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Abstract. In this research, the supplier order allocation problem is investigated. The
problem is when one buyer wants to allocate required products to pre-selected suppliers.
Allocation is considered under some constraints, such as capacity, delivery rate, linear
discount and volume discount. Objectives of the model are towards maximizing the total
value of purchases, minimizing the total cost of purchases and minimizing the total number
of defective products purchased. We propose a Multi-Objective Mixed Integer Non-Linear
(MOMINL) model for multi-period supplier order allocation in situations where suppliers
o�er discounts. In practice, some information, such as buyer demand and supplier delivery
rate, is uncertain, so, fuzzy sets are applied to handle uncertainty. Since PSO and GA are
the most e�ective methods for �nding a good solution to a di�cult Multi-Objective Problem
(MOP), a multi-objective optimization algorithm, based on PSO and GA (MOPSOGA), is
developed to solve the model and give a set of Pareto optimal solutions. The e�ciency of
the Pareto Archive obtained from the algorithm is evaluated based on spacing and diversity
metrics.
c
 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Two of the most important decisions which should be
made in the �eld of purchasing management are sup-
plier selection and order allocation [1]. Order allocation
involves determining the amount of purchased items
from each supplier in each planning period. According
to the results of periodic evaluations, the manager
allocates orders to pre-selected suppliers. In real
situations, suppliers often o�er discounts, a motivation
for using discount schemes stemming from the fact
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that it tends to encourage buyers to procure larger
quantities. From a coordination perspective, it has
been shown that both the buyer and the supplier
can realize higher overall pro�ts if discount schemes
are used to set transfer prices [2,3]. Also, because
some input information, such as buyer demand and
supplier delivery rate, is uncertain, we use a procedure
proposed by Jimenez et al. [4] for handling uncer-
tainty.

This paper is organized as follows: In Section 2,
the literature is reviewed. Multi-Objective Problems
are noted in Section 3. In Section 4, a Multi-Objective
Mixed Integer Non-Linear model (MOMINL) is con-
structed. In Section 5, a MOPSOGA to solve the
model is described, and, in Section 6, we analyze the
performance criteria of this model. The speci�cations
of test problems used to compare the performance of
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the proposed algorithm are explained in Section 7,
and the results of the experiments are presented in
Section 8. Conclusions and desired future research
areas are presented in Section 9.

2. Literature review

Kawtummachai et al. [5] proposed an algorithm for the
supplier order allocation problem. The objective of
their model was minimizing the total purchasing cost,
while maintaining a speci�ed service level. Xia et al. [6]
developed an integrated approach of ANP, improved
by rough set theory and MOMI programming, for the
problem to simultaneously determine the number of
suppliers to employ and the order quantity allocated
to these suppliers in cases of multiple sourcing and
multi-product with multi-criteria, supplier capacity
constraints, and regarding volume discount. Liao et
al. [7] developed a MOP model for the problem in
cases of single item, multi-period supplier selection and
lot sizing with inconstant demand. They applied the
genetic algorithm to solve the model. Ma et al. [8]
presented an integrated MINL programming model
for supplier selection under uncertain demand and a
volume discount environment problem. The objective
of their model was to maximize manufacturer expected
pro�t, subject to both manufacturer and supplier
capacities. Mohammad Ebrahim et al. [3] considered
the supplier selection problem in the presence of three
di�erent discounts, all units, incremental, and total
business volume, and introduced a mathematical model
for a single item. In addition, constraints, such
as purchasing supplier capacity and demand, were
taken into consideration in the model. Due to the
complexity of the problem, they proposed a Scatter
Search Algorithm (SSA) to solve it. Demirtas and
�Ust�un [9] combined ANP and MOMIL programming
models to solve the order allocation problem, using
the Reservation Level Driven Tchebyche� Procedure.
They minimized the total defect rate and the total cost
of purchasing and maximized TVP. Jolai et al. [10], in
continuation of the work by Demirtas and �Ust�un [9],
considered a supplier selection problem for multi-
products. Sawik [11] considered the order allocation
problem for custom parts among suppliers in a make-
to-order environment. He presented single objective
and multi-objective mixed integer models, based on
price, quality and reliability of on-time delivery in
quantity, or a business volume discount o�ered by the
suppliers, to solve the problem.

Order allocation decisions can be largely in
u-
enced by alternative supplier pricing schemes, and, to
the best of our knowledge, the e�ect of discount on
allocation strategy in multi-period and multi-product
have not been considered in any previous research. So,
the major contribution of this paper is in extending

prior research models and in considering the e�ect
of linear and volume discount on an order allocation
problem in multi-period and multi-product supplier
selection. Because of the complexity of our model, we
developed the MOPSOGA algorithm to solve it and
�nd a set of Pareto optimal solutions.

3. Multi-objective optimization

Most real world problems have several con
icting
objectives. The term Multi-Objective Optimization
Problem (MOP) is used to broadly classify problems
with more than one objective. A typical multi-
objective minimization problem with decision variables
and objectives is shown in Eq. (1):

Minz = f(x) = (f1(x); f2(x); :::; fm(x)) ; (1)

where x 2 Rn and z 2 Rm. A rather practical approach
to deal with multi-objective problems is to �nd a set of
solutions, called a Pareto set, instead of �nding a single
solution. A solution is said to be Pareto-optimal if it
is not dominated by any other feasible solution.

De�nition 1. In a Pareto optimal solution, solution
a is said to dominate solution b, if, and only if;

1. fi(a) � fi(b) 8i = 1; 2; :::;m;

2. fi(a) < fi(b) 8i = 1; 2; :::;m:

Solutions that dominate other solutions, but do not
dominate themselves, are called non-dominated solu-
tions.

De�nition 2. Vector a is a globally Pareto-optimal
solution if vector b does not exist, such that b dominates
a. The set of all Pareto-optimal solutions is called the
Pareto-optimal set. The corresponding images of the
Pareto-optimal set in the objective space are called the
Pareto-optimal frontier [12,13].

4. Mathematical model

In the following section, we develop a Multi-Objective
Mixed Integer Non-Linear model to allocate order be-
tween pre-selected suppliers. The indices, parameters,
and decision variables of the model are as follows:

Notation:
Indices
i = 1; 2; :::; n Index of suppliers which o�er linear

discount discounts;
j = 1; 2; :::; n Index of products;
t = 1; 2; :::; T Index of time periods;
r = 1; 2; :::; R Index of discount interval.
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Parameters
m1 Number of suppliers who o�er linear

discount discounts;
m2 Number of suppliers who o�er volume

discount discounts;
Djt Demand of the product j in period t;
Oit Order cost for supplier i in period t;
qijt Defect rate of supplier i for product j

in period t;
Qj Buyer's maximum acceptable defect

rate of product j;
Vijt Capacity of supplier i for product j in

period t;
hjt Holding cost of product j in period t;
Pijt Purchasing price of product j from

supplier i in period t (supplier i o�er
linear discount);

PPminijt Minimum purchasing price of product
j from supplier i in period t if Xijt
equals Vijt (supplier i o�ers volume
discount);

PPmaxijt Maximum purchasing price of product
j from supplier i in period t if Xijt
equals L (supplier i o�er volume
discount);

CDirt Coe�cient of volume discount for
supplier i in interval r and period t;

V PPirt Volume of purchased products from
supplier i in interval r and period t;

LBirt Lower bound of volume discount
supplier i in interval r and period t;

UBirt Upper bound of volume discount
supplier i in interval r and period t;

Aijt; Bijt Linear discount coe�cient for supplier
i in period t and for product j;

DTijt On-time delivery rate of supplier i for
product j in period t;

DTBj Buyer's minimum acceptable delivery
rate for product j;

Wit The overall score of supplier i in period
t;

L Minimum order quantity if an order is
to be placed on supplier i for product
j in period t.

Decision variables
Xijt Number of the product j ordered from

supplier i in period t;
Yit 1 if an order is placed on supplier j in

period t, 0 otherwise;
Ijt Inventory of product j carried over

from period t to t+ 1(Ij0 = 0);

XYirt 1 if an order is placed on supplier i
in discount interval r and period t, 0
otherwise.

4.1. Defuzzi�cation of MOMINLP model for
order allocation problem

In this model, there are three objectives: total cost
of purchase, total value of purchase and total number
of defective product purchases. The problem is to
determine the amount of products allocated to each
supplier in each period, in order to satisfy buyer
demand. We assume that the buyer wants to allocate
the demand of n products between m pre-selected
suppliers in T periods. The assumptions used in
constructing the model are as follows:

� Demand of each product in each period is fuzzy.

� Linear discount and volume discount are considered
in making allocation decisions.

� In order allocation, delivery rate is also considered
a constraint.

� On-time delivery rate of each supplier for each
product in each period is fuzzy.

� The buyer can purchase the required quantity from
multiple suppliers.

� The buyer is purchasing for multi-period.

The objective functions and constraints of this
model are as follows:

4.2. Objective functions
4.2.1. Total cost of purchase
The sum of the periodic material cost, periodic order
cost, and holding cost make up the Total Cost of
Purchase. Instead of using a �xed cost, a linear
discount and volume discount are considered. Under
volume discount assumption, each supplier o�ers price
discounts on total business volume, not on the quantity
or variety of products purchased from them. In
addition, under a linear discount, each supplier, i,
discloses a linearly declining per unit price for each
product, j, in each period, t, in the quantity, Xijt,
de�ned as (Bijt + AijtXijt). Therefore, the following
equation is proposed:

MinZ1 =
TX
t=1

�m1X
i=1

nX
j=1

(Bijt +AijtXijt)Xijt

+
mX

i=m1+1

RX
r=1

(1� Cdirt)VPPirt

+
mX
i=1

OitYit +
nX
j=1

hjtIit
�
: (2)
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4.2.2. Total value of purchase
Wit and Xijt denote the priority values of the pre-
selected suppliers and the number of purchased units
from the ith supplier in period t, respectively. The
supplier's priority values are used as coe�cients of the
Total Value of Purchase to allocate order quantities
among the pre-selected suppliers, such that the total
value of the purchases becomes maximized. The
following equation is presented to show the objective
function:

MaxZ2 =
TX
t=1

mX
i=1

nX
j=1

WitXijt: (3)

4.2.3. Total number of defective product purchase
the buyer expects to minimize the number of defective
products purchased at each period for improving the
quality of purchased products. This need is shown as
follows:

MinZ3 =
TX
t=1

mX
i=1

nX
j=1

qijtXijt: (4)

4.3. Constraints
The important constraints of the supplier order alloca-
tion problem are volume and linear discount, inventory
control, material balance, demand, supplier capacity,
minimum order quantity, and delivery rate.

4.3.1. Volume discount constraints
In this type of discount, suppliers o�er price discounts,
which depend on the total value of sales volume over
a given period of time. The volume, VPPirt, from
supplier i in period t, should be in an appropriate
discount interval, r, of the discount pricing schedule
and only in one interval. This is formulated in the
following:

RX
r=1

V PPirt =
nX
j=1

PijtXijt

i = m1 + 1; :::;m; t = 1; 2; :::; T; (5)

LBirtxyirt � V PPirt < UBirtxyirt

i = m1 + 1; :::;m; r = 1; 2; :::; R;

t = 1; 2; :::; T; (6)

RX
r=1

xyirt � 1

i = m1 + 1; :::;m; t = 1; 2; :::; T: (7)

4.3.2. Linear discount constraint
Each supplier, i = 1; 2; :::;m1, discloses a linearly
declining per unit price for each product, j, in each
period, t, in quantity Xijt. Prices between PPminijt
and PPmaxijt are gained by solving Constraints 8
and 9.

Aijt =
PPminijt � PPmaxijt

Vijt � L
i = 1; 2; :::; m1; j = 1; 2; :::n; t = 1; 2; :::; T; (8)

Bijt = PPmaxijt � L
�
PPminijt � PPmaxijt

Vijt � L
�

i = 1; 2; :::;m1; j = 1; 2; :::; n; t = 1; 2; :::; T:
(9)

4.3.3. Demand constraint
The sum of the acceptable products of type, j, received
from all suppliers in each period, t, plus carried
quantities from the preceding period should satisfy
buyer demand for that product in that period. This
is formulated as follows:

Jj(t�1) +
mX
i=1

(1� qijt)Xijt � ~Djt

j = 1; 2; :::; n; t = 1; 2; :::; T: (10)

4.3.4. Material balance equation
This constraint is to make sure that the material
balance for each product, j, in the period, t, is equal
to the material balance of the product in the previous
period, plus the wholesale purchase of the product
subtracts from the demand of the product.

Jj(t�1) +
mX
i=1

(1� qijt)Xijt � ~Djt

j = 1; 2; :::; n; t = 1; 2; :::; T: (11)

4.3.5. Capacity constraint
Considering that supplier i can produce up to Vijt
units of product, j, in period, t, and that, in its order
quantity of product, j, in period, t, Xijt should be
less than or equal to its capacity, which is shown in
Relations (12) and (13).

Xijt � YitVijt i = 1; 2; :::;m;

j = 1; 2; :::; n; t = 1; 2; :::; T; (12)

Xijt � LYit i = 1; 2; :::;m;

j = 1; 2; :::; n; t = 1; 2; :::; T: (13)
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4.3.6. Delivery rate constraint
According to Dickson [14], delivery rate is an important
factor in supplier selection and is considered in many
papers, so, we have considered it a constraint in the
model in the following formulation:

mX
i=1

�
1� ~DT ijt

�
Xijt � ~Djt(1�DTBj)

j = 1; 2; :::; n; t = 1; 2; :::; T: (14)

4.3.7. Non-negatively and binary constraints
the following decision variable, Xijt, is a non-negative
variable, and Yit and XYirt are binary variables:

Xijt � 0 i = 1; 2; :::;m; j = 1; 2; :::; n;

t = 1; 2; :::; T; (15)

Yit 2 f0; 1g i = 1; 2; :::;m; t = 1; 2; :::; T; (16)

XYirt 2 f0; 1g
i = m1 + 1; :::;m; j = 1; 2; :::; n;

t = 1; 2; :::; T: (17)

4.4. Defuzzi�cation of fuzzy MOMINL model
If we suppose demand and delivery time to be fuzzy
triangular numbers, ~Djt = (D1; D2; D3) ~DT ijt =
(DT1; DT2; DT3), the crisp model, according to the
model of Jimenez et al. [4], can be written by the
following:

MinZ1 =
TX
t=1

�m1X
i=1

nX
j=1

(Bijt +AijtXijt)Xijt

+
mX

i=m1+1

RX
r=1

(1� Cdirt)V PPirt

+
mX
i=1

OitYit +
nX
j=1

hjtIit
�
; (18)

MaxZ2 =
TX
t=1

mX
i=1

nX
j=1

WitXijt; (19)

MinZ3 =
TX
t=1

mX
i=1

nX
j=1

qijtXijt; (20)

RX
r=1

V PPirt =
nX
j=1

PijtXijt

i = m1 + 1; :::;m; t = 1; 2; :::; T; (21)

LBirtxyirt � V PPirt < UBirtxyirt

i = m1 + 1; :::;m; r = 1; 2; :::; R;

t = 1; 2; :::; T; (22)

RX
r=1

xyirt � 1 i = m1 + 1; :::;m; t = 1; 2; :::; T;
(23)

Aijt =
PPminijt � PPmaxijt

Vijt � L
i = 1; 2; :::;m1; j = 1; 2; :::; n; t = 1; 2; :::; T;

(24)

Bijt = PPmaxijt � L
�
PPminijt � PPmaxijt

Vijt � L
�

i = 1; 2; :::;m1; j = 1; 2; :::; n; t = 1; 2; :::; T;
(25)

Jj(t�1) +
mX
i=1

(1� qijt)Xijt�
�
�E

~Djt
2 + (1� �)E

~Djt
1

�
j = 1; 2; :::; n; t = 1; 2; :::; T; (26)

Ijt = Ij(t�1) +
mX
i=1

(1� qijt)Xijt

���E ~Djt
2 + (1� �)E

~Djt
1

�
j = 1; 2; :::; n; t = 1; 2; :::; T; (27)

Xijt � YitVijt
i = 1; 2; :::;m; j = 1; 2; :::; n; t = 1; 2; :::; T;

(28)

Xijt � LYit
i = 1; 2; :::;m; j = 1; 2; :::; n; t = 1; 2; :::; T;

(29)

mX
i=1

�
((1� �)E

~DT ijt
2 + �E

~DT ijt
1 )� 1

�
Xijt

� ��E ~Djt
2 + (1� �)E

~Djt
1

�
(DTBj � 1)

i = 1; 2; :::;m; t = 1; 2; :::; T; (30)

Xijt � 0 i = 1; 2; :::;m; j = 1; 2; :::; n;

t = 1; 2; :::; T; (31)
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Yit 2 f0; 1g i = 1; 2; :::;m; t = 1; 2; :::; T; (32)

XYirt 2 f0; 1g i = m1 + 1; :::;m;

j = 1; 2; :::; n; t = 1; 2; :::; T: (33)

In the above model, � denotes the minimum acceptable
feasibility degree of the decision vector and belongs to
[0,1], according to [4]. In this research, we assume that
� = 0:35.

5. Applying MOPSOGA to solve the problem

As mentioned before, in MOP, it is better to �nd a
set of solutions, called a Pareto set, instead of �nding
a single solution, which is as diverse as possible in an
objective space [12].

5.1. GA and PSO
GA is a population-based heuristic search algorithm
that starts with an initial set of solutions (individuals)
which are then evolved toward better solutions via
certain genetic operators, such as selection, mutation
and crossover. Selection is a fundamental operator by
which individual genomes are chosen from a population
for later breeding. The crossover operator combines in-
formation from two solutions of the current population
in such a way that the two solutions for the next pop-
ulation resemble each parent. The mutation operator
alters or mutates one chromosome by changing one or
more variables in some way or by some random amount
to form one o�spring [12,15].

PSO is also a most recent evolutionary tech-
nique inspired by the 
ocking behavior of birds. It
is initialized with a population of random solutions
and searches for an optimal by updating generations.
The potential solutions, or particles, move through
the problem space by following the current optimum
particles. The position of particle i is presented as
Xi = (Xi1; Xi2; :::; XiD); each particle keeps a memory
of its previous best position, Pbest, represented as
Pi = (Pi1; Pi2; :::; PiD), and a velocity along each
dimension represented as Vi = (Vi1; Vi2; :::; ViD). The
position of the particle with the best �tness value
in the search space, designated as g, and the p
vector of the current particle, are combined to ad-
just the velocity along each dimension. That ve-
locity is then used to compute a new position for
the particle. In other words, the particle swarm
optimizer keeps track of the overall best value, and
its location, obtained thus far by any particle in the
population, which is called pbest(Pid), and each particle
keeps track of the best solution, called gbest(Pgd),
attained within a local topological neighborhood of
particles:

Vid =! � Vid + c1 � r1 � (Pid �Xid)

+ c2 � r2 � (Pgd �Xid); (34)

Xid = Xid�1 + Vid; (35)

where Vid is the velocity of the particle, Xid is the cur-
rent position of the particle, ! is the inertia factor, c1
determines the relative in
uence of the cognitive com-
ponent, c2 determines the relative in
uence of the social
component, r1 and r2 are random numbers uniformly
distributed in the interval [0,1], ! controls the in
uence
of the previous velocity on the new velocity, and c1
and c2 are positive constants, determining the relative
in
uence of the social and cognitive components [16].

5.2. MOPSOGA
We developed a multi-objective optimization algo-
rithm based on PSO and GA to solve the model.
The algorithm uses a �xed-sized population (Popsize)
and starts with a randomly generated population.
At each iteration of the algorithm, the population
is divided into two parts and developed with the
PSO and GA separately. First, the population is
evolved over a certain number of generations by PSO
(KeepPercent). Second, (Popsize � KeepPercent) indi-
viduals are generated by implementing GA operators,
such as selection, crossover and mutation. Finally, the
(Popsize � KeepPercent) individuals are combined with
the (KeepPercent) particles to form a new population
for the next iteration.

To update the position and velocity of particles
in MOPSO, we use Eqs. (34) and (35), as mentioned
above. We also use NSGA-II, described by Deb et
al. [17], to select parents in MOGA. In NSGA-II,
crowding distance measure is used as a tiebreaker in
a selection technique, called the crowded tournament
selection operator, which randomly selects two chro-
mosomes from the population. If the chromosomes
are in the same non-dominated front, the chromosome
with a higher crowding distance is the winner [7,18].
In MO, a Pareto based approach is used to check
two solutions, so, after each iteration of MOPSO and
MOGA, we should update the Pareto solution archives.
We use the contents of this archive as a �nal report of
MOPSOGA. The steps of the MOPSOGA algorithm
are brie
y shown as a Pseudo code in Table 1, and a

ow chart of this algorithm is shown in Figure 1.

6. Performance metrics

Several performance metrics are available for testing
the quality of multi-objective solutions in the liter-
ature. Most of these metrics are concentrated on
two issues: First, maximizing the distance between
the Pareto frontier and the actual Pareto frontier
generated by an algorithm; the distance is called the
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Table 1. Pseudo code used for MOPSOGA.

Begin
Initialize parameters: KeepPercent, c1; c2; !, Crossoverpercent, Mutationpercent and Popsize;
i = 1;
j = 1;
while j <= Max itera do //Iteration loop starts here

Generate popsize random solutions;
Calculate objectives function;
Update Pareto solution;
while i <= KeepPercent do //MOPSO evolution

Update position and velocity of the particles;
Calculate objectives function;
Update Pareto solution;
i = i+ 1;

end //end of MOPSO evolution
i = KeepPercent;
while i <= Popsize do //MOGA evolution

Parent selection (using crowded distance);
Implement crossover and mutation operators;
Calculate objectives function;
Update Pareto solution;
i = i+ 1;
end //end of MOGA evolution

Combine particles obtained by MOPSO and individuals obtained by MOGA and
form Popsize particles;
j = j + 1;
end // Iteration loop ends here

End

diversity metric. Secondly, minimizing the smoothness
of solution distribution; the smoothness is called the
spacing metric.

6.1. Diversity
The diversity metric was introduced by Van Veldhuisen
and Lamont [19]. It evaluates the distance between
the obtained non-dominated solutions by an algorithm
and the actual Pareto optimal solutions (assuming we
know these solutions). This distance is calculated by
the following equation:

Diversity =
pPn

i=1 d2
i

n
; (36)

where n is the number of non-dominated solutions
and di is the Euclidian distance (depending on the
number and actual value of objectives) between each
non-dominated solution and the nearest one in the
Pareto optimal set. It is clear that Diversity=0 means
all solutions are in the Pareto frontier. The values
greater than zero indicate the relative distance between

the obtained solutions and actual Pareto frontier.
Based on the literature, more diversity leads to better
solutions.

6.2. Spacing
The spacing metric was introduced by Schott [20]. It
is a tool to measure the uniformity of the spread of
solutions. The distance variance of each point in the
current solution set to its closest neighbor is calculated
by the following equation:

SP =

vuut 1
n� 1

nX
i=1

(d� di)2; (37)

where n, the number of non-dominated solutions, is
obtained by the MOPSOGA algorithm, and d is the
mean value of all di. Note that SP = 0 means all
non-dominated solutions are spaced equally from each
other. Based on the literature, less spacing leads to
better solutions.
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Table 2. Speci�cation of 6 test problems; number of iteration and population size.

No. of test problem

1 2 3 4 5 6

Size of test problem

Small Medium Large

S1 S2 M1 M2 L1 L2

No. of suppliers (m) 3 4 6 6 10 13

No. of suppliers with linear discount 1 2 2 4 5 5

No. of suppliers with volume discount 2 2 4 2 5 8

No. of products (n) 2 2 3 3 5 10

No. of time periods (T ) 2 2 3 3 6 10

No. of volume discount intervals (R) 2 2 2 3 6 10

No. of variables 34 44 99 135 750 2410

No. of iterations (Maxitera) 40 60 80

Population Size (Popsize) 50 75 100

Figure 1. Flow-chart of the MOPSOGA.

7. Test problem speci�cations

Based on our knowledge, the proposed model has
not been considered so far, and we have not found
another solution method to compare its performance
with the proposed MOPSOGA. In order to evaluate the
performance of the proposed model, we have surveyed
the model in six test problems. The speci�cations of
each test problem are described in detail in Table 2.

For all test problems, the following assumptions
hold:

1. We have three segments of customers, S = 3.
2. We have solved all problems based on two values

for k, k = 0:2; 0:14.
3. All problems are solved based on three di�er-

ent values of �s, �1 = (0:4; 0:35; 0:25), �2 =
(0:45; 0:33; 0:22), and �3 = (0:5; 0:30; 0:20).

4. Holding cost is constant and is equal to 20.

8. Experimental evaluations

The proposed model is applied to six test problems
(small, medium and large size). In order to evalu-
ate the e�ciency of the proposed model, sensitivity
analysis is done on PSO and GA parameters. Four
di�erent input value combinations for six PSO and GA
parameters are set, including c1; c2; !, keep percent,
mutation percent and crossover percent. Random
test problems with di�erent size type are generated
and solved by MOPSOGA for each combination of
parameters.

The proposed algorithm is coded in Matlab pro-
gramming language and all the test problems are solved
by it with di�erent parameter values. The acquired
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Table 3. Result of MOPSOGA and sensitivity analysis on 6 test problems.

Algorithm parameters setting GA: crossover percent=60%, mutation percent=10%

PSO: C1 = 1:5, C2 = 2:5, W = 0:999, keep percent =30%

No. of test problem Problem size Pareto Diversity Spacing Elapsed time

1 S1 498 4.0331e+004 0.8753 255.445719

2 S2 317 3.6458e+004 1.3652 123.557192

3 M1 448 3.6186e+004 1.1691 691.498439

4 M2 680 4.8651e+004 0.6989 1096.913247

5 L1 673 7.9582e+004 0.8990 1529.621017

6 L2 569 1.2249e+005 0.7775 1936.027078

Algorithm parameters setting GA: crossover percent=40%, mutation percent=20%

PSO: C1 = 2, C2 = 2, W = 0:7, keep percent =40%

No. of test problem Problem size Pareto Diversity Spacing Elapsed time

1 S1 435 3.3194e+004 0.8113 379.243945

2 S2 298 2.9305e+004 1.1422 99.216689

3 M1 440 3.4815e+004 1.2671 382.296274

4 M2 520 4.5768e+004 0.8171 719.657635

5 L1 759 7.6406e+004 0.7997 1957.886543

6 L2 900 1.6673e+005 0.8621 2160.341653

Algorithm parameters setting GA: crossover percent=50%, mutation percent=0%

PSO: C1 = 2:5, C2 = 1:5, W = 0:2, keep percent =50%

No. of test problem Problem size Pareto Diversity Spacing Elapsed time

1 S1 368 3.4253e+004 0.8390 181.225394

2 S2 298 3.5734e+004 1.1825 139.112256

3 M1 339 3.0170e+004 1.1751 258.183892

4 M2 574 3.5649e+004 0.7848 604.069026

5 L1 442 5.8436e+004 0.8314 455.769588

6 L2 367 1.0606e+005 0.7579 656.037240

Algorithm parameters setting GA: crossover percent=20%, mutation percent=20%

PSO: C1 = 3, C2 = 1, W = 0:85, keep percent =60%

No. of test problem Problem size Pareto Diversity Spacing Elapsed time

1 S1 266 2.5244e+004 0.8296 113.292985

2 S2 491 4.2870e+004 1.1460 243.701100

3 M1 393 3.2501e+004 1.0359 251.528521

4 M2 397 3.5333e+004 0.7545 225.536679

5 L1 433 6.5011e+004 0.9412 490.530861

6 L2 630 1.3169e+005 0.8271 1679.733900

Pareto, spacing, diversity and elapsed time values for
each test problem are shown in Table 3.

The numbers of Pareto solutions found by MOP-
SOGA in small, medium, large and very large size
problems are represented in Figures 2 to 5. Three axes,
X, Y and Z, exist, which show the objective functions
1, 2 and 3, respectively. As observed, Pareto solutions

move to maximize objective function 2 and minimize
objective functions 1 and 3.

The numbers of Pareto solution obtained for each
test problems are presented in Figure 6; the horizontal
axis shows the number of variables and the vertical
axis shows the number of Pareto solution. The average
complexity time for di�erent test problems is also
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Figure 2. Pareto solutions for problem with 4 suppliers,
2 products and 2 periods.

Figure 3. Pareto solutions for problem with 6 suppliers,
3 products and 3 periods.

Figure 4. Pareto solutions for problem with 13 suppliers,
10 products and 10 periods.

presented in Figure 7; the horizontal axis shows the
number of variables, and the vertical axis shows the
elapsed time. As can be observed, an increase in the
size of the problem increases the solution time of the
MOPSOGA algorithm.

Figure 5. Pareto solutions for problem with 10 suppliers,
5 products and 6 periods.

Figure 6. Pareto-optimal solutions found by algorithm
for a 4-sensivity analysis and 6-test problems.

Figure 7. Average computational times for di�erent
problems.

Based on the results, there is no signi�cant
di�erence among the results for the spacing metrics
and it could be ignored. On the contrary, diversity
metrics show a signi�cant di�erence among the results.
Since the number of Pareto solutions is supposed to
be the response variable, the following conclusions are
obtained. The best results yield for the problems where
the parameters crossover percent, mutation percent
c1; c2; !, and keep percent are set as shown in Ta-
ble 4.
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Table 4. Best parameters setting for each test problem.

Test
problem

Crossover
percent

Mutation
percent

C1 C2 W Keep
percent

S1 60% 10% 1.5 2.5 0.999 30%

S2 20% 20% 1 1 0.85 60%

M1 60% 10% 1.5 2.5 0.999 30%

M2 60% 10% 1.5 2.5 0.999 30%

L1 40% 20% 2 2 0.7 40%

L2 40% 20% 2 2 0.7 40%

9. Conclusion

The problem of allocating orders among suppliers
properly, in multiple supplier environments, is more
complicated than the supplier selection problem. Split-
ting orders to the selected suppliers has become a major
challenge for buying �rms, especially when suppliers
o�er multiple products and discounts.

Very little attention has been paid in the lit-
erature to decisions on assigning order quantities to
suppliers in cases of discounted costs. So, in this
research, a MOMINL model is proposed to �nd the
optimum quantities among the quali�ed suppliers. Our
model considers a multi-period, multi-product supplier
order allocation problem under fuzzy demand, fuzzy
delivery rate, and linear and volume discounts. In this
model, we seek to maximize the total value of purchase,
minimize the total cost of purchase, and minimize
the total number of defective products purchased,
simultaneously.

Due to the complexity of the problem, and since
PSO and GA algorithms are the most e�ective methods
for �nding a good solution to a di�cult Multi-Objective
Problem (MOP), a multi-objective optimization al-
gorithm, based on PSO and GA (MOPSOGA), has
been developed to solve the model and obtain a set
of Pareto optimal solutions. The performance of the
proposed method was evaluated by six test problems,
and sensitivity analysis was undertaken on PSO and
GA parameters. The e�ciency of the Pareto Archive
obtained from the algorithm is evaluated based on
diversity and spacing metrics. The calculated diversity
and spacing show the good performance of the solution.
It was observed that algorithm parameters values have
more e�ect on the number of the Pareto solution
and diversity, and a lower e�ect on spacing. The
experimental results have indicated that by an increase
in the size of the problem, the MOPSOGA algorithm
takes more time to solve it. So, for future research,
other evolutionary algorithms could also be applied,
and comparisons with the proposed algorithm could be
carried out. Furthermore, instead of fuzzy demand and
delivery rate, stochastic or time dependent demand and
delivery rate could be considered.
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