locations identi�ed by Kernel Density
Estimation (KDE), which is an e�ective method for
analyzing the �rst order properties of a point event
distribution [8,9].

In practice, hotspots are identi�ed by the di�er-
ence between the actual and the expected number of
crashes, which can later be used to estimate bene�ts
of safety improvement projects. Since the KDE cannot
provide this quantitative selection criterion, it may not
be used independently for selecting safety improvement
projects. However, it is an e�cient method for
visualizing geographically concentrated high-accident
segments, and it can identify the list of hotspots that
are quite comparable to that of the GWR model.

The remainder of this paper is organized as fol-
lows. In the second section, we discuss the importance
of spatial interaction in analyzing tra�c crashes. The
third section explains the measure of the EPDO and
the estimation procedure for GWR. The proposed
approach is applied to an actual highway, Gyeongbu
Expressway in Korea, in the fourth section. The �nal
section provides concluding remarks and suggestions
for future research.

2. Spatial interaction in tra�c crashes

Tra�c accidents are spatial events occurring over a
network in geographic space. They are caused by
various factors such as human behavior, the mechanical
failure of vehicles, roadway geometry, and environmen-
tal conditions. Spatial interaction among these factors,
which are often missing in collision reports, can also
be a signi�cant latent factor in accidents. Therefore
Tobler's �rst law of geography [10], which states that
objects in geographic space are not distributed ran-
domly but interact with each other, also holds true for
crash occurrences, resulting in spatial dependency and
spatial heterogeneity.

Spatial dependency refers to a certain degree
of redundancy in the additional information that is
provided by nearby locations within a geographic
space [11]. Spatial dependency leads to the spa-
tial autocorrelation problem in conventional statistics;
however, this can be viewed as evidence for important
spatial processes [12]. In contrast, spatial heterogeneity
is characterized by a spatial or regional dissimilarity

between the locations of objects within a geographic
space. The results of any analysis over a limited area
can be di�erent from the results that would be obtained
for other areas. These concepts tend to a�ect almost
any kind of spatial analysis conducted on geographic
data, including crashes on highways [13].

Previous studies of crash prediction models have
analyzed crash causal factors from a traditional sta-
tistical standpoint, without su�cient consideration of
spatial interaction. The Safety Performance Function
(SPF), for example, estimates the expected number
of tra�c accidents per unit time interval using in-
dependent variables, such as tra�c 
ow rates and
geometric design features [14,15]. The SPF assumes
that 1) the rate of tra�c collisions along a highway is
spatially uncorrelated, 2) the rate at which collisions
occur within the segment remains constant, and 3)
the factors causing high collision rates reside within
the segment [16,17]. The �rst assumption can be
invalidated by the spatial autocorrelation among acci-
dents, as examined in the fourth section of this paper.
The second and third assumptions are also invalid
because crash risks vary by location even within the
same highway segment, and the factors causing a high
number of collisions may spread out over contiguous
segments.

Other studies such as those of Miaou and Lum [18]
and Shankar et al. [19] developed models based on
homogeneous road sections divided by explanatory
variables, such as the geometric features of the site,
tra�c volume, and other environmental features. How-
ever, these models could not fully examine the spatial
relationships between tra�c accidents because of the
limits of traditional statistical analysis methods.

3. Methodology

3.1. Equivalent Property Damage Only
(EPDO)

Since the impacts of crashes can vary according to
their accompanying injuries, it is important for a
crash outcome measure to re
ect injury severity. We
propose the EPDO method, which assigns severity
weights to individual crashes. Higher levels of injuries
are given higher weights based on the ratio of their
average crash costs to Property Damage Only (PDO)
crashes [20].

In this study, we use a severity index using the
EPDO method, which is calculated as follows:

SI(n) = WF (n) � CF (n) +WI(n) � CI(n) + C(n); (1)

where:
SI(n) : Severity index at location n;
WF (n) : Weight for a fatal crash at location n;
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WI(n) : Weight for an injury crash at location
n;

CF (n) : The number of fatal crashes at location
n;

CI(n) : The number of injury crashes at
location n;

C(n) : The number of PDO crashes at
location n.

By assigning greater weight to severe injury
crashes, bias due to the underreporting of minor
injuries and PDO crashes can be partially corrected [6].
Furthermore, since EPDO is not only a comprehensive
measure but also a continuous variable, it can obviate
issues in other conventional count models for crash
occurrences and allows more advanced and appropriate
statistical analyses for safety evaluation [21].

3.2. Geographically weighted regression method
In the Ordinary Least Square (OLS) regression, pa-
rameters are estimated globally. Once estimated, the
same parameter values are applied over all highway
segments, although the in
uence of some independent
variables (e.g. geometric attributes or tra�c volumes)
on the dependent variable (e.g. crash frequencies or
severity) may vary across space. By not re
ecting
spatial variability, the estimated model may include
some biases and result in low explanatory power of a
model [22]. In GWR, local parameters are estimated
for each location or highway segment with di�erent
weights for observations relative to those positions. In
other words, in estimating parameters for a model at a
certain location, observations that are made at nearby
locations should have greater weights in the estimation
than observations that are made farther away [23].

The general form of the GWR model is modi�ed
from the OLS and can be written as:

yi = �i0 +
X
k

�ikxik + �i; (2)

where:
yi : Dependent variable in highway segment

i 2 L, where L is a set of all highway
segments in the route;

xik : Independent variable of the kth
parameter in highway segment i;

�ik : kth parameter in highway segment i;
�i : Error term in highway segment i.

The estimation procedure of the GWR model is
composed of four parts: i) Select h (bandwidth), ii)
Calculate weight matrix, Wi, iii) Calculate coe�cient
matrix, �̂i, and iv) Calculate model �tness, Akaike
information criterion with a sample size correction
(AICc). This procedure is repeated until the AICc is

minimized. At minimum AICc, the bandwidth, h, is
determined.

�̂i is a vector of local estimated parame-
ters for a given highway segment i, where �̂Ti =
f�̂i1; �̂i2; :::; �̂ik; :::g. This is calculated with weights
given on the location relative to the other observations
in the dataset. The estimator can be represented as
follows:

�̂i =
�
XTWiX

��1XTWiy; (3)

where X is the matrix of the independent variables, xik,
y is the vector of observed dependent variable values,
and Wi is a p � p matrix of weights relative to the
position of i in the study area, where p is the total
number of segments. O�-diagonal elements of Wi are
zero, and its diagonal element in j-th row is represented
by a Gaussian form as:

Wi(j) =
1p
2�
e�0:5(dij=h)2

; (4)

where Wi(j) is the geographical weight of the data
point i related to the regression point of segment
j 2 L, where L is the set of total segment; dij is the
distance between data point i, and the regression point
of segment j, and h is the bandwidth. In this study,
the data point is the corresponding crash location, and
a middle point of each roadway segment is used as the
regression point. At minimum AICc, the bandwidth,
h, is 70,034 m.

Hazardous locations are selected based on the
residuals-highway segments that have residuals greater
than the predetermined threshold from the estimated
value of GWR [24,25]. The threshold value can usually
be represented as a certain statistically signi�cant level.
For example, the California Department of Transporta-
tion [26] and Sung [27] used 0.5% and 5% signi�cance
levels, respectively, and Kononov and Allery [28] set the
threshold to be 1.5 times the standard deviation. The
threshold value may depend on site-speci�c conditions
or on a budget size for the safety improvement program.

4. Application to Gyeongbu expressway in
Korea

4.1. Data description
Gyeongbu Expressway is a 416 km expressway con-
necting Seoul, the capital of Korea, and Busan, the
second largest city in Korea. Data for a total of 842
crashes, which occurred on the northbound lanes of
the expressway from 2006 through 2008, are used in
this study (see [29,30] for details of the site description
and the database of geocoded collision records). We
divided the expressway into 524 segments, with an
average length of 794 m for the estimation of both
OLS and GWR, according to their horizontal curve
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Table 1. Description of variables.

Category Variables Description

Dependent
variable

EPDO

Sum of scores for each crash multiplied by a weight based on crash severity

EPDO = (1 � crashes with property damage only) + (3 � number of injury

crash) + (12 � number of fatal crash)

Explanatory
variable

NumLane The number of lanes in a segment

Bridge The number of bridges in a segment

Tunnel The number of tunnels in a segment

Camera The number of speed cameras in a segment

O�Ramp The number of o�-ramps in a segment

OnRamp The number of on-ramps in a segment

Restarea The number of rest areas in a segment

TG The number of toll booths in a segment

EXPO Exposure of a segment to tra�c

EXPO = D�365
106 �

0@ 2008P
g=2006

0@AADTg � Freqg
2008P
h=2006

Freqh

1A1A
where D is the length of a road segment, AADTg is annual average daily

tra�c for year g, and Freqg is crash frequency in year g.

HR Radius of horizontal curve (m)

attributes, as suggested by Kwak et al. [31] and Park
et al. [32] who, using comparable data sets, showed
horizontal curvature to be an in
uential segmentation
criteria. The dependent and explanatory variables are
described in Table 1.

In general, EPDO weights are estimated based on
the societal costs of fatal, injury, and PDO crashes.
Therefore, they may vary with time and location.
In this study, we used 12 for a fatal crash and 3
for an injury crash, which are Equivalent Property
Damage Only (EPDO) values o�cially employed by the
Korea Road Tra�c Authority, an organization that is
a�liated with the National Police Agency (NPA).

4.2. Veri�cation of spatial relationship
Spatial autocorrelation can be de�ned as the existence
of a positively (or negatively) systematic pattern in
the spatial distribution of the variable. Contiguous
spaces have a positive spatial autocorrelation if they are
more alike, and vice versa. This is important because
most traditional statistics are based on the assumption
that the values of observations in each sample are
independent of one another.

Moran's autocorrelation coe�cient (often denoted
as I) [33] is an indicator of global spatial autocorrela-
tion, and it is used to measure the spatial autocorrela-
tion of crash occurrences [34]. It compares the value of
the variable at any one location with the value at all

other locations. Moran's I can be calculated as follows:

I =
p
P
i
P
j wij(Ri � �R)(Rj � �R)

(
P
i
P
j wij)

P
i(Ri � �R)2 ; (5)

where p is the total number of segments, and i and
j are highway segment indices. Ri is the di�erence
between the observed and the estimated variable value
(e.g. fatality rate, severity, or frequency) at location i,
�R is the mean of Ri, and wij is a distance-based weight
represented by the reciprocal of the distance between
segments i and j.

Given a set of accident points and associated at-
tributes of the accidents, Moran's I evaluates whether
the pattern expressed is clustered, dispersed, or ran-
dom. The Z score of Moran's I is used to examine its
statistical signi�cance. To test whether we can reject
the null hypothesis (i.e., there is no spatial clustering),
the Z score is calculated as:

Z(I) =
I � E(I)
SE(I)

; (6)

where E(I) is the expected value of Moran's I and
SE(I) is an estimate of the theoretical standard de-
viation. To determine if the Z score is statistically
signi�cant, it is compared to the range of values for a
particular con�dence level [12].

The results of Moran's I and Koenker's studen-
tized Breusch-Pagan (K-BP) statistics for OLS statis-
tics are summarized in Table 2. Moran's I results show



1598 S.H. Park et al./Scientia Iranica, Transactions B: Mechanical Engineering 22 (2015) 1594{1603

Figure 1. Identi�ed hazardous locations by GWR Method: a) Symbolized by the value of standardized residual; and b)
hazardous locations of which the standardized residuals are bigger than 2.58.

Table 2. A summary of statistics results of Moran's I
test and OLS.

Test Statistics name Statistics value

Moran's I
Moran's Index 0.043

Z-Score 2.012
p-value 0.043

K-BP for OLS K-BP 52.358
K-BP Prob 0.000000

that all Z-scores are greater than 1.96 and p-values
are smaller than 0.05, which implies the existence of
spatial autocorrelation with a 95% level of statistical
signi�cance.

The K-BP statistic shows whether the explana-
tory variables in the model have a consistent relation-
ship to the dependent variable over the geographic
space (i.e. spatial heterogeneity) [35]. For the OLS
result, a K-BP probability of less than 0.05 indicates
that the dependent variable has statistically signi�cant
heteroscedasticity and non-stationarity over the target
area. Resulting from Moran's I test and K-BP statistic,
the spatial interaction in crash data raises an important
problem to be considered in accident analyses.

4.3. GWR estimation
The OLS and GWR results are compared in Table 3.
Akaike Information Criterion (AIC) is a relative mea-
sure of performance that is used to compare statisti-
cal models [36]; the smaller AICc indicates a better
goodness of �t. While EPDO shows similar AICc
values for both models, both R-square and adjusted R-
square values show that the GWR model is superior to
the OLS model for explaining the dependent variable.
This is as expected because GWR can better describe
the di�erent relationships between the dependent and
explanatory variables at di�erent locations.

Table 3. Comparison of OLR and GWR results.

Test Statistics name Statistics value

OLS
AICc 3,390.38
R2 0.477

Adjusted R2 0.467

GWR
AICc 3,390.46
R2 0.520

Adjusted R2 0.484

4.4. Identifying hazardous locations by GWR
The next step is to select hazardous locations using the
GWR results. From the model with EPDO, 12 highway
segments with residuals larger than 2.58 standardized
residuals, representing high residual sections with a 1%
signi�cance level, are identi�ed, as shown in Figure 1.

In Table 4, selected segments are ranked by the
higher unit accident costs that imply the higher social
costs from the accidents in the unit segment; thus,
there could be more room for saving the social cost by
a given investment for the safety improvement project.

4.5. Comparison of GWR and KDE results
In general, crash maps do not precisely re
ect the crash
concentrations of locations having more than one crash
because the symbols for each of the crashes at one
location lie on top of each other and thus are not
shown distinctly [37]. Kernel density, on the other
hand, calculates the magnitude of a crash frequency
or severity per unit area from every crash point on
the highway using a kernel function to �t a smoothly
tapered surface to each point. The surface value is the
highest at the location of the crash point, diminishing
as it moves away from the point and reaching zero at
the radius distance (or bandwidth) from the point [38].

In the KDE method, the highway route is �rst
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Table 4. Identi�ed hazardous locations by GWR

Priority From (km) To (km) Length (m) EPDO Acc. cost�

(USD)
Unit accident
cost (USD/m)

1 307.380 307.891 511 36 1,341,469 2,625
2 310.978 311.380 402 24 842,726 2,096
3 343.015 343.720 705 28 916,462 1,300
4 268.780 269.720 940 26 919,779 978
5 55.270 55.760 490 25 461,852 943
6 389.877 390.720 843 31 589,565 699
7 344.960 346.900 1,940 38 1,333,483 687
8 188.710 190.110 1,400 28 912,701 652
9 226.320 227.820 1,500 25 898,804 599
10 386.920 388.510 1,590 29 921,068 579
11 298.716 300.375 1,659 28 940,166 567
12 353.940 356.340 2,400 31 933,960 389

� Accident cost is a social cost for accidents represented by the sum of the property damage costs, the injury costs,
and the fatality costs (Road Tra�c Authority of Korea, 2011).

divided into small cells, and the kernel function value
at each cell is calculated. The value increases as it gets
closer to accident locations, and the location having a
large cell value can be regarded as an accident-prone
location.

In this study, we propose a severity-weighted
kernel function, which is a product of a severity index
and a distance function. The severity index in Eq. (1)
de�nes the kernel function at cell a, represented by a
Gaussian form:

Ka = (2�)�1=2
X
na

exp

 
� (d(a; na))2

2b2

!
SI(na); (7)

where Ka is a kernel function value at cell a, na is an
index of crash location within a bandwidth from cell a,
d(a; na) is the distance from crash location na to cell
a, and b is a bandwidth for KDE.

Two key inputs of the KDE method, cell size and
bandwidth, are determined for the clear representation
of hotspots. Using large cell size and bandwidth
results in data aggregation in distant segments, so
that blurred images of hotspots are provided, resulting
in a false positive (i.e. unnecessary identi�cation of
low risk segments). Meanwhile, when a small cell
size and bandwidth are used, statistical 
uctuations
in the data cannot be removed, so that an increased
number of hotspots are identi�ed. Therefore, in this
study, we set the cell size and bandwidth at 100 m and
500 m to match the length of the safety improvement
project in Korean expressways. For the comparable
number to the selected locations by the GWR method,
15 segments with highest kernel function values are
selected as shown in Table 5.

Figure 2 and Table 6 show locations selected by
both the GWR and KDE methods. In Table 6, the

Figure 2. Kernel density map that overlaps hazardous locations identi�ed by GWR.



1600 S.H. Park et al./Scientia Iranica, Transactions B: Mechanical Engineering 22 (2015) 1594{1603

Table 5. Selected locations by KDE method.

Priority From (km) To (km) Length (m) EPDO Acc. cost
(USD)

Unit accident
cost (USD/m)

1 307.3 307.8 500 36 1,341,469 2,683
2 343.2 343.6 400 28 916,462 2,291
3 299.2 299.6 400 21 898,184 2,245
4 189.5 189.9 400 24 885,905 2,215
5 55.4 55.8 400 24 858,199 2,145
6 359.6 360.3 700 42 1,358,703 1,941
7 388.3 388.8 500 27 906,350 1,813
8 346 346.5 500 25 861,690 1,723
9 35.2 36 800 27 1,323,150 1,654
10 402.5 403.2 700 41 1,069,763 1,528
11 269.1 269.8 700 29 944,522 1,349
12 233.2 233.9 700 30 910,410 1,301
13 356 356.4 400 22 519,349 1,298
14 389.8 390.4 600 31 592,205 987
15 386.8 387.3 500 19 486,179 972

Table 6. Top 12 commonly selected segments by both the GWR and KDE models.

GWR KDE

Rank From
(km)

To
(km)

Length
(m)

Unit accident
cost (USD/m)

From
(km)

To
(km)

Length
(m)

Unit accident
cost (USD/m)

Rank

1 307.380 307.891 511 2,625 307.3 307.8 500 2,683 1
2 310.978 311.380 402 2,096
3 343.015 343.720 705 1,300 343.2 343.6 400 2,291 2
4 268.780 269.720 940 978 269.1 269.8 700 1,349 11
5 55.270 55.760 490 943 55.4 55.8 400 2,145 5
6 389.877 390.720 843 699 389.8 390.4 600 987 14
7 344.960 346.900 1,940 687 346.0 346.5 500 1723 8
8 188.710 190.110 1,400 652 189.5 189.9 400 2,215 4
9 226.320 227.820 1,500 599 233.2 233.9 700 1,301 12

10 386.920 388.510 1,590 579
388.3 388.8 500 1,813 7
386.8 387.3 500 972 15

11 298.716 300.375 1,659 567 299.2 299.6 400 2245 3
12 353.940 356.340 2,400 389 356.0 356.4 400 1,298 13

359.6 360.3 700 1941 6
35.2 36 800 1654 9
402.5 403.2 700 1528 10

location of each segment in the same row lies on a
similar position in the expressway. As a result, 12
out of 15 segments identi�ed by the KDE method
are matched to 11 out of 12 locations selected by the
GWR method. Here, highway segments are divided
by horizontal curve attributes in the GWR method,
and the lengths may vary from hundreds of meters
to over 10 kilometers. In this analysis, most GWR

segments are longer than KDE segments, and thus,
the unit accident costs of GWR segments are generally
lower than those of KDE segments. This implies that
the GWR segments may include relatively lower risk
sections, but at the same time, this may reduce false
negatives by covering the high-risk sections with a
relatively wide range of roadway segments. On the
other hand, with tighter and more regular segment
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lengths, higher unit accident costs of KDE may increase
the resource e�ectiveness.

5. Conclusion and future study

Numerous e�orts have been made to identify factors
in
uencing crash occurrences and roadway safety by
developing crash prediction models based on explana-
tory variables, such as the geometric features of the site,
tra�c volume, and other environmental features. How-
ever, since these models assume that every crash occurs
independently and that the rate at which crashes occur
within a segment remains constant, they fail to fully
re
ect the interaction between adjacent sections of a
continuous roadway.

In this study, the GWR and KDE methods
were used to identify hazardous highway sections by
considering the e�ect of spatial dependency and spatial
heterogeneity on the outbreak of tra�c accidents.
The GWR method shows better analytical outcomes
of spatial data than the conventional OLS method
because it estimates di�erent local regression equations
depending on spatial characteristics, so the signi�cance
of variables and their in
uence can be considered
separately at each highway segment. The KDE method
can help identify crash-clustered areas through the use
of a visualized kernel density map, and thus, it was
used in this study to con�rm the e�ectiveness of the
GWR method.

For suggested approaches, the EPDO variable was
tested as a dependent variable for a better evaluation
of the seriousness of accidents, whereas most of the
existing crash-frequency-based studies have considered
all crashes to be identical, regardless of their level of
severity.

In the case study of Gyeongbu Expressway in
Korea, we veri�ed that highway accidents are spatially
correlated and that the suggested spatial analysis
model can explain the distribution and relationship
of crashes with better goodness-of-�t with the actual
crash data. Most of the segments selected by the GWR
and KDE methods overlapped each other. Commonly
selected segments are prioritized by the unit accident
cost and recommended as candidate sites for future
safety improvement projects.

Although the procedure suggested in this study
has reduced the theoretical limits of the assumptions
of existing crash prediction models, further research
on the GWR model can enhance the performance of
the procedure. More studies should be performed to
determine the proper criteria for segmenting highways
for GWR and the modi�able areal unit problem, which
may cause altered analysis results by the level of
aggregation of the spatial data. Furthermore, more
elaborate models, such as the Poisson-gamma model
with random e�ects, should be developed and applied

to the procedure to enhance its e�ectiveness in identi-
fying hazardous locations.

In addition, before-and-after studies of safety
improvement projects for suggested sites would be
helpful for evaluating the e�ectiveness of suggested
methodologies. The enhanced safety level and the eco-
nomic and social bene�ts will validate the importance
of considering the spatial relationship of accidents in
identifying hazardous locations on highways.
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GWR Geographically Weighted Regression
GIS Geographic Information Systems
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PDO Property Damage Only
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