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Abstract. Systems where both machines and workers are treated as constraints are
termed Dual-Resource Constrained (DRC) systems. In the last few decades, DRC
scheduling has attracted much attention from researchers. This paper addresses the Dual-
Resource Constrained Flexible Job-Shop Scheduling Problem (DRCFJSP) to minimize
makespan. This problem is NP-hard and mainly includes three sub-problems: (1) assigning
each operation to a machine out of a set of compatible machines, (2) determining a
worker among a set of skilled workers for operating each operation on the selected
machine, and (3) sequencing the operations on the machines considering workers in
order to optimize the performance measure. This paper presents two meta-heuristic
algorithms, namely Simulated Annealing (SA), and Vibration Damping Optimization
(VDO), to solve the DRCFJSP. The proposed algorithms make use of various neighborhood
structures to search in the solution space. The Taguchi experimental design method as
an optimization technique is employed to tune di�erent parameters and operators of the
presented algorithms. Numerical experiments with randomly generated test problems are
used to evaluate performance of the developed algorithms. A lower bound is used to obtain
the minimum value of makespan for the test problems. The computational study con�rms
the proper quality of the results of the proposed algorithms.
c 2015 Sharif University of Technology. All rights reserved.

1. Introduction

The Flexible Job-shop Scheduling Problem (FJSP)
is an extension of the Job-shop Scheduling Problem
(JSP), which provides a closer approximation to a
wide range of scheduling problems encountered in real
manufacturing systems [1]. FJSP mainly consists of
two sub-problems, including assigning each operation
to a machine out of a set of capable machines, and
sequencing the assigned operations on the machines.
In FJSP, in addition to sequencing of the operations
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on the machines (di�culty of JSP), assignment of the
operations to the machines is also needed. Thus, The
FJSP is more complex than the JSP. Mati and Xie [2]
proved that the FJSP with two machines and one
objective is also NP-hard.

Real world manufacturing systems are usually
constrained by both machine and human resources.
Human operators are often the constraining resource
and transfer between workstations to process jobs when
required. This type of system, in which both machines
and workers represent potential capacity constraints on
the shop capacity, is referred to as a Dual-Resource
Constrained (DRC) shop [3]. The �rst study on DRC
research has been conducted by Nelson [4]. The FJSP
considering worker and machine constraints, i.e. Dual-
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Resource Constrained Flexible Job-shop Scheduling
Problem (DRCFJSP), is one of the NP-hard problems
in DRC environment.

It mainly consists of three sub-problems:

1. Assigning operations to resources of machines,
2. Assigning operations to resources of workers,
3. Sequencing the operations on the machines consid-

ering workers in order to optimize the performance
measure.

In this paper, the DRCFJSP with heterogeneous work-
ers is considered as a main subject of research.

Most of DRC scheduling studies are performed in
a job-shop environment. Some of researches in relation
to the DRC Job-shop Scheduling Problem (DRCJSP)
are as follows. Jaber and Neumann [5] propounded
a mathematical model that described fatigue and re-
covery in a DRCJSP with one worker performing n
tasks within m cycles. Jingyao et al. [6] presented a
hybrid algorithm based on ant colony optimization to
solve the DRCJSP with heterogeneous workers (ACO).
The algorithm established a dynamic candidate so-
lution set, based on the technology constraint, for
each ant to improve the calculating e�ciency of the
algorithm. Jingyao et al. [7] presented a scheduling
approach based on ACO for this problem. This
hybrid algorithm utilized the combination of ACO and
Simulated Annealing (SA) algorithm and employed an
adaptive control mechanism based on ant ow of route
choice to improve the global search ability. Jingyao
et al. [8] proposed an inherited Genetic Algorithm
(GA) to solve the double-objective optimization of the
DRCJSP. In this algorithm, evolutionary experience
of a parent population was inherited by the means of
branch population supplement based on pheromones
to accelerate the convergence rate. Lobo et al. [9]
proposed a lower bound for the DRCJSP in which the
objective is to minimize the maximum job lateness.
This work is studied to e�ectively evaluate the absolute
performance of heuristic solutions.

Few papers discussed DRC scheduling in a exible
job-shop environment. Xianzhou and Zhenhe [10]
proposed a new immune GA for the DRCFJSP through
combining immune algorithm with the GA. Liu et
al. [11] propounded a hybrid Pareto-based GA and
applied it to the bi-objective DRCFJSP in which the
makespan and the production cost were concerned.
Lang and Li [12] presented an algorithm that combines
grey simulation technology and Non-dominated Sort-
ing Genetic Algorithm II (NSGA-II). They employed
this algorithm for solving a multi-objective DRCFJSP
under uncertainty. Lie and Guo [13] propounded a
Variable Neighborhood Search (VNS) algorithm for
solving the DRCFJSP. In this study, four neighborhood
structures were applied to produce new solutions of

the DRCFJSP. Two neighborhood structures (i.e.,
Swap and Insert) were about operation sequence sub-
problem. Two novel neighborhood structures (i.e.,
Assign and Change) were applied to another sub-
problem of the DRCFJSP.

The di�culty of the DRCFJSP suggests the
adoption of mata-heuristic methods producing reason-
ably good schedules in a reasonable time, instead of
looking for an exact solution. SA algorithm is one
of the well-known meta-heuristics which have been
applied successfully to optimize various combinatorial
optimization problems. Also, the Vibration Damp-
ing Optimization (VDO) algorithm is a novel meta-
heuristic algorithm that can be e�ciently used to solve
such problems. In this paper, the authors develop
SA and VDO algorithms for solving the DRCFJSP.
These algorithms make the use of four neighborhood
structures to search in the solution space. There
exist lots of mathematical model formulated for FJSP
with kinds of objectives [14-16]. But there is no
comprehensive research about mathematical model of
DRCFJSP. In this research, we propose a Mixed-
Integer Linear Programming (MILP) model for the
DRCFJSP based on precedence variables.

The rest of the paper is organized as follows.
Section 2 presents de�nition of the problem. Section 3
presents a mathematical model for the DRCFJSP.
The proposed algorithms for solving the DRCFJSP
are introduced in Section 4. In Section 5, Taguchi
experimental design is presented to tune the presented
algorithms. The computational study performed with
the proposed algorithms is informed in Section 6. The
conclusion and some further research suggestions are
presented in Section 7.

2. Problem de�nition

In DRCFJSP, the execution of n jobs on m machines
by h workers is scheduled. In this problem, there are
a set of jobs J = fJ1; J2; � � � ; Jng, a set of machines
M = fM1;M2; � � � ;Mmg and set of workers W =
fW1;W2; � � � ;Whg. In fact, the process of jobs is
limited by the two resources, namely machines and
workers. Each job Ji is formed by a sequence of
ni operations (Oi;1; Oi;2; � � � ; Oi;ni) to be performed
one after the other based on the given order. Each
operation Oi;j (i.e., the operation j of job i) can
be processed on any among a subset of capable ma-

chines. Mi;j =
hS
l=1

Mi;j;l (for i = 1; 2; � � � ; n and

j = 1; 2; � � � ; ni) is the set of all compatible machines
that can be used to perform operation Oi;j in which
Mi;j;l is a set including machines eligible to process

Oi;j by worker l. Wi;j =
mS
k=1

Wi;j;k (for i = 1; 2; � � � ; n
and j = 1; 2; � � � ; ni) is a set of all capable workers who
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can operate Oi;j on machines. Moreover, Wi;j;k is a set
including eligible workers to operate Oi;j on machine
k. The following are the assumptions made in solving
this problem:

� All machines and workers are available at time 0.
� All jobs can be processed at time 0.
� At a given time, a machine can execute at most one

operation.
� At a given time, a worker can operate at most one

operation.
� Each operation can be processed with di�erent

machine and di�erent worker, while the practice
processing time is di�erent.

� Processing times are deterministic and known in
advance.

� Each processing operation requires both the worker
and machine.

� Workers may be transferred from one machine to
another.

� Worker cannot be transferred during its processing.
� Once an operation is started on a machine it must

be completed before another operation can start
on that machine (i.e., preemption of jobs is not
allowed).

� A worker can operate more than one machine, and
one machine can be operated by di�erent workers.

� Setup time and unloading time are included in the
processing time.

� Transportation time between facilities is negligible
or included in the processing time.

The purpose of the DRCFJSP is to assign each
operation to a proper machine out of a set of capable
machines, determine a worker among a set of skilled
workers for processing operation on selected machine,
and sequence the operations on the machines consider-
ing workers such that the maximum completion time of
all jobs (i.e., makespan) is minimized. Flexibility of the
DRCFJSP is speci�ed based on exibility of workers
and machines. This exibility can be categorized into
partial exibility and total exibility. It is total when
we have Mi;j = M and Wi;j = W for all operations;
otherwise, it is partial. Data related to a given problem
with four jobs, three machines, two workers and partial
exibility is shown in Table 1. In this table, symbol 1
means that the operation cannot be processed on the
corresponding machine and worker.

3. Mathematical model

In this section, a MILP model is presented for the
DRCFJSP. We introduce some notations and proceed

Table 1. Processing time table.

Operations M1 M2 M3

W1 W2 W1 W2 W1 W2

O1;1 12 1 8 1 10 1
O1;2 16 13 10 11 10 15
O1;3 1 7 9 8 1 1
O2;1 6 7 9 10 1 7
O2;2 11 17 1 1 14 13
O3;1 1 1 4 9 1 8
O3;2 7 8 5 8 6 8
O3;3 1 18 1 16 1 15
O4;1 6 1 9 11 1 5
O4;2 1 15 17 13 1 1

by representing the MILP formulation. The related
notations are �rst listed below.

Parameters:
n Number of jobs
m Number of machines
h Number of workers
ni Number of operations of job i
Mi;j The set including machines eligible to

process Oi;j
Wi;j The set including workers eligible to

operate Oi;j
Mi;j;l The set including machines eligible to

process Oi;j by worker l
Wi;j;k The set including workers eligible to

operate Oi;j on machine k
pi;j;k;l Processing time of operation j of job i

on machine k by worker l

Indices:
i; r Indices for jobs where f1; 2; � � � ; ng
j; s Indices for operations of job
k Index for machines where f1; 2; � � � ;mg
l Index for workers where f1; 2; � � � ; hg
Decision variables:
Xi;j;r;s Binary variable taking value 1 if Oi;j is

processed after Or;s; and 0, otherwise
Yi;j;k;l Binary variable taking value 1 if Oi;j

is processed on machine k by worker l;
and 0, otherwise

Ci;j Continuous variable for the completion
time of Oi;j

Cmax Makespan

Under these notations, the considered DRCFJSP can
be formulated as the following MILP model:
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min Cmax,
s.t.X

k2Mi;j

X
l2Wi;j;k

Yi;j;k;l = 1 8i; j; (1)

Ci;j � Ci;j�1 +
X

k2Mi;j

X
l2Wi;j;k

Yi;j;k;l:pi;j;k;l 8i; j; (2)

Ci;j � Cr;s +
X

l2Wi;j;k

Yi;j;k;l:pi;j;k;l �M:(1� xi;j;r;s)

�M:

0@2� X
l2Wi;j;k

Yi;j;k;l � X
l2Wr;s;k

Yr;s;k;l

1A
8i < n; j; r > i; s; k 2 fMi;j \Mr;sg; (3)

Cr;s � Ci;j +
X

l2Wi;j;k

Yr;s;k;l:pr;s;k;l �M:xi;j;r;s

�M:

0@2� X
l2Wi;j;k

Yi;j;k;l � X
l2Wr;s;k

Yr;s;k;l

1A
8i < n; j; r > i; s; k 2 fMi;j \Mr;sg; (4)

Ci;j � Cr;s +
X

k2Mi;j;l

Yi;j;k;l:pi;j;k;l �M:(1� xi;j;r;s)

�M:

0@2� X
k2Mi;j;l

Yi;j;k;l � X
k2Mr;s;l

Yr;s;k;l

1A
8i < n; j; r > i; s; l 2 fWi;j \Wr;sg; (5)

Cr;s � Ci;j +
X

k2Mi;j;l

Yr;s;k;l:pr;s;k;l �M:xi;j;r;s

�M:

0@2� X
k2Mi;j;l

Yi;j;k;l � X
k2Mr;s;l

Yr;s;k;l

1A
8i < n; j; r > i; s; l 2 fWi;j \Wr;sg; (6)

Cmax � Ci;ni 8i; (7)

Ci;j � 0 8i; j; (8)

Xi;j;r;s; Yi;j;k;l 2 f0; 1g 8 i; j; r; s; k; l; (9)

where Ci;0 = 0.
Constraint (1) determines the machine and

worker for processing each operation. Constraint (2)
guarantees precedence constraints between the oper-
ations of the same job. This constraint determines

completion time of an operation of a job in relation to
previous operation of the same job (di�erence between
the completion times of operation Oi;j and its previous
operation of the same job must be at least equal to
pi;j;k;l). Constraints (3) and (4) determine the rela-
tionship between completion times of two operations of
di�erent two jobs if these operations are implemented
on the same machine. These two constraints handling
one machine can only execute one operation at a given
time. Constraints (5) and (6) determine relationship
between completion times of two operations of di�erent
two jobs if these operations are executed by the
same worker. These two constraints controlling one
worker can only execute one operation at a given time.
Constraint (7) calculates the makespan. Constraints
(8) and (9) de�ne decision variables.

4. Proposed algorithms

In this section, we describe the proposed SA and
VDO algorithms for solving the DRCFJSP. Section 4
is subdivided into the following 4 subdivisions.

Section 4.1 explains solution representation solu-
tion method; neighborhood structures employed in the
presented algorithms are clari�ed in Section 4.2. In
Section 4.3, the steps of the SA algorithm are reported.
Next, the steps of the VDO algorithm are explained in
Section 4.4.

4.1. Representation solution method
One important decision in designing a meta-heuristic
method is to decide how to represent and relate
solutions in an e�cient way to the searching space [17].
In this article, the task sequencing list, proposed by
Lei and Guo [13], is used to represent the DRCFJSP
solution wherein a main string is made by subsidiary
quadruple strings (i; j; k; l); one for each operation.
In a quadruple string, i signi�es the job which an
operation belongs to; j characterizes the progressive
number of that operation within job i; k indicates the
machine assigned to that operation; l indicates the
worker assigned to that operation. The left-to-right
ordering of operations in the solution string represents
the sequencing of the operations on the machines.
Consider the problem in the Table 1. The solution:

S = [(O4;1;M3;W2); (O1;1;M2;W1); (O4;2;M1;W2);

(O1;2;M3;W1); (O3;1;M2;W1); (O3;2;M2;W1);

(O1;3;M1;W2); (O2;1;M1;W1); (O3;3;M3;W2);

(O2;2;M1;W1)];

is an optimal solution from solution space for the
mentioned problem shown in Table 1. The exhibition
of this solution in the task sequencing list pattern is
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Figure 1. Representation of solution S.

Figure 2. Gantt chart for machines and workers.

presented in Figure 1. Furthermore, Figure 2 shows
the Gantt chart of this solution for both machines and
workers separately where makespan equals 44.

4.2. Neighborhood structures
The technique of moving from one solution to its
neighboring solution is delineated by a key factor
known as neighborhood structure [18]. In the proposed
algorithms, four types of neighborhood structures are
used. The �rst one improves the operation-machine
assignment, while the second one is to improve the
operation-worker assignment. The third and fourth
are to improve the operation sequence. The third one
changes the positions of two operations while the fourth
one makes larger alter by changing the positions of
operations of two jobs.

4.2.1. Assignment Neighborhood Structure-1 (ANS-1)
The �rst neighborhood structure is called ANS-1. In
this neighborhood structure, d randomly selected op-
erations are randomly reassigned to another machine,
among the eligible machines of that operation. Since
only eligible machines are considered for each oper-

ation, the new generated solution is always feasible.
If the problem size is small, we have d = 1. For
medium and large problem size, we have d = 2
and 3, respectively. Note that the assignment of
the operations to the workers and sequencing of the
operations on the machines remains unchanged.

To further illustrate the procedure, consider a
problem with four jobs, three machines, two workers
and ten operations. One possible solution is shown
by Figure 3(a). Suppose we have d = 2, and then,
the two randomly selected operations are O1;1 and
O3;2. In the current solution, O1;1 has been assigned to
Machine 2 and O3;2 to Machine 3. By reassigning these
two operations to di�erent eligible machines, a new
solution is obtained. Again suppose O1;1 is reassigned
to Machine 3 and O3;2 is also reassigned to Machine 2.
Figure 3(b) shows the new generated solution.

4.2.2. Assignment Neighborhood Structure-2 (ANS-2)
This neighborhood structure is called ANS-2. Like
ANS-1, d operations are randomly selected. But, each
one is reassigned to another worker, among eligible
workers of that operation. In this case, the new
generated solution is also feasible. Again value of d
depends on the problem size. If the problem is small,
then we have d = 1. For medium and large problem
sizes, we consider d = 2 and 3, respectively. Note
that ANS-2 does not change any of operation-machine
assignment and sequence of operations.

Consider the abovementioned example. Fig-
ure 4(a) displays one possible solution to this problem.
Suppose we have d = 2 and the two randomly selected
operations are O4;2 and O3;3. In the current solution,
both operations O4;2 and O3;3 have been assigned to
worker 2. To generate a new solution, these two
operations are reassigned to worker 1. Figure 4(b)
shows the new generated solution.

4.2.3. Sequence Neighborhood Structure-1 (SNS-1)
The third neighborhood structure is named SNS-1.
This structure focuses on sequence of operations. Both
operation-machine and operation-worker assignments
remain untouched. In this neighborhood structure,
d times the following procedure is performed. The

Figure 3. The procedure of neighborhood structure ANS-1.
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Figure 4. The procedure of neighborhood structure ANS-2.

positions of two randomly selected adjacent operations
are replaced. These replacements are performed con-
sidering the priority constraints among the operations
of the same job. If the problem size is small, we
consider d = 2. For medium and large sizes, we have
d = 4 and 6. Note that if the two randomly selected
adjacent operations belong to two di�erent jobs, the
swap is carried out; otherwise (i.e., they belong to
the same job), swap is avoided and two new adjacent
operations are selected for swapping. To describe why
swapping of the operations of the same job is avoided,
let us remind the reader that each job has a �xed
processing route among its operations. That is, for job
i, the processing route is fOi;1; Oi;2; � � � ; Oi;nig where
ni is number of operations of job i. If the selected
adjacent operations belong to the same job and they
are swapped, then the processing route of that job is
violated. Hence, the new generated solution becomes
infeasible.

To better describe SNS-1, we apply the procedure
to the abovementioned example. Figure 5(a) shows
one possible solution. Suppose d = 2, and the �rst
and second two randomly selected adjacent operations
are (O1;2; O4;2) and (O1;3; O2;2). By swapping the
positions of these two pair of adjacent operations,
the new generated solution, shown in Figure 5(b), is
obtained.

4.2.4. Sequence Neighborhood Structure-2 (SNS-2)
The fourth neighborhood structure is called SNS-2. In
this neighborhood structure, two jobs are randomly
selected. We have two cases:

Case 1. If the two jobs have the same number of
operations, the following steps are performed:

Step 1: The operations of unselected jobs are copied
into the same positions in new solution;

Step 2: The operations of the �rst selected job are

copied into the positions of the second selected
job with respect to sequencing constraints;

Step 3: The operations of the second selected job are
copied into the positions of the �rst selected
job with respect to sequencing constraints.

After implementing Step 3, the new solution is com-
pleted.

Case 2. If the two jobs do not have the same number
of operations, the following steps are done:

Step 1: The operations of unselected jobs are copied
into the same positions in new solution;

Step 2: The operations of the job with lower number
of operations, say e operations, are copied
into the �rst e positions of the other job (the
job with greater number of operations) with
respect to sequencing constraints;

Step 3: The operations which are related to the job
with a greater number of operations are copied
into the empty positions with regard to se-
quencing constraints.

After Step 3 of this case, we also have a new com-
plete solution. Note that the operation-machine and
operation-worker assignments are not changed.

Consider an example with four jobs, three ma-
chines and two workers and ten operations. One
possible solution is shown by Figure 6. Suppose the
randomly selected jobs are jobs 1 and 3. Since they
have the same number of operations, the procedure
of Case 1 is used. Figure 6 shows the steps of this
procedure.

For the second case, consider the abovementioned
example but suppose job 3 has 2 operations. Figure 7
shows one possible solution for this problem. Again,
consider the selected jobs are jobs 1 and 3. Notice

Figure 5. The procedure of neighborhood structure SNS-1.
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Figure 6. Process of neighborhood structure SNS-2 in Case 1.

Figure 7. Process of neighborhood structure SNS-2 in Case 2.

that jobs 1 and 3 do not have the same number of
operations. Therefore, the procedure of Case 2 is used.
Figure 7 shows the steps of this procedure.

4.3. Simulated annealing
SA is a well-known meta-heuristic which have been ap-
plied successfully to various combinatorial optimization
problems [19,20]. This algorithm is capable of escaping
from the local optima by permitting moves to inferior
solutions during the search process. SA algorithm was
�rst proposed by Kirkpatrick et al. [19].

This subsection presents a SA algorithm for op-
timizing the DRCFJSP. Figure 8 demonstrates the
process of the proposed SA algorithm. At �rst, initial
solution, parameters of the algorithm and neighbor-
hood structures are de�ned in the initialization step.
In the next step, search procedure is performed with
the input solution and set temperature. In this
step, the neighboring solution x0 is generated from
the neighborhood of current solution x by means of
one neighborhood structure. In Figure 8, the order
of employed neighborhood structures is indicated by
parameter k. Table 2 speci�es the type of implemented
neighborhood structures in the search procedure. In
continuation of the search process, the di�erence be-
tween x and x0(�x;x0) is computed in terms of objective

Table 2. Neighborhood structures employed in the search
procedure.

Step
Local search procedure

k = 1 k = 2 k = 3 k = 4
Neighborhood

structure
ANS-1 SNS-1 ANS-2 SNS-2

function value. If �x;x0 < 0, the current solution x
is replaced with neighboring solution x0(x  x0). In
case of �x;x0 = 0, a uniform random number (i.e.,
R � U(0; 1) is generated. If R < 0:5, x is replaced
with x0. Also, in case of �x;x0 > 0, to decrease
the probability to get stuck in local optima, the SA
may accept to move to an inferior neighboring solution
depending on a randomized structure [21]. In this
condition, x is replaced with x0, only if uniform random
number R < exp(��x;x0=T ) where R � U(0; 1) and T
is current temperature. If none of the cases above is
met, the current solution x is preferred.

After completion of the search procedure itera-
tions in each temperature, the best solution of the
search procedure, x�i , is chosen and it will be assigned
as the input solution of the search procedure in the
subsequent temperature (x  x�i ). Besides, if x�i
is better than the best solution having found in the
searches so far (i.e., x�), x� is replaced with x�i (x�  
x�i ).

Classically, the probability to accept bad moves
(i.e., moves with increase in terms of objective function
value) is high at the beginning to allow the algorithm to
escape from local minimum. This probability decreases
in a progressive way by reducing the temperature. The
method used to decrease the temperature is generally
called cooling schedule [22]. An applicable initial
temperature should be high enough to generate equal
chance for all states of the search space to be visited,
and it should not be rather too high to perform quite
a lot of redundant searches in high temperature [21].
At the end of iterations of the search procedure of
SA algorithm (after the number of search procedure
iterations at one temperature level is �nished), the
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Figure 8. Steps of the proposed SA for the DRCFJSP.

current temperature will be decreased by the cooling
schedule function. In this paper, we apply the following
function to decrease the temperature:

Ti+1 = �Ti; (10)

where � is a constant cooling rate. The cooling rate
is de�ned as less than and close to 1.0. Typically the
cooling rate is speci�ed as between 0.8 and 0.99 [23].

The presented SA algorithm continues until the
stopping criterion (i.e., �nal temperature) is achieved.
When the process of the algorithm stops, the �nal
solution x� is used as the best solution. The �nal
temperature (Tf ) is set to be 0.01. Initial temperature
(T0), number of neighborhood searches in the search
procedure for each temperature (nmax) and cooling rate
(�) are determined in the parameter tuning section.

4.4. Vibration damping optimization
In physics, vibration is de�ned as the oscilla-
tion/repetitive motion of an object around an equi-
librium position [24] where the object position is
obtained when no force acts on it. The vibration of
an object comes from an excitation force, may either
be externally applied to the object or originate inside
the object. In vibration phenomenon, the reduction
process of amplitude of oscillation, tending to zero
over time, is called vibration damping process. There
is a useful connection between the vibration damping
process and optimization. In the analogy between
an optimization problem and the vibration damping
process:

I) The states of oscillation system represent feasible
solutions of the optimization problem;

II) The energies of the states correspond to the objec-
tive function value computed at those solutions;

III) The minimum energy state corresponds to the
optimal solution and rapid quenching can be
viewed as local optimization.

In the solving methodologies area, Mehdizadeh and
Tavakkoli-Moghaddam [25] introduced a new meta-
heuristic algorithm, namely Vibration Damping Op-
timization (VDO). This stochastic search method is
inspired by the SA algorithm and is created based on
the concept of the vibration damping in mechanical
vibration [26,27].

In this subsection, the VDO algorithm is pre-
sented for solving the DRCFJSP. Figure 9 shows the
process of the proposed VDO algorithm. During the
initialization step of the proposed algorithm, initial
amplitude (A0), minimum amplitude (Amin), number
of neighborhood searches in the search procedure for
each amplitude (L), damping coe�cient () and sigma
of Rayleigh distribution (�) are determined. The
amplitude in the suggested algorithm has a control
parameter role. This factor controls the possibility
of the acceptance of a worse solution in various steps
of the algorithm. At high amplitude (early in the
search), there is some exibility to move to a worse
solution; however, at lower amplitude (later in the
search) less of this exibility exists. The algorithm
escapement from local optimum is reduced in low
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Figure 9. Steps of the proposed VDO for the DRCFJSP.

amplitude and the accessibility to global optimization
is increased in higher amplitude. In addition, in the
initialization step, an initial solution X is generated
randomly and is set as the current solution X 0(X 0 
X). In the next step of the VDO algorithm, search
procedure is performed. In each iteration of the
search procedure, a new neighboring solution X 00 is
generated by implementing a neighborhood structure
on the current solution X 0. It is noted that type and
order of neighborhood structures of the proposed VDO
algorithm are equivalent to the proposed SA algorithm.
After the neighboring solution X 00 is produced, the
di�erence in objective function value (� = E(X 00) �
E(X 0)) is computed. If the di�erence is negative or
zero (i.e., � � 0), current solution X 0 is replaced
with neighboring solution X 00(X 0  X 00). Besides, In
the case of positive di�erence (� > 0), the algorithm
moves from current solution X 0 to neighboring solution
X 00, only if 1 � e�A2=2�2

> R where R � U(0; 1),
A is current amplitude and � is sigma of a Rayleigh
distribution. This leaves the possibility of �nding a
global optimal solution out of a local optimum [28].
If none of the conditions above is met, the current
solution X 0 is preferred. On a condition that all
iterations of the search procedure are considered, one
iteration of the VDO algorithm is accomplished. In
that case, the stopping condition is checked. If
this condition is not met, the next iteration of the
algorithm begins with new amplitude (A A0e�t=2).
Otherwise, the algorithm is terminated. There are
many rules for the stopping condition in meta-heuristic
algorithms, which depends on the problem at hand.
Some of them for the VDO algorithm can be as
follows:

1. Maximum number of iterations;
2. Reaching to the point that iteration will not im-

prove quality solution afterwards;
3. Reaching to minimum amplitude Amin.

In this paper, the VDO algorithm continues until
pre-speci�ed minimum amplitude (Amin) is achieved.
Amin is set to be 10�6. Values of A0, �, L and  are
determined in the parameter tuning section.

5. Parameter tuning

For parameter calibration of algorithms, several meth-
ods to statistically design the experiment are available.
Among all, the Taguchi experimental design method
[29,30] has shown great success for the parameter
design stage to �nd optimal process settings in di�erent
�elds [31-33]. In this method, the orthogonal arrays are
used to study a large number of decision variables with
a small number of experiments. The Taguchi method
separates the factors into two main groups: controllable
and noise factors. Controllable factors will be placed
in the inner orthogonal array and noise factors in the
outer orthogonal array. Due to unpractical and often
impossible omission of the noise factors, the Taguchi
method tends to both minimize the impact of noise and
also �nd the best level of the inuential controllable
factors on the basis of robustness.

The Taguchi method has created a transformation
of the repetition data to another value that is the
measure of variation. The transformation is the Signal-
to-Noise (S/N) ratio that explains why this type of the
parameter design is called robust design [30]. Here, the
term \signal" denotes the desirable value (i.e., mean
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response variable) and \noise" denotes the undesirable
value (i.e., standard deviation) [31]. So the S/N
ratio indicates the amount of variation present in the
response variable. In the Taguchi method, the S/N
ratio of the minimization objectives is given below [32]:

S/N ratio : �10 log10

 
1
n

nX
i=1

y2
i

!
[db]; (11)

where y is the response variable and n is the number
of experiments. It should be noted that the S/N ratios
are exposed in terms of the desi-bell (db) scale. The
aim is to maximize the S/N ratio [34].

In this paper, we apply the Taguchi method
in parameter setting to achieve better robustness of
the SA and VDO algorithms. Control factors of SA
algorithm are: Initial temperature (T0), number of
neighborhood searches in the search procedure for each
temperature (nmax) and cooling rate (�). Also, VDO
control factors are: Initial amplitude (A0), sigma of
Rayleigh distribution (�), number of neighborhood
searches in the search procedure for each amplitude (L)
and damping coe�cient (). Levels of these factors are
illustrated in Tables 3 and 4.

To select the appropriate orthogonal array for
tuning the SA, it is necessary to calculate the total
degree of freedom. The proper array should contain a
degree of freedom for the makespan and three degrees
of freedom for each factor with four levels (3� 3 = 9).
Thus, the sum of the required degrees of freedom is
1 + 3 � 3 = 10. Therefore, the appropriate array
should have at least 10 rows. From the standard
table of orthogonal arrays, L16 is selected as the �ttest
orthogonal array design that ful�lls our all minimum
requirements. The modi�ed orthogonal array L16 is
presented in Table 5 in which control factors are
assigned to the columns of the orthogonal array and

Table 3. Factors and their levels for the SA algorithm.

Factors Symbols Levels

Initial temperature (T0) A

A(1)-10

A(2)-20

A(3)-30

A(4)-40

Number of neighborhood

searches in the search

procedure for each

temperature (nmax)

B

B(1)-100

B(2)-150

B(3)-200

B(4)-250

Cooling rate (�) C

C(1)-0.8

C(2)-0.85

C(3)-0.9

C(4)-0.95

the corresponding integers in these columns indicate
the actual levels of these factors.

Also, to determine the proper orthogonal array
for setting the VDO, we calculate the total degree of
freedom. The appropriate array should comprise a
degree of freedom for the makespan and three degrees
of freedom for each factor with four levels (4�3 = 12).
Thus, the sum of the required degrees of freedom is

Table 4. Factors and their levels for the VDO algorithm.

Factors Symbols Levels

Initial amplitude (A0) A

A(1)-5
A(2)-10
A(3)-15
A(4)-20

Sigma of Rayleigh
distribution (�)

B

B(1)-0.5
B(2)-1
B(3)-1.5
B(4)-2

Number of neighborhood
searches in the search
procedure for each
amplitude (L)

C

C(1)-100
C(2)-150
C(3)-200
C(4)-250

Damping coe�cient () D

D(1)-0.05
D(2)-0.1
D(3)-0.15
D(4)-0.2

Table 5. The modi�ed orthogonal array L16 for tuning
the SA algorithm.

Trial Levels of control factors
A B C

1 A(1) B(1) C(1)
2 A(1) B(2) C(2)
3 A(1) B(3) C(3)
4 A(1) B(4) C(4)
5 A(2) B(1) C(2)
6 A(2) B(2) C(1)
7 A(2) B(3) C(4)
8 A(2) B(4) C(3)
9 A(3) B(1) C(3)
10 A(3) B(2) C(4)
11 A(3) B(3) C(1)
12 A3) B(4) C(2)
13 A(4) B(1) C(4)
14 A(4) B(2) C(3)
15 A(4) B(3) C(2)
16 A(4) B(4) C(1)
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Table 6. The modi�ed orthogonal array L16 for tuning
the VDO algorithm.

Trial Levels of control factors
A B C D

1 A(1) B(1) C(1) D(1)
2 A(1) B(2) C(2) D(2)
3 A(1) B(3) C(3) D(3)
4 A(1) B(4) C(4) D(4)
5 A(2) B(1) C(2) D(3)
6 A(2) B(2) C(1) D(4)
7 A(2) B(3) C(4) D(1)
8 A(2) B(4) C(3) D(2)
9 A(3) B(1) C(3) D(4)
10 A(3) B(2) C(4) D(3)
11 A(3) B(3) C(1) D(2)
12 A(3) B(4) C(2) D(1)
13 A(4) B(1) C(4) D(2)
14 A(4) B(2) C(3) D(1)
15 A(4) B(3) C(2) D(4)
16 A(4) B(4) C(1) D(3)

1 + 4 � 3 = 13. Therefore, the appropriate array
should have at least 13 rows. From the standard
table of orthogonal arrays, L16 is selected as the �ttest
orthogonal array design that ful�lls our all minimum
requirements. The modi�ed orthogonal array L16 is
presented in Table 6.

For parameter tuning, 10 test problems with
di�erent sizes and speci�cations are generated. To
yield more reliable information and because of having
a stochastic nature of the presented algorithms, we
tackle each test problem �ve times. Therefore, we
have 50 results for each trial to set parameters. In
parameter tuning step, the stop conditions is the same
for SA and VDO algorithms and equal to allowed
computational times. After obtaining the results of
the test problems in di�erent trials, the results of
each trial are transformed into the S/N ratio. The
S/N ratios of trials are averaged in each level, and
its value is plotted against each control factor. The
average S/N ratio plot for SA and VDO algorithms are
shown in Figures 10 and 11, respectively. As indicated

Figure 10. The average S/N ratio plot at each level of
the factors for objective function values in SA.

in Figure 10, better robustness of the SA algorithm
is achieved when the parameters are set as follows:
T0 : A(2) = 20, nmax : B(3) = 200 and � : C(3) = 0:9.
Also, based on information of Figure 11 the best chosen
levels for VDO are as follows: A0: A(1) = 5, �:
B(3) = 1:5, L: C(3) = 150 and : D(4) = 0:2.

6. Computational results

The proposed MILP model and algorithms are evalu-
ated in this section. In the following subsections, at
�rst the MILP model is assessed, and then algorithms
are evaluated. To conduct the experiments, we use a
PC with 3.2 GHz (Core I7) and 8 GB of RAM memory
for performing computational study. Minimization of
the makespan is considered as the objective function.

6.1. MILP model's evaluation
Here, the validity of the proposed MILP model is eval-
uated in terms of size and computational complexities.
In the size complexity evaluation, models are exam-
ined on the basis of the numbers of binary variables,
continuous variables and constraints generated by the
nature of the models. Table 7 shows the number of
binary variables, continuous variables and constraints
related to the proposed mathematical model with n
jobs, m machines and h workers where each job has m
operations.

Next, using CPLEX 12 software, we assess com-
putational complexity of the proposed model (i.e. the
models' capability to solve di�erent problem sizes). We
generate a DRCFJSP data set with 10 test problems
in small sizes (S-DRCFJSP). The processing times of
the problems are uniformly distributed over [1, 99].
These test problems are formulated by the MILP model
described in Section 3 \mathematical model", and then
the models are solved by CPLEX software. Charac-
terizes of the generated test problems and obtained
results of the MILP model are shown in Table 8.
Columns 1 to 5 represent characterizes of the problems
in which n stands for the number of jobs, m embodies
the number of given machines, h speci�es the number
of workers and TO represents the total number of
operations for each problem. The number of variables
and constraints related to the mathematical model,
are respectively, shown in columns 6 and 7. Also,
columns 8 to 10 signify the MILP bound (a bound on
the best possible value of the objective can be attained

Table 7. Size complexity of the proposed mathematical
model.

Factor Model

No. of binary variables nm2 �h+ n�1
2

�
No. of continuous variables nm
No. of constraints n(2m+1)+n(n�1)m2(m+h)
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Figure 11. The Average S/N ratio plot at each level of the factors for objective function values in VDO.

Table 8. Obtained results of the MILP model by CPLEX software on small-sized problems.

Problem Results

Problem no. n m h TO Var Con MILP
bound

Best
MILP

CPU time
(S)

S-DRCFJSP-1 2 2 1 4 18 32 122 122 0.06

S-DRCFJSP-2 3 2 1 6 28 56 219 219 0.73

* S-DRCFJSP-3 3 2 2 6 46 120 175 175 4.95

S-DRCFJSP-4 3 3 2 8 57 162 211 211 21.61

* S-DRCFJSP-5 3 3 2 8 81 240 201 201 37.42

S-DRCFJSP-6 4 2 2 8 69 224 119 119 23.78

* S-DRCFJSP-7 4 3 2 10 87 342 216 216 28.34

S-DRCFJSP-8 4 3 3 10 81 268 213 213 46.51

S-DRCFJSP-9 4 3 2 12 105 358 304 304 71.22

S-DRCFJSP-10 4 3 3 12 109 422 280 280 111.56

in the given time), the best MILP (the objective value
of the best integer solution found by the CPLEX
within the given time limit) and computational time
of the CPLEX software, respectively. The problems
with total exibility are highlighted by symbol (*) in
Table 8. The results in Table 8 indicate that the
optimal solutions are obtained for test problems 1 to
10 (S-DRCFJSP) in a reasonable computational time.
This outcome reveals the mathematical model can be
applied for programming and optimizing the small-
sized DRCFJSP problems. Note that we also used a
mathematical model to solve larger problems. But due
to complexity of the mathematical model in problems
larger than problems in Table 8, CPLEX cannot obtain
the optimal solution.

6.2. Algorithm's evaluation
This subsection describes the computational study
which is used to evaluate the e�ectiveness and e�ciency
of the proposed VDO and SA algorithms. In order to
conduct the experiment, we implement the algorithms
in MATLAB R2012b. The non-deterministic nature of
the presented algorithms makes it necessary to carry

out multiple runs on the same problem instance in
order to obtain reliable results. Therefore, the best
solution is selected for each problem after ten runs of
the given algorithm from di�erent initial solutions.

The �rst dataset under investigation is S-
DRCFJSP. We perform VDO and SA algorithms on
these problems. The result revealed that both algo-
rithms have obtained optimal solutions in all 10 test
problems. To perform extensive computational study,
we generate a DRCFJSP data set with 20 test problems
in medium and large sizes. Ten of these test problems
are generated in medium sizes (M-DRCFJSP) and
other ten test problems are generated in large sizes (L-
DRCFJSP). The processing times of the problems are
uniformly distributed over [1, 99]. Table 9 compares
the results of the proposed SA and VDO algorithms on
medium and large-sized problems. The �rst column
up to the �fth one represents characterizes of the
problems, in which n stands for the number of jobs,
m embodies the number of given machines, h speci�es
the number of worker and TO represents the total
number of operations for each problem. Problems with
the total exibility are highlighted by symbol (*) in
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Table 9. Results of the SA and VDO algorithms on medium- and large-sized problems.

Problem Results of SA Results of VDO

Problem no. n m h TO Lower
bound

Best
SA

Average of
solutions

Best
VDO

Average of
solutions

* M-DRCFJSP-1 5 3 2 15 435 447 447 447 447
M-DRCFJSP-2 6 3 2 18 496 507 509.5 507 507
M-DRCFJSP-3 6 4 2 25 537 550 553.4 547 547.8
* M-DRCFJSP-4 7 4 3 35 679 701 701 692 694.6
M-DRCFJSP-5 8 4 3 40 613 659 663.5 652 652
M-DRCFJSP-6 9 5 3 45 660 712 718.3 684 691.2
* M-DRCFJSP-7 10 5 3 50 773 820 821.8 805 810.7
M-DRCFJSP-8 10 6 3 60 946 1019 1031.1 984 993.3
* M-DRCFJSP-9 10 6 4 70 817 923 934.6 892 902.5
M-DRCFJSP-10 12 6 4 80 949 1091 1103.1 1045 1062.2
* L-DRCFJSP-1 15 6 4 90 1035 1166 1182.5 1109 1121.4
L-DRCFJSP-2 20 7 5 100 886 1059 1073.8 987 1002.1
L-DRCFJSP-3 20 8 5 120 1090 1241 1260.6 1168 1189.4
* L-DRCFJSP-4 20 8 6 120 954 1112 1128.2 1021 1035.3
L-DRCFJSP-5 30 10 7 150 984 1187 1227.4 1099 1123.8
* L-DRCFJSP-6 30 10 7 200 1292 1513 1549. 5 1396 1428.5
L-DRCFJSP-7 30 10 8 200 1188 1442 1486.2 1276 1307.5
* L-DRCFJSP-8 40 10 8 240 1309 1594 1618.1 1464 1485.2
L-DRCFJSP-9 50 10 8 300 1713 2139 2158.8 1986 2015.1
*L-DRCFJSP-10 50 10 8 300 1628 1980 2005.4 1817 1842.8

Table 9. In this paper, we make use of a lower bound of
makespan proposed by Lei and Guo [13] for evaluating
and comparing obtained results. This lower bound is
attained in the following way: An earliest starting time
of operation (rij) is �rst calculated, ri1 = qi (where qi is
the release time of the ith job), ri(j+1) = rij+~ij , ~ij =
min
k;l
fpijklg, where i = f1; 2; � � � ; ng, 1 � j � ni � 1

and pijkl indicates the processing time of operation
Oi;j processed on machine k and operated by worker
l. Then, the values of the earliest starting time are
ranked ascending. The sorted earliest starting time are
imported in set R = fri1j1 ; ri2j2 ; � � � ; r1N jN g, where N
is the total number of operations. The lower bound of
the makespan is then obtained by:

C low
max = max

 
max
i

�
qi +

X
j

~ij
�
;

~E
�Rm +

P
i
P
j ~ij

m

�
;

~E
�Rh +

P
i
P
j ~ij

h

�!
; (12)

where ~E is a numerical function de�ned as follows:

if x is integer, ~E(x) = x, else ~E(x) = x + 1; m
indicates number of machines, w speci�es the number
of workers, Rm is the sum of the m (number of
machines) smallest values of the earliest start time from
set R(Rm =

Pm
l=1 riljl) and Rh is the sum of the h

(number of workers) smallest values of the earliest start
time from set R

�
Rh =

Ph
l=1 ril ; jl

�
. In this paper, it

is assumed that all jobs can be started at time 0(qi =
0). The values of the lower bound for the generated
test problems are shown in the sixth column. The
seventh column signi�es the best makespan obtained
from ten runs of the SA algorithm, and the eighth
column reports the average of the obtained results of
ten runs. The ninth column shows the best makespan
obtained from ten runs of the VDO, and the tenth
column reports the average of the obtained results of
ten runs. The results of Table 9 show that VDO works
better than SA in medium- and large-sized problems.

For more investigations in the computational
results and comparing the performances of these two
algorithms, we use the Relative Percentage Deviation
(RPD) measure computed by:

RPD =
Algsol � LB

LB
� 100%; (13)

where Algsol is the objective function value obtained
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Table 10. Results of RPD for the SA and VDO in medium-sized problems (M-DRCFJSP-1:10).

Algorithm
SA VDO

Average RPD
Standard

deviation RPD
Average RPD

Standard
deviation RPD

7.47 4.87 5.31 3.42

Table 11. Results of RPD for the SA and VDO in large-sized problems (L-DRCFJSP-1:10).

Algorithm
SA VDO

Average RPD
Standard

deviation RPD
Average RPD

Standard
deviation RPD

21.19 4.08 11.83 2.99

by the given algorithm and LB is the lower bound for
objective function of the problem. Since 10 runs of
algorithm are performed for each test problem, RPD
should be calculated for result of each run. Then mean
RPD results of runs (RPD) is computed and used for
making comparisons among algorithms.

Tables 10 and 11 shows the average and standard
deviation of RPD values related to the results of
SA and VDO algorithms on medium and large-sized
problems, respectively. As indicated in Table 10,
the best performance in medium size is obtained
by the VDO with the average RPD of 5.31% and
the standard deviation RPD of 3.42%. Further-
more, as can be seen in Table 11, the VDO achieves
the best performance in large size with the average
RPD of 11.83% and the standard deviation RPD
of 2.99%. In order to verify the statistical validity
of the results, we perform two-sample Student's t-
test for medium- and large-sized problems, separately.
The con�dence level is set to be 95% (� = 0:05).
The tests have been accomplished using MINITAB
15.0 software. Based on t-test result for medium-
sized problems, p-value becomes 0.267. Since p-value
is higher than �, there is not a clear statistically
signi�cant di�erence between performances of the VDO
and SA algorithms in medium-sized problems and they
provide statistically the same performance. Based on
t-test result for large-sized problems, p-value becomes
0.00. Since p-value is lower than �, there is a
clear statistically signi�cant di�erence between perfor-
mances of the VDO and SA algorithms in large-sized
problems. Therefore, the proposed VDO statistically
works better than the proposed SA in large-sized
problems.

The results obtained from VDO algorithm re-
vealed the appropriate performance of our algorithm
in optimizing large-sized problems. For instance,
Figure 12 depicts the diagram of the algorithm conver-
gence to minimize makespan for problem L-DRCFJSP-

Figure 12. Convergence of the VDO algorithm to
minimize the makespan for problem L-DRCFJSP-4.

4. The best makespan which equals to 1021 is reached
after 300 iterations.

7. Conclusions and future study

This paper has addressed the dual-resource constrained
exible job-shop scheduling problem (DRCFJSP) to
minimize the makespan. We presented a mixed integer
linear programing model for DRCFSP. Additionally,
we have developed two e�cient meta-heuristic, namely
SA and VDO, for solving the given problem. The
search procedure of both algorithms used four e�cient
neighbourhood structures to search the solution space.
In order to adjust the parameters and operators of
the proposed algorithms, the Taguchi parameter design
method has been used. To evaluate the proposed
SA and VDO algorithms, we have performed the
computational study with the generated dataset. The
computational results have shown that the proposed
VDO has worked better than the proposed SA statis-
tically. In the following, some suggestions are o�ered
for future studies:
� Developing a hybrid meta-heuristic algorithm, such

as VNS-SA and GA-VNS for solving DRCFJSP;
� Considering sequence-dependent setup times as an

important factor in the DRCFJSP;
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� Developing mathematical models and meta-
heuristic algorithms for a multi-objective DRCFJSP
considering other objective functions.
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