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Abstract. The stochastic nature of price volatility, as an important issue in stock markets,
signi�cantly a�ects decision makers' decisions. In this paper, a new multivariate fractionally
integrated generalized autoregressive conditional heteroscedasticity (MVFIGARCH) model
is proposed. Being more comprehensive, in comparison with models in the literature, the
proposed model considers the long term parameter, which is estimated simultaneously
with other parameters. A well-known method of MVFIGARCH estimation is the Gaussian
quasi-maximum likelihood method. The Gaussian quasi-maximum likelihood estimator
of the MVFIGARCH model is known to be sensitive to data outliers. To correct this
vulnerability, robust M-estimators are introduced for MVFIGARCH models. Volatility
models with bounded innovation propagation properties are introduced to increase the
robustness of the estimations. The applicability of the proposed model is justi�ed by
the volatility transmission between the Tehran stock index, the Dubai stock index and
the global oil price index between December 5th, 2006 to January 30th, 2012, and is
investigated using the MVFIGARCH model. The result of estimation in di�erent models
generally shows the volatility transmission from the global oil market to Tehran and Dubai
markets. The volatility transmission from the Dubai to Tehran market was meaningfully
observed as well. However, the e�ect of transmission was not observed in the reverse
direction.
c 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Long-term memory is an important concept in many
scienti�c areas. It has attracted much research into
human behavior, hydrology, telecommunications and
�nancial time series, and the study of such processes
continues to be of interest [1]. Long-term memory in
time series analyses occurs when the autocovariance

*. Corresponding author. Tel.: +98 21 73225007;
Fax: +98 21 73225098
E-mail addresses: b ebrahimi@iust.ac.ir (S.B. Ebrahimi);
seyedhosseini@iust.ac.ir (S.M. Seyedhosseini)

for a stationary time series converges to zero so slowly
that its sums diverge. Since autocovariance has a non-
summability property, in theory, the autocorrelation
function is usually used to characterize long-memory
stationary processes, and, in practice, an estimator is
utilized instead of its theoretical counterpart. Long
memory in asset returns and volatilities is a new re-
search area, both in theoretical and empirical modeling
of high frequent �nancial time series. Several papers
have addressed the long-run properties of stock returns,
suggesting that absolute returns are su�ciently char-
acterized by long-term memory processes. The most
popular techniques of time series modeling with long-
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term memory is the ARFIMA-FIGARCH. The famous
GARCH models [2,3] are known to be short memory;
however, the sample autocorrelation function of these
models has long range dependence type behavior,
according to research by Mikosch and Starica [4].

Considering long-term memory processes as frac-
tional models, the breaks can be regarded as non-linear
to the data. In some cases, long memory models may
generate data with nonlinear properties, as occasional
structural breaks. These nonlinear properties are
highly inuenced by outliers in the data.

In this paper, we develop a model called MV-
FIGARCH (FBEKK), which is more comprehensive
than previous ones and which considers the long term
parameter and its simultaneous estimation, along with
others in the model.

The proposed model suggests that MVFIGARCH
volatility models estimators that are more resistant to
data outliers than classical MGARCH estimators.

For FIGARCH model estimation, usually, a Gaus-
sian likelihood function is maximized. The aforemen-
tioned estimation procedure, known as the Gaussian
Quasi-Maximum Likelihood estimation, results in con-
sistent estimation of parameters, even in the case of
non-Gaussian distribution. The merit of this property
becomes bold when the distribution of the standardized
return series is still fat tailed after correcting the
returns for the dynamics in the conditional covariance
matrix.

Robust estimators are proposed for dealing with
the e�ect of outliers on the estimation of univariate
GARCH models. One way to do this is iteratively
pruning the outliers and using the remaining data for
model �tting, so that no more outliers are detected [5].
A forward search algorithm was applied for GARCH
model estimation by Grossi and Laurini [6]. Using
an estimator which is robust to outliers is another
approach. The robust measure of residual scales is
minimized by some research in attempts to estimate
GARCH models [7-10]. Mancini et al. [11] and Muler
and Yohai [12,13] introduced a robust M-estimator
with much smaller outlier weights in comparison with
the Gaussian ML estimator. The collective opinion of
all the research is focused on the inaccuracy of the
Gaussian QML estimator in the presence of outliers
and, thus, robust procedures are needed.

The e�ect of outliers on the Gaussian QML esti-
mator of multivariate GARCH models is investigated
by Boudt and Croux [14]. They proposed a robust
alternative using the Mahalanobis Distance (MD). The
MD is de�ned as the inner product of the return
standardized by the corresponding MGARCH volatility
prediction. Boudt et al. [15] proposed a multivariate
volatility forecasting model that is accurate in the
presence of large one-o� events. This model, as
an extension of the Dynamic Conditional Correlation

(DCC) model, produced more precise out-of-sample
covariance forecasts than the DCC model. Noureldin
al. [16] introduced a new class of multivariate volatility
model that utilizes high-frequency data. This paper
discussed models dynamics and their covariance target-
ing speci�cations, and provides closed-form formulas
for multi-step forecasts.

Outliers greatly inuence the Gaussian QML
estimates. We, therefore, have used M-estimators
with loss functions in order to reduce the e�ects
of outliers on the estimator. Moreover, the e�ect
of outliers on regular observations is di�erent from
that of future volatility. According to research by
Bauwens and Storti [17] and Hamilton and Susmel [18],
usually, volatility growth is proportionally smaller after
outlying shocks in comparison to that after moderate
and small shocks. Nevertheless, in the majority of
MGARCH models, the e�ect of outlying shocks on
volatility is similar to that of moderate and small
shocks. In this paper, MVFIGARCH models, with
the e�ect of outlying returns on future volatility being
bounded, are utilized to alleviate outlier e�ects on
predicted volatility.

The rest of this paper is organized as follows. In
Section 2, the proposed model is presented. Section
3 includes the Robust M-estimation of the parameters
of the proposed multivariate FIGARCH model. Ap-
plication of the proposed multivariate FIGARCH to
the 3 stock markets is presented in Section 4. Finally,
Section 5 concludes the paper.

2. Mathematical model

Let (r1; :::; rT ) be a sample of an N -dimensional return
vector consisting of T observations, and It�1 be the all
available information up to time t � 1. The random
variable, rt, has a mean equal to zero and a covariance
matrix equal to Ht;�, where:

rt = H1=2
t;� ut with (E[utjIt�1] = 0;

Cov[utjIt�1] = IN ): (1)

Suppose an MVFIGARCH model, as a measurable
function, denoted by H�(:), of past realizations, rt,
with � as the unknown parameter vector, is utilized to
parameterize Ht;�. Under these assumptions, we have
Eq. (2) for t > 2:

Ht;� = H�(r1; :::; rt�1): (2)

In the above equation, a data-free method is used to
initialize H1;� and the output of function H�(:) is a
N�N positive de�nite symmetric matrix. For instance,
one may refer to the parameterization of BEKK(p,q,K)
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for Ht;� [19], then, we have:

Ht;� =C 0C +
qX
j=1

KX
k=1

A0kjr0t�jrt�jAkj

+
pX
j=1

KX
k=1

G0kjHt�j;�Gkj ; (3)

where Akj , Gkj and C are N �N parameter matrices
and is upper triangular. To develop a multivariate
fractional BEKK (FBEKK), consider the BEKK (1,1)
model introduced in the following equation:

Ht;� = C 0C +A0r0t�1rt�1A+G0Ht�1G: (4)

In Equation (4), A and G are arbitrary square matrices.
To adapt BEKK (1,1) to fractional BEKK (1,d,1), the
terms A0r0t�1rt�1A must be replaced by the following
expression (for further details in this regard, one may
refer to [20-22].

r0trt �G0(r0t�1rt�1)G� (1� L)dr0trt

+A0(1� L)dr0t�1rt�1A: (5)

In the above expression, L is the lag operator, known
also as the backshift operator, used to obtain a previous
element given an arbitrary element:

Ht;� =C 0C �G0(r0t�1rt�1)G+
�
1� (1� L)d

�
(r0trt)

+ (1� L)dA0(r0t�1rt�1)A+G0Ht�1G: (6)

The multivariate model introduced in Eq. (6) is derived
from the BEKK model considering long term param-
eter (d). The developed model considers the long-
term memory parameter and estimates it through a
modeling process. The long memory term, (1 � L)d,
should be converted to Maclaurin expansion:

(1� L)d =1� dL+
d(d� 1)

2!
L2

� d(d� 1)(d� 2)
3!

L3 + ::: (7)

In case of having a trivariate model, Eq. (6) is elabo-
rated according to the following expansion:24h11;t h12;t h13;t

h21;t h22;t h23;t
h31;t h31;t h33;t

35 =

24c11 c12 c13
0 c22 c23
0 0 c33

35T 24c11 c12 c13
0 c22 c23
0 0 c33

35

�
24�11 �12 �13
�21 �22 �23
�31 �31 �33

35T 24r1;t�1
r2;t�1
r3;t�1

3524r1;t�1
r2;t�1
r3;t�1

35T
24�11 �12 �13
�21 �22 �23
�31 �31 �33

35
+
�
dL� d(d� 1)

2!
L2 +

d(d� 1)(d� 2)
3!

L3
�

24r1;t
r2;t
r3;t

3524r1;t
r2;t
r3;t

35T

+
�
1�dL+

d(d� 1)
2!

L2 � d(d� 1)(d� 2)
3!

L3
�

24�11 �12 �13
�21 �22 �23
�31 �31 �33

35T 24r1;t�1
r2;t�1
r3;t�1

3524r1;t�1
r2;t�1
r3;t�1

35T
24�11 �12 �13
�21 �22 �23
�31 �31 �33

35+

24�11 �12 �13
�21 �22 �23
�31 �31 �33

35T
24h11;t�1 h12;t�1 h13;t�1
h21;t�1 h22;t�1 h23;t�1
h31;t�1 h31;t�1 h33;t�1

3524�11 �12 �13
�21 �22 �23
�31 �31 �33

35
(8)

Here, we assume that fut; 8tg is a set of independent
and identically distributed values of an elliptically
symmetric distribution. In other words, there exists a
function, g � (:) : R+ ! R+, such that the following
equation is obtained for the N -dimensional density
function of rt:

p (rtjIt�1; �) = (det(Ht;�))
� 1

2 g � (d2
t;�): (9)

In the above equation, d2
t;� is the inner product of rt,

standardized by its MVFIGARCH volatility:

d2
t;� = (H�1=2

t;� rt)0(H�1=2
t;� rt) = u0tut: (10)

One may name elliptic distributions with no �nite
second moment. However, here, only the distributions
with a �nite covariance matrix are considered. Usually,
d2
t;� denotes the squared Mahalanobis Distance (MD)

which lies between rt and zero. MD is measured by
its conditional covariance matrix, Ht;�. It calculates
the distance between a return and its MVFIGARCH
volatility prediction; large values for MD indicate an
extreme corresponding return. In other words, returns
with large MD values are potential outliers. Consid-
ering the assumptions of the elliptical MVFIGARCH
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model explained by Eqs. (1), (2) and (9), the squared
MD in Eq. (10) has a density function, written as:

f � (z) =
�N=2

�(N=2)
Z
N
2 �1g � (Z): (11)

Consider a special case with f �(:) being the chi-square
density function with a freedom degree of N , and g �
(:) being the N -variate normal density function. In
Eq. (9) function g�(:) is assumed to be normalized, such
that the conditional covariance matrix of rt is Ht;�. In
case of a Gaussian distribution, g � (:) is the standard
multivariate Gaussian density function in which �(:) is
the gamma function.

3. Robust M-estimation

Let �� be the true, unknown parameter vector in the
parameter space, �. �� is usually estimated by the
� 2 �, such that the log-likelihood of the observations
(r1; :::; rT ) is maximized, assuming a case in which the
innovations density function may, in fact, be di�erent
from the true function g � (:). This approach for
estimation results in the Quasi-Maximum Likelihood
(QML) estimator, expressed as:

�̂QML =arg max
�2�

� 1
T

TX
t=1

�
log(detHt;�)

� 2log(r0tH�1
t;� rt)

�
: (12)

In the special case of g(:) = g � (:), the QML estimator
is known as the ML estimator. The QML and ML
estimators are members of the larger class of M -
estimators de�ned as the value of � 2 �, in which,
the M -function:

M(ST ; �; �)=
1
T

TX
t=1

h
log(detHt;�)+��(r0tH�1

t;� rt)
i
;
(13)

is minimized for sample ST of observations (r1; :::; rT ).
In the above M -function, the scalar, �, ensures the con-
sistency of the M -estimator regarding the distribution,
g�(:), and �(:) is called the loss function associated with
the M -estimator. The standardized Student, tv, and
Gaussian ' density functions can be regarded as the
most popular elliptical density functions for describing
�nancial return series. The loss functions of Student
tv(v > 2) and Gaussian (') are given by �tv (z) =
(N + v)log(1 + Z

v�2 ) and �'(z) = z, respectively.
The goal here is to estimate the parameters of a

MVFIGARCH model in the presence of outliers in the
data. The outliers are identi�ed by their squared Ma-
halanobis Distance (MD) values being unusually larger

in comparison to others. To make the analysis invul-
nerable to outliers, an MGARCH model with bounded
innovation propagation, i.e. an MVFIGARCH model
with a bounded innovations e�ect on future volatility,
is proposed.

Empirical studies indicate that huge shocks, e.g.
the October 1987 crisis, have a proportionally weaker
e�ect on subsequent volatility in comparison to small
and moderate shocks [17,18]. In MVFIGARCH mod-
els, the past returns e�ect on future volatility is
considered quadratic, resulting in the neglect of the
di�erence in volatility reactivity to very strong shocks.
Therefore, volatility in periods subsequent to extreme
return realizations is predicted very pessimistically.
Since the MVFIGARCH process is persistent, this
overestimation of volatility fades slowly. To defuse
this e�ect, MVFIGARCH models are equipped with
a Bounded Innovation Propagation (BIP) property,
in order to limit past shock e�ects on future volatil-
ity [12,13]. Although many MGARCH models do not
have this property, they can be augmented to have the
BIP property by specifying H�(:) introduced in Eq. (2),
as the conditional covariance matrix, as a function of
the returns, which are weighted in the function of their
squared Mahalanobis distance:

~H�(:) = H� (~r1;�; ~r2;�; :::; ~rt�1;�) ; with

~rt;� = rt
q
w(r0t ~H�1

t;� r): (14)

The e�ect of rt on ~H�(:) should be bounded by using
the weight function. Here, our focus is on a case in
which H�(:) has the FBEKK speci�cation (Eq. (6)).
The resulted BIP FBEKK model has the conditional
covariance matrix expressed as:

~Ht;� =C 0C �G0(~r0t�1~rt�1)G+
�
1� (1� L)d

�
(~r0t~rt)

+ (1� L)dA0(~r0t�1~rt�1)A+G0 ~Ht�1G: (15)

From another point of view, by �ltering out the
outliers from a FBEKK model, a BIP FBEKK model
is obtained. Using a robust M -estimator of the
BIP FBEKK model for estimating the parameter ��
of the FBEKK model shows its merit when there is an
existence possibility of outliers in the data. This is mo-
tivated by the BIP FBEKK model, which may produce
more accurate volatility predictions and parameter
estimates in the presence of outliers in comparison
to the BEKK model, even if the observations are
generated by the latter model. The obtained estimator
is known as the BIP M -estimator, minimizing the M -
function:

~M(ST ; �; �)=
1
T

TX
t=1

�
log(det ~Ht;�)+��(r0t ~H�1

t;� rt)
�
:
(16)

Originally, univariate GARCH model BIP M -
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estimators were introduced by Muler and Yohai (2002,
2008). In a study by Boudt and Croux, it is shown
that, when there are additive outliers, �� BIP M -
estimator acts more accurately than the M -estimator
obtained from the correctly set BEKK model [14]. The
following weight function is used throughout the rest
of the paper:

w(Z) =

8><>:1 if z � c1
1� (1� c1=Z)3 if c1 < Z � c2
(c2=Z)(1� (1� c1=c2)3) else: (17)

There is a tradeo� between robustness and e�ciency
in the choice of c1 and c2. In the case of all return
observations following the FBEKK model, the use of
the BIP FBEKK model leads to a bias and larger mean
squared errors for the estimated parameters. As the
values of c1 and c2 increase, the BIP FBEKK model
gets closer to the BEKK model, and, as a result, the
bias of misspeci�cation is reduced. However, large
values of c1 and c2 also imply that the outlying returns
e�ect future volatility, with a squared Mahalanobis
distance below c1 being larger. Following Boudt and
Croux, parameters c1 and c2 are set to the 99% and
99.9% quantile of the distribution in Eq.(11) of the
squared Mahalanobis distances. The corresponding
weight function is plotted in Figure 1.

It is noticeable that only observations which have
an extraordinary large Mahalanobis distance are down-
weighted. In addition, the distributional assumption
a�ects the weighting. Also displayed in Figure 1 is the
function, w(z)z, which should be focused on, especially
when z is the squared MD of rt. This is because, in
such a case, w(z)z is the squared MD of ~rt. It should
be pointed out that downweighting is such that w(z)z
is non-decreasing and bounded by w(c2)c2. In order
to stay away from numerical problems arising from
parameter estimation, the smoothness of the weight
function is needed.

4. Case study

From 2025, only �ve Middle Eastern countries; Iran,
Saudi Arabia, Kuwait, Iraq and the United Arab

Emirates (UAE), as the owners of 70 percent global
oil and gas resources, will be producers and major
role players in fossil fuel markets. Among those, Iran
and the UAE are major oil producers and, therefore,
their markets are inuenced by oil price uctuations.
In addition, Iranian residents of UAE own a total
of ten thousand di�erent businesses in the UAE.
Furthermore, economic cooperation between these two
countries has grown drastically from 2005 to 2009 [23].

Nowadays, the UAE is regarded as an easy and
short detour for Iranian businesses to evade limitations
enforced by the sanctions on Iran. International
sanctions against Iran, including restrictions on Iranian
bank transactions and legislations to con�ne Iranian
international trade, are the motives for Iranians to
invest in businesses in the UAE. It should be noted
that Tehran and Dubai stock markets are completely
di�erent from those of other developing countries,
because these two markets, due to the e�ciency level
and market liberation, are independent of markets in
developed countries. Hence, international investors
regard these countries as an opportunity for investment
risk distribution; however, the e�ect of oil on these
markets should be noticed. In what follows, �rst, the
statistical properties of these indexes are discussed and
then the results of volatility transmission for interna-
tional oil prices (WTI) and Tehran and Dubai Stock
Markets are investigated using the robust estimator of
the FBEKK model.

4.1. Data
In this study, daily data on the Iranian (Tehran)
stock price index (TEPIX), the UAE (Dubai) stock
price index (DFM), and the daily crude oil price
index are used in modeling, estimating and testing
in the period December 5th, 2006 to January 30th,
2012. By the crude oil price index, we mean the spot
price for West Texas Intermediate (WTI), traded on
the domestic spot market at the Cushing, Oklahoma
center, and obtained from Reuters. Tehran Stock
Exchange index data was extracted from www.tse.ir,
the UAE Exchange Index from www.btive.net and the
daily crude oil price index from www.opec.org.

Figure 1. Plot for the functions w(z) and w(z)z of BIP BEKK model. c1 and c2 are set to the 99% and 99.9% quantiles
of the squared MD under Gaussian innovations [14].
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Table 1. Characteristics of the returns of index's distribution.

Iran stock
returns

The UAE
stock returns

Oil

Mean 0.000424 -0.001027 0.000582
Standard deviation 0.005658 0.022017 0.012544
Skewness 0.553995 -0.011712 -0.136782
Kurtosis 28.55958 6.679280 6.067216
Jarque-Bera 342.67 (00.0) 18.5(00.0) 92(00.0)
Q(16) 48.56(00.0) 31.63(00.0) 32.46(00.0)

Notes: The daily returns from December 5, 2006 to January 30, 2012 constist of the samples.
There are 1124 usable observations. Normality test for the series is performed through
Jarque-Bera statistic. Ljung-box statistic for serial correlation is denoted by Q(16)
and the actual probability values are presented in parentheses.

The indices analysis using long term memory as-
sessment methods indicates a long term memory e�ect
in all three time series. The method of calculation for
the Tehran and Dubai stock exchange indices are the
same; hence, it is possible to include these two indices
in a multivariate model. Because of the di�erences in
working days between the Tehran stock exchange and
international markets, the data are adapted in such a
way that the maximum overlap between indices return
and weekdays are ensured. Statistical characteristics of
the returns of index distributions are given in Table 1.

As reported in Table 1, the daily return mean of
the Iranian stock index in the period under study was
0.000424, and the standard deviation was 0.005658.
The distribution has a skewness of 0.553995, which
means skewness to the right. The kurtosis is 28.55958,
which is much more than the kurtosis of normal density
functions. Hence, it has a high-peak and fat-tail curve.
The test for normal distribution of returns shows that
the distributions are not normal. The Jarque-bera
statistics used for the test of normality indicates the
same result. Jarque-bera statistics for logarithmic
returns of indices is 342.67 for Iran (Tehran) stock,18.5
for the UAE (Dubai) stock, and 92 for the oil price.
The Jarque-Bera statistic rejects the null hypothesis
of normality for all return series. The analysis shows
that all the return series are leptokurtic, meaning they
have fat tails, suggesting that the existence of autore-
gressive conditional heteroscedasticity (ARCH) should
be tested in each of the mean equations. In each case,
ARCH e�ects are observed in the mean equation for
the return series, and, therefore, a GARCH estimation
model is appropriate. It is noticeable that the Ljung-
Box Statistic (Q-Statistic) utilized for autocorrelation
detection is signi�cant in all cases, indicating that the
past market behavior may be more relevant.

4.2. Result
To estimate the multivariate FIGARCH (FBEKK)
model, we used the robust M -estimator quasi-

maximum likelihood method introduced in Section 3.
Due to the nonlinear structure of the memory function
(1 � L)d, the Mac-Lauren extension was used in the
program structure and the likelihood function. The
model is developed in such a way to imply a long-term
memory e�ect in the estimation. This procedure has
not been considered in previous studies. In the FBEKK
model, �ii noti�es the ARCH e�ects of each variable,
and �ij noti�es the volatility spillover of variable i
for prior periods to the volatility of variable j for the
current period. This transmission e�ect is measured
by the squared residuals obtained from the models of
return forecasting. �ii noti�es the GARCH e�ects and
signi�es the persistence of volatility in each series. �ij ,
which is based on the recent forecast of the variance,
noti�es the volatility spillover e�ect of the variance of
prior period of variable i to the current variance of
variable j. Notably, both �ij and �ij may indicate the
spillover between indices, and the volatility spillover is
determined by the non-diagonal values of the matrix.
Table 2 reports the estimation results of BEKK and
FBEKK models.

According to the results of estimates in Table 2,
in the multivariate FIGARCH model, �ii and �ii
coe�cients are signi�cant, and indicate the volatility
spillover rate and the persistence of conditional volatil-
ity in each of the mentioned indices. Empirical analysis
and the evaluation process in terms of price indices
indicate that the UAE stock markets and global oil
markets are turbulent.

The e�ect was signi�cant for Iran's stock return
((�11 = 0:13441) and (�11 = 0:86055)); for the UAE
stock return ((�22 = 0:09032) and (�22 = 0:9020)); and
for crude oil ((�33 = 0:06531) and (�33 = 0:92082)).

(�21 = 0:08532) and (�21 = 0:91471) coe�cients
are signi�cant and show the volatility spillover from the
UAE (Dubai) stock exchange to the Iranian (Tehran)
stock exchange. There was no signi�cant adverse e�ect
from Iran to the UAE in the FBEKK model. In
the BEKK model, the �21 = 0:5836 coe�cient was
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Table 2. Estimation of MVFIGARCH (FBEKK) coe�cient model; comparison of estimated parameters of BEKK and
FBEKK models.

BEKK (without consideration
of long memory e�ect)

FBEKK Status of estimated
parameters

Coef. Value Pr(> jtj) Value Pr(> jtj)
d - - -0.30451 0.0000
�11 0.2015 0.0000 0.13441 0.0000 Signi�cant in both models
�12 0.8531 0.6338 0.6392 0.542 Insigni�cant in both models
�13 0.3419 0.4380 0.0468 0.762 Insigni�cant in both models
�21 0.0739 0.0004 0.08532 0.0000 Signi�cant in both models
�22 0.1034 0.0000 0.09032 0.0000 Signi�cant in both models
�23 0.0159 0.148 0.00345 0.6302 Insigni�cant in both models
�31 0.0743 0.504 0.00235 0.0000 Signi�cant in FBEKK model
�32 0.0294 0.0000 0.02531 0.0000 Signi�cant in both models
�33 0.0578 0.0000 0.06531 0.0000 Signi�cant in both models
�11 0.7013 0.0000 0.86055 0.0000 Signi�cant in both models
�12 0.03201 0.6483 0.1161 0.8302 Insigni�cant in both models
�13 0.0005 0.5283 0.0070 0.5704 Insigni�cant in both models
�21 0.5836 0.0749 0.91471 0.0000 Signi�cant in FBEKK model
�22 0.628 0.0000 0.90920 0.0000 Signi�cant in both models
�23 0.8706 0.5192 -0.0320 0.7301 Insigni�cant in both models
�31 0.5537 0.6839 0.0004 0.439 Insigni�cant in both models
�32 0.7881 0.0000 0.97472 0.0000 Signi�cant in both models
�33 0.8527 0.0000 0.92082 0.0000 Signi�cant in both models

AIC=-25.02 BIC=-28.56 AIC=-21.64 BIC=-22.09 Optimal lag selection criteria
Notes: The parameter d is a long memory parameter and other estimation parameters (�ij ; �ij) indicate the
volatility structure between time series.

Figure 2. Volatility transmission conceptual model.

not signi�cant and the model could not identify the
volatility spillover.

Figure 2 depicts the relationship based on volatil-
ity transmissions between the examined indices in
the form of a conceptual model. The black arrows
indicate the spillover between indices and the 
 symbol
indicates that there is no spillover in the examined
direction.

Actually, due to the volume of trade between Iran
and the UAE, which is more than 15 billion dollars,

and due to the fact that more than 35 percent of
Iran's imports are from the UAE, it is logical that the
volatility transmission is from the UAE stock market
to the Iranian stock market. A weak transmission
was observed from the oil market to the Iranian stock
exchange and the (�31 = 0:00235) coe�cient was
signi�cant, but there was no signi�cant adverse e�ect.
In the BEKK basic model, the �31 = 0:0743 coe�-
cient was not signi�cant, indicating that according to
economic theory, the basic model was less explanatory.
(�32 = 0:02531) and (�32 = 0:97472) coe�cients are
signi�cant and this shows the volatility spillover from
the oil market to the UAE market, but there was
no signi�cant adverse e�ect. The long-term memory
parameter was estimated as d = �0:30451 and this
indicates that the time series are stationary and have
mid-term memory. By mid-term memory, we mean the
condition in which the longevity of volatility e�ects is
reduced. In the literature, they are classi�ed in the
�eld of long-term memory.

In order to justify the applicability of the pro-
posed model, we investigated the volatility transmis-
sion between the Tehran stock index, the Dubai stock
index and the global oil price index using the MVFI-
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GARCH model within the time span from December
5th, 2006 to January 30th, 2012. The result of
estimation in di�erent models generally shows volatility
transmission from the global oil market to Tehran and
Dubai markets. Volatility transmission from the Dubai
market to Tehran was meaningfully observed as well.
However, the e�ect of transmission was not observed
in the reverse direction.

Empirical analysis and the evaluation process, in
terms of price indices, indicate that the UAE stock
markets and global oil markets are turbulent. Due
to the volume of trade between Iran and the UAE,
which is more than 15 billion dollars, and due to
the fact that more than 35 percent of Iran's imports
are from the UAE, it is logical that the volatility
transmission is from the UAE stock market to the
Iranian stock market. Also, a weak transmission was
observed from the oil market to the Iranian market, but
no signi�cant adverse e�ect was observed. However,
there was a transmission from the oil market to the
UAE market.

5. Conclusion

An important issue in stock markets, which signi�-
cantly a�ects the decisions of decision makers, is the
stochastic nature of price volatility. In this paper,
by introducing a class of robust M -estimators for
multivariate FIGARCH time series models, a new
multivariate fractionally integrated generalized autore-
gressive conditional heteroscedasticity (MVFIGARCH)
model was proposed. Actually, we aimed to consider
the e�ect of bounding the innovation propagation in
MVFIGARCH models on the robustness of the M -
estimator to outliers. The application of a volatility
model that has the property of bounded innovation
propagation is highly recommended if the data is
suspected to be contaminated by outliers. The model
developed in this study enables us to observe the
market volatility spillover e�ects. The d parameter
of long memory is estimated throughout the modeling
process and this leads to more adaptability and more
precision.
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