
Scientia Iranica D (2015) 22(3), 1018{1030

Sharif University of Technology
Scientia Iranica

Transactions D: Computer Science & Engineering and Electrical Engineering
www.scientiairanica.com

Research Note

A multi-objective approach to model-driven
performance bottlenecks mitigation

M. Amoozegara;� and H. Nezamabadi-pourb

a. Department of Information Technology, Institute of Science and High Technology and Environmental Sciences, Graduate
University of Advanced Technology, Kerman, P.O. Box 76315-117, Iran.

b. Department of Electrical Engineering, Shahid Bahonar University of Kerman, Kerman, P.O. Box 76169-133, Iran.

Received 25 December 2013; received in revised form 1 October 2014; accepted 7 March 2015

KEYWORDS
Bottleneck detection;
Multi-objective
optimization;
Software performance
engineering;
UML;
Gravitational search
algorithm.

Abstract. Software Performance Engineering (SPE) evaluates the key performance
factors such as response time and utilization in the entire life cycle of software development.
One of the important issues of software performance is bottlenecks that have not been
investigated much till now in the process of SPE. Meanwhile, Bottleneck detection and
mitigation in software modeling stage is quality-centered and cost e�ective. Layered
bottleneck is a type of bottleneck that occurs in systems with layered services and a�ects its
utilization more than at bottlenecks. The presented approach in this paper has selected
Layered Queening Network (LQN) as an appropriate performance model to present and
analyze the layered bottlenecks. The process of SPE from software model to performance
model has been automatically implemented. Also, an optimization stage is added to �nd
the best speci�cation of software model in a way that the strength of the bottleneck, the
response time and the cost will be minimized. To assess the proposed solution, two recently
proposed multi-objective gravitational search algorithms are employed. To evaluate the
e�ectiveness of the applied algorithms, two well-known multi-objective algorithms: NSGA-
II and MOPSO are also applied to a case study, and a comprehensive comparison is
presented.
c 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Software performance engineering integrates perfor-
mance evaluation in the software development process
from the early stages throughout the whole life cycle.
Therefore, software model annotated with performance
speci�cation is transformed into a performance model.
Recent research of SPE focused on feedback from
analyzing performance results into software model.

Performance usually refers to response time;
throughput and resource utilization. Many researches
have been presented to improve these factors. Mean-

*. Corresponding author. Tel.: 03433776611
E-mail addresses: amoozegar@kgut.ac.ir (M. Amoozegar);
nezam@kgut.ac.ir (H. Nezamabadi-pour)

while SPE also covers the other performance issues such
as bottlenecks. Although high utilization of resources is
a main target, excessive utilization causes bottlenecks.
A bottleneck is a single point of contention that limits
the overall system performance [1].

Layered bottleneck is a type of bottleneck that
occurs in systems with layered services. In this layered
structure, each service in a layer is client for lower layer
service, and server for upper layer service and resources
are possessed simultaneously. Layered bottlenecks
are more complicated than at bottlenecks and the
workload intensity of the system and the resources
utilization are more a�ected. Therefore, one of the
key factors in the software performance optimization
is bottleneck detection and improvement.

Many bottleneck detection and improvement ap-



M. Amoozegar and H. Nezamabadi-pour/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 1018{1030 1019

proaches have been presented. Some approaches are
based on simulation and monitoring. Ref. [2] presented
an approach that supports automated monitoring,
analyzing, and reporting by applying machine-learning
in the context of staging. Therefore, this approach
collects data and analyzes bottlenecks for a signi�cant
number of performance metrics.

Ref. [3] has presented an approach for simple and
automatic detection of performance bottleneck based
on the di�erential analysis method. This approach
generates di�erent binary variants obtained by patch-
ing individual or groups of instructions. Then the
cost of an instruction group is evaluated. Di�eren-
tial Analysis is illustrated by the use of DECAN on
a range of HPC applications to detect performance
bottlenecks.

Many other approaches detect bottlenecks from
runtime or source-code information [4-7]. Based on
runtime information, a PERT (Program Evaluation
and Review Technique) diagram is built, and the crit-
ical path of the diagram is identi�ed as a performance
bottleneck.

These methods are time consuming and very
costly. The bottlenecks are detected in the last phase
of software development so that their mitigation is very
di�cult.

Model based techniques for bottleneck detection
evaluate software model. Therefore, in the early life
cycle of software development, bottlenecks can be de-
tected and mitigated by tuning the related performance
speci�cations.

Based on [8], in performance model side, bot-
tleneck identi�cation and removal was introduced few
decades ago [1] and has been continuously re�ned by
more recent results [9]. But, there exist few works
that detect such bottlenecks based on UML models.
Garousi [10] presented a UML-driven technique to
detect Performance bottlenecks of concurrent real-
time systems. The control ow diagram and PERT
diagram are built from the sequence diagrams and
interaction overview diagrams to pinpoint performance
bottlenecks.

This paper presents an automatic UML based
bottleneck improvement solution that optimizes
strength bottleneck [9] of the software model. There-
fore, bottleneck detection and mitigation problem is
modeled as an optimization problem that has consid-
ered more than one objective function (in this study
three objective functions are considered together) and
is solved with the Pareto-optimal concepts.

In recent years, some approaches [11,12] have been
proposed that apply heuristic algorithms to evaluate
the UML model for performance in terms of expected
response time, throughputs and resource utilizations.
Ref [13] has applied multi-objective evolutionary op-
timization to �nd the good value of the performance

speci�cations of the software modeled with Palladio
Component Model.

Gravitational Search Algorithm (GSA) is a rela-
tively new optimization algorithm based on the laws
of gravity and motion. In Ref. [14] we presented an
approach to optimize the response time of the software
model along with two constraints, cost and utilization,
by single objective version of GSA. Single objective
optimization algorithm provides one solution or one
choice for the software architecture. Meanwhile, in
multi-objective optimization algorithms, instead of a
unique optimal solution, there is rather a set of alter-
native trade-o�s. This research applies three multi-
objective versions of GSA that are called NSGSA (Non-
dominated Sorting Gravitational Search Algorithm)
and MOGSA (Multi Objective Gravitational Search
Algorithm) to �nd the best con�gurations of software
model in a way that bottleneck strength be minimized.
Bottleneck must be improved while cost and response
time must also be controlled. Thus three objectives
exist that must be minimized.

The privileges of the presented approach are:

1. The software model that is speci�ed with perfor-
mance property automatically analyzed from two
important performance issues; bottleneck and re-
sponse time. Bottlenecks, especially software bot-
tlenecks, are a�ected by the software and hardware
resources. By the presented approach, the optimum
number of resources will be determined, before
the software development starts. This process is
very cost e�ective especially when the role of the
software resources, e.g. threads, in the development
process has been considered.

2. The bottleneck improvement is considered as the
main objective during the SPE process. The
software architecture who is not aware of the perfor-
mance engineering can easily optimize the software
model.

3. NSGSA and MOGSA are applied in SPE scope and
bottleneck improvement problem with respect to
response time and cost.

A case study has been selected and whole steps
of SPE, from software modeling to optimization, have
been applied to it. NSGA-II and MOPSO are also used
for optimization. Important metrics such as coverage
metric, diversity and spacing evaluate the performance
of these algorithms. Comprehensive comparison of the
results has been provided that show the NSGSA has
the best behavior.

The rest of the paper is structured as follows:
Basic concepts are discussed in Section 2. Section 3
describes the bottleneck detection and the measure-
ment strategy. Formal de�nition of an optimization
problem is presented in Section 4. Introduction of the



1020 M. Amoozegar and H. Nezamabadi-pour/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 1018{1030

Figure 1. Software performance engineering process.

Case study, simulation and the analysis of the results
are illustrated in Sections 5 and 6. The �nal section is
related to a conclusion and future work.

2. Background

2.1. Software performance engineering
Software Performance Engineering (SPE), �rstly pre-
sented in [15], is a systematic, quantitative approach
to construct software systems that meet performance
objectives. It is based on the careful and methodical
evaluation of performance attributes throughout the
lifecycle, from requirements and speci�cation to imple-
mentation and maintenance [16].

Figure 1 shows the steps of SPE. The �rst step is
the designing of software model in UML2 with activity,
component and deployment diagram. In the second
step, the MARTE [17] pro�le extends software model
to annotate performance requirements and specify
performance property of resources and activities using
stereotypes and tagged values. Steps three and four
are related to software model transform into CBML
by means of existing algorithms and tools that have
been provided in our already research [18]. CBML is
an XML based language designed for describing layered
queuing models with embedded components, and also
the component sub-models [19,20], the LQN model will
be solved with LQNS solver [21] in step 5. LQNS uses
analytical mean value queuing approximations to solve
the queues at all entries. Analysis is done in step 6 with
SPEX which supports experiment instrumentation [22].
This tool can execute parameterized experiments using
LQNS, and is very useful for repeating a parameterized
run. In the �nal step, a search is performed through
the space of the problem and the best value for
performance parameter annotated in software model
will be presented �nally. All of these steps are used for
an E-shop software case study.

A key factor in the successful performance anal-
ysis is the automation. Over the last decade, many
researches have been directed towards integrating per-
formance analysis into the software development pro-
cess [23]. In this way, a software architecture who is
not pro�cient in performance domain can easily design
the software with high performance.

2.2. Bottleneck
A bottleneck is a single point of contention that limits
the overall system performance [1].

LQN models [24] extend the traditional queuing
network models by considering both software and hard-
ware contention, and the impact of layers on service
time. LQN model has layered structure. Each layer is
the server of the upper layers and a client for the lower
layers.

When a software task has been fully utilized,
while the resources that it uses are underutilized,
a software bottleneck has accrued [1]. Hardware
bottlenecks usually occur at a CPU, a disk, or other
devices. Software bottlenecking is quite di�erent from
hardware bottleneck. When a software task is highly
utilized, it will \push back" on its clients which makes
them appear to be saturated, too. This is while
the used resources by this task are underutilized. In
the systems with deeply layered structure, software
blocking extends to other layers quickly [25]. A detailed
discussion of software bottlenecking and their features
can be found in [1].

2.3. Multi-objective optimization
Some problems have more than one objective function
to be optimized and sometimes these objectives are in
conict with each other. Multi-objective optimization
algorithms are presented to solve these problems. Since
these algorithms provide more than one solution, the
trade-o� between objectives is necessary to �nd the
best solution.

Suppose that x = (x1; x2; � � � ; xn) is the vector
of decision variable, fi : Rn ! R; i = 1; � � � ; k are the
objective functions and gi, hj : Rn ! R, i = 1; � � � ;m,
j = 1; � � � ; p are the constraints of the problem. Pareto
domain based algorithms that are used in this paper,
present this problem and de�nition as follows [26]:

Minimize:

f(x) = [f1(x); f2(x); � � � ; fk(x)]:

Subject to:

gi(x) � 0; i = 1; 2; � � � ;m;
hj(x) = 0; j = 1; 2; � � � ; p:

De�nition 1: Given two vectors x, y 2 Rk, we say
that x � y if xi � yi, i = 1; � � � ; k and that x dominates
y (or presented by x � y) if x � y and x 6= y.

De�nition 2: we say x 2 � � Rk is non-dominated
with respect to �, if there does not exist another x0 2 �
such thatf(x0) � f(x).

Selected non-dominated solutions are stored in an
external archive. The external archive is updated at



M. Amoozegar and H. Nezamabadi-pour/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 1018{1030 1021

Figure 2. Diversity and spacing concept.

each iteration of the algorithm. When the running
algorithm is terminated, external archive will present
�nal results.

Therefore, multi-objective optimization algo-
rithms provide a set of solutions that is required to
be well-spread and uniformly covering wide areas of
the Pareto front. To evaluate the performance of these
algorithm, two important metrics have been de�ned.
The spread of the solution set is measured by using
the diversity metric [27]. The second metric is spacing
that demonstrates how uniformly the solutions in the
objective space are distributed [28]. These metrics are
measured based on the described formula in Section 6.
Figure 2 shows the concept of these metric for three
solution sets A, B and C in a two-objective problem
(f1 and f2).

3. Bottleneck detection and measurement
strategy

Bottleneck detection and mitigation can be considered
as one of the principal targets of SPE as mentioned
above. Layered bottleneck is a type of bottleneck
that is related to layered services. In LQN model,
total service time of each server or resource, includes
its service time and holding time and service time of
other resources are used in nested form. Therefore,
when a service includes other services and they are
waiting, they possess resources in the form of nested
simultaneous.

A directed graph can be used to model dependen-
cies between recourses. A node presents each resource
A, and an arc connects A to their dependent resources.
Details and related equations are described in [9]. Basic
parameters and equations of A to measure bottleneck
are:

� mA = multiplicity of A;

� XA = service time of A;

� WA = waiting time for requests to A;
� RA = response time = WA +XA;
� fA = throughput of resource A;
� UA = fAXA = utilization of A;
� satA = the saturation level of A = UA=mA.

Ref. [1] presents two observations and two de�nitions:

Observation 1: When a task is a software bottle-
neck, it is saturated but its servers are not.

Observation 2: A saturated task or processor tends
to saturate tasks which use it by rendezvous, so
bottlenecks tend to spread saturation in a rendezvous
net back along the request arcs.

De�nition 3: A software bottleneck occurs when
a task (or a set of task threads) exhibits a high
utilization, which is also high relative to the utilization
of each of its servers, either direct or indirect.

De�nition 4: A measure for the bottleneck, called
the bottleneck strength, is the ratio of its utilization to
that of its most highly utilized server, direct or indirect.

Based on these observations and de�nitions, a
\bottleneck strength" measure, that has been de�ned
in [1] and completed in [9], is presented as:

BStrengthA =
satA

satShadow(A)
;

Shadow(A) = max
a2Below(A)

sata: (1)

BStrengthA is the strength of the bottleneck at A and,
Below (A) is the set of resources that A depends on,
directly or indirectly.

A layered bottleneck accrues when a statured
resource bounds the throughput of the system.

Sat� shows the resource saturation threshold that
must be initialized before the bottleneck detection.
These conditions must be checked to detect the bot-
tlenecks [9].

If sat value of one or more resources (for example
a) in Processors is more than sat� then:

B = max
a2Processors

sata: (2)

Else, sat value of one or more other resources is more
than sat�, B is any resource which satis�es both of:

satB > sat�;

B = max
A=2Processors

BstrengthA: (3)

Therefore, both software and hardware resources are
considered. Also, LQN provides a simple manner to
model and analyze the bottlenecks.



1022 M. Amoozegar and H. Nezamabadi-pour/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 1018{1030

4. Problem modeling

In this section, the problem formulation, solution
space and objective functions are precisely described.
Finding the best values for performance attribute of
these recourses is very important. Design options or
performance speci�cations are annotated in software
model by MARTE pro�le and describe a particle.
Therefore, suppose that s is the number of servers and
t is the number of multi-threaded object or task; the
decision vector is de�ned by M whose elements are,
respectively, chosen from the set fcpusi; i = 1 � � � s,
cpui, i = 1 � � � s, thrmj and j = 1 � � � tg, where:

1. cpus: CPU speed of each server in deployment
diagram annotated with speedfactor tag value of
Resource stereotype;

2. cpum: CPU multiplicity of each server in de-
ployment diagram annotated with Resmult tag of
Resource stereotype;

3. thrm: Multiplicity of thread for each active object
in UML diagram annotated with poolsize tag of
PaRunTInstance stereotype.

The most important software resources are threads
that have important e�ects on the performance of the
software. Determining the number of threads in the
software modeling stage facilitates and accelerates the
software developing process. This resource is equivalent
to the software task in LQN.

Also, we can add other important parameters to
evaluate performance carefully, but we restrict adding
the number of parameters to control the complexity of
the problem.

Objective functions are as follows. The �rst
objective is F1(M) that minimizes the response time.
Response time is annotated with respTime tags in
activity diagram and is measured by LQNS tools after
model transformation.

The second objective is Total cost that con-
trols and restricts the number of resources indirectly.
Although more recourse decrees response time and
bottleneck, the total cost must be limited. The total
cost is de�ned as:

F2 =
sX

k=1

H � cpusk � cpumk; (4)

where H is the speed coe�cient.
The third objective is the bottleneck strength

that must be minimized. This objective function is
calculated from Eq. (1). In this stage, the bottlenecks
and their strength are determined according to the
de�ned instruction in Section 3. The maximum value
of BStrength is considered as the strength of the
bottlenecks.

In the optimization process, the number of soft-
ware and hardware resources which are known as
the performance speci�cations, in the software model,
have been determined automatically. Two objectives,
response time and strength bottleneck, increase the
capacity of the system, but total cost, F2; equilibrates
and controls the used resources.

4.1. Optimization algorithms
The selected algorithms to optimize the mentioned
problem are divided into 3 categories: The �rst cat-
egory is related to multi-objective algorithms based
on the gravitational search algorithm or GSA. GSA
has been inspired from the law of gravity and mass
interactions that uses the theory of Newtonian physics.
Searcher agents are the collection of masses that make
an isolated system. Every mass can be informed of the
position of other masses. Di�erent masses transfer their
information to other masses using the gravitational
force. Detailed and related equations are given in [29].

Non-dominated sorting Gravitational search al-
gorithm or NSGSA [30] and Multi-objective GSA or
MOGSA [31] are selected for the �rst category.

NSGSA update the gravitational accelerations
by using the non-dominated sorting approach. Some
elitism mechanisms exist in these algorithms which
have been provided by an external archive of the Pareto
optimal solutions. Non-dominated solutions are added
to the external archive. The length of the archive
is limited, therefore, once the length of the external
archive is violated, one member must be removed.
The deviation of the members crowding distances from
the average is calculated to select a member that
must be removed. Sign and reordering mutations are
two proposed operators that keep diversity within the
moving masses. Figure 3 shows the pseudo code of this
algorithm.

MOGSA also uses an external archive to reserve
the non-dominated solutions and update it the same
as Simple Multi-Objective PSO (SMOPSO) [32]. The
used mechanism to control archive is elimination par-

Figure 3. Pseudo-code of NSGSA.



M. Amoozegar and H. Nezamabadi-pour/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 1018{1030 1023

ticle from crowded areas. For this purpose, objective
functions and solution space are divided into hyper-
rectangles. When archive overow accrues, one particle
from the most crowded hyper-rectangle is randomly
selected and removed. In MOGSA, the distance be-
tween each particle to its nearest neighbor is calculated
and its mass is updated. Distribution of archived
particles is done by using the niching technique. In this
algorithm, the archived particles apply gravitational
force.

NSGA-II is a multi-objective extended version of
the genetic algorithm that is based on non-dominated
sorting solutions [33]. This algorithm is chosen because
of its similarity with NSGSA.

SMPOS is a multi-objective version of PSO. This
algorithm is chosen because of its similarity with
MOGSA.

Therefore, two multi-objective versions of the new
gravitational search algorithm are selected to evaluate
their behavior in the bottleneck improvement scope.

The second reason for these selections is provid-
ing the possibility of compression gravitational based
algorithms with similar genetic based and PSO based
multi-objective algorithms.

5. Case study

E-shop is a software system that provides user interface
to purchase and payment items. Details of this system
are presented in component, deployment and activity
diagrams (Figures 4-7).

This system is modeled with UML2 in Enterprise
Architect tools. Figure 4 shows a component diagram
which models functionality of system in high level,
Figure 5 shows a deployment diagram which speci�es
hardware framework, and Figure 6 shows an activity
diagram that presents the behavior of the system.

After modeling functionality of the software, we
must specify non-functional features, for example per-
formance. Therefore, annotate model with MARTE
pro�le. Tables 1, 2 and 3 show needed performance
annotations and related elements of the model.

The software model was transformed into CBML

Figure 4. Component diagram of E-shop system.

Figure 5. Deployment diagram of E-shop system.

Table 1. Deployment diagram annotation.

Tag
value

Client Purchase
server

Database
server

Resmult 1 1 1
SchedPolicyKind Ref Fcfs Fcfs
speedFactor 1 1 1
Replica 1 1 1

by our tool [18]. At the �rst step, XMI, that is an XML-
based document of software model, is generated; then,
it is transformed into LQN model and is rewrited based
on SPEX tool format. SPEX provides a framework for
iterative run of LQN model that will be integrated with
optimization code algorithms in the next step.

6. Simulation results and comparisons

Each particle is codded as a vector with 5 dimensions,
M = [multiplicity of purchase server, multiplicity of
database server, multiplicity of thread for processing
request task, multiplicity of thread for check avail-
ability task, and multiplicity of thread for Database
manager task]. The lower and upper boundaries of each
dimension are set to 1 and 20.

Four mentioned algorithms are con�gured accord-
ing to the parameters, and their values are enlisted
in Table 4. The problem section shows the shared
parameter between all optimization algorithms.

These parameters include the number of iterations
(Iteration), number of particles in the swarm (Swarm
size) and archive size. In multi-objective optimization
algorithms, an external archive is de�ned that keeps all
the non-dominated (best) solutions. Special parame-
ters of each algorithms are briey described in Table 4.
These parameters have been con�gured based on the
most common values in the literatures. In the future
research, adaptive version of these algorithms can be
used to tune the parameters.



1024 M. Amoozegar and H. Nezamabadi-pour/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 1018{1030

Figure 6. Activity diagram of E-shop system.

Table 2. Component diagram annotation.

Tag value Element Purchase Database

PoolSize Component 1 1
SchedPolicyKind Component Fcfs Fcfs

Port-db-purchase Port-purchase-item Port-get-request

Mapping Port 0.5 0.5 0.5

Table 3. Activity diagram annotation.

Purchase

Tag value Processing
request

Check
availability

Database manager

Poolsize 1 1 1

Priority 0 0 0

P
ro

ce
ss

G
et

in
fo

it
em

G
et

in
fo

fr
om

db

Se
nd

re
sp

on
se

C
he

ck
av

ai
la

bi
lit

y

R
es

po
ns

e
fr

om
db

P
ro

du
ct

m
as

sa
ge

G
et

pr
ic

e

P
ri

ce
an

d
pu

rc
ha

se
in

st
ru

ct
io

n

G
et

re
sp

on
se

P
ro

ce
ss

qu
er

y

In
se

rt
qu

er
y

Se
le

ct
qu

er
y

U
pd

at
e

qu
er

y

Se
nd

re
sp

on
se

Host demand 1 1 1 1 1 1 1 1 1 1 1 1 2 3 1

In NSGSA and MOGSA, the gravitational con-
stant, G, will take an initial value, G0, and it will be
reduced with time according to:

G(i) = G0 � (1� i=Iteration); (5)

where i is the current iteration number.
Experiments are run in 2 states; in the �rst mode

the archive size is set to 11, and in the other state the
archive size is 19, and all experiments are repeated.
The results of 20 independent runs of each algorithm
are saved in a database. Thus, for each algorithm, 20
sets of non-dominated solutions are achieved.

Figure 7 shows the behavior of NSGSA in the Last
iterations. Also, 6 members from 19 non-dominated
solutions of Pareto front are shown in Table 5. This
solutions are presented to software architecture who
makes various trade-o�s, or compromises among bot-
tleneck strength, response time and cost, and chooses
one solution.

The performance of used algorithms is evaluated
using three important metrics. These metrics are
selected because they do not require known Pareto
optimal front. We review each metric and analyze the
results.



M. Amoozegar and H. Nezamabadi-pour/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 1018{1030 1025

Table 4. Parameters values of 4 algorithms.

Scope Parameter name Description Value

Problem
Iteration Maximum number of iterations 50

N Swarm size 30
Rep The size of external archive 11,19

NSGSA

Pr Reordering mutation probability 0.4
Ps Sign mutation probability 0.9
Pu Uniform mutation probability 0.01

Pelitism Percent of elitism 0.5(0.5%)
W0 Initial value of inertial coe�cient 0.9
W1 Final value of inertial coe�cient 0.5
� Coe�cient of search interval 2.5

NSGA-II
M.p Mutation probability 0.3
C.p Crossover probability 0.8

MOGSA

G0 Gravitational constant 8
Mutation probability 0.5

Divisions
Number of divisions in each dimension
(to create the hypercube in the grid
used to maintain diversity)

[3 2 2 ]

MOPSO

Divisions Number of divisions in each dimension [3 2 2 ]
W Inertia weight 0.5
M.r Mutation rate 0.5
c1 Acceleration coe�cient (local) 1.5
c2 Acceleration coe�cient (global) 2

Figure 7. Obtained results and the behavior of NSGSA.

6.1. Coverage metric
The coverage metric [34] calculates the percentage of
solutions in a certain approximation set which is dom-
inated or equal to any solution in another competing
approximation set. This metric is computed as:

C(A;B) =
jfb 2 B=9a 2 A : a � bgj

jBj : (6)

Table 5. Six selected members from 19 members of
Pareto front.

Bottleneck
Strength

(BS)

Response
time

Cost

1.34 51.97 38
1.21 53.25 33
1.29 52.77 24
0.81 69.31 18
0.80 102.93 9
0.99 173.40 6

If all points in A dominate or are equal to all points
in B, then by de�nition C = 1. C = 0 implies the
opposite. In general, C(A;B) and C(B;A) both have
to be considered due to set intersections not being
empty. If C(A;B) = 1 and C(B;A) = 0 then A is
better than B.

Coverage metric is computed for each pair of
algorithms. Note that the concept and value of C(A;B)
is di�erent from C(B;A). Therefore, in addition to
computing C(A;B), C(B;A) is also computed. For
example, cell in the NSGA-II row and the NSGSA
column shows the result of C(NSGSAII, NSGSA) and



1026 M. Amoozegar and H. Nezamabadi-pour/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 1018{1030

by replacing the row and column, the cell shows the
result of C(NSGSA, NSGSAII).

Statistical analysis has been performed on the
coverage metric of 20 independent runs of four algo-
rithms; Table 6 shows the results when the size of
archive is 11, and Table 7 shows the results when it
is 19. STD is the standard deviation that is useful for
stability evaluation of the results of the algorithm. A
lower value of STD implies the more stability of the

algorithm. By analyzing the results, these conclusions
can be obtained:

1. NSGSA is certainly better than other algo-
rithms. Mean and max of C(NSGSA, NSGA-II) >
C(NSGA-II, NSGSA);

2. Mean and max of C (NSGSA, MOGSA) > C
(NSGA-II, MOGSA) and C (NSGSA, MOPSO) >
C (NSGA-II, MOPSO).

Table 6. Coverage metric; size of archive is 11.

Rep=11 NSGSAII NSGSA MOGSA MOPSO

NSGA-II

Max - 0.3636 0.8182 0.8182

Min - 0 0 0

Mean - 0.0550 0.3495 0.3702

STD - 0.0232 0.0214 0.0240

NSGSA

Max 0.7273 - 1.0000 0.9091

Min 0 - 0 0.0909

Mean 0.2127 - 0.4998 0.5095

STD 0.0329 - 0.0183 0.0300

MOGSA

Max 0.2727 0.0909 - 0.8182

Min 0 0 - 0.1818

Mean 0.0616 0.0145 - 0.4970

STD 0.0305 0.0168 - 0.0223

MOPSO

Max 0.3636 0.2727 1.0000 -

Min 0 0 0.1818 -

Mean 0.0766 0.0620 0.4882 -

STD 0.0172 0.0305 0.0177 -

Table 7. Coverage metric; size of archive is 19.

Rep=19 NSGSAII NSGSA MOGSA MOPSO

NSGA-II

Max - 0.3684 0.8421 0.8421

Min - 0 0 0.0526

Mean - 0.0713 0.4333 0.4314

STD - 0.0153 0.0145 0.0186

NSGSA

Max 0.5263 - 0.7895 0.8421

Min 0.0526 - 0.0526 0.1053

Mean 0.2318 - 0.4895 0.5157

STD 0.0117 - 0.0164 0.0181

MOGSA

Max 0.3684 0.2632 - 0.8947

Min 0 0 - 0.1579

Mean 0.1086 0.0513 - 0.5305

STD 0.0215 0.0154 - 0.0150

MOPSO

Max 0.3684 0.2632 0.8421 -

Min 0 0 0.1579 -

Mean 0.1384 0.0876 0.5229 -

STD 0.0172 0.0131 0.0168 -



M. Amoozegar and H. Nezamabadi-pour/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 1018{1030 1027

Note that based on the STD values NSGSA are more
stable than NSGA-II.

Comparison results also show much di�erence
between NSGSA and NSGA-II with MOPSO and
MOGSA. Therefore, non-dominated sorting based al-
gorithms are better than others whose control policy of
the archive is based on a grid.

The overall conclusions of coverage metric evalu-
ation lead us to the following ranking: 1. NSGSA, 2.
NSGA-II, 3. MOGSA, 4.MOPSO.

6.2. Diversity
De�nition of diversity metric is as bellow [27]:

D =

vuut nX
i=1

max (kx0i � y0ik); (7)

where kx0i � y0ik is the Euclidean distance between of
the non-dominated solution xi and the non-dominated
solution yi. For each non-dominated solution, xi, in
the external archive, the Euclidean distance with the
other solutions (yi) is calculated and the maximum
value (farthest solution) is selected. A higher value
indicates a better answer that has provided the more
diverse solutions.

Since the scale of the objective function is di�er-
ent, the obtained values should be normalized between
0 and 1. Table 8 shows the diversity metric values
of objectives. In both cases, with the size of 11 or
19 for archive, diversity of NSGSA is the best and
MOPSO, NSGA-II and MOGSA are in subsequent
positions, respectively. CV values show the stability

of the result of NSGSA and NSGA-II are more stable
and their CVs are much better than those of MOPSO
and MOGSA.

In this problem, diversity in the solution space
is as important as diversity in the objective space. For
example, it may be possible, that the objective space is
very divers while the actual solutions in problem space
are very similar. Therefore, it is important to establish
which type of diversity is aimed at or whether both
are equally important in the problem domain [35]. In
the context of the bottleneck improvement, diversity
in the solution space is very important because the
solution space contains the parameters of software
model, and dissimilar values provide more choices for
software engineer. One solution proposes the values
for the parameters of model. Diverse solutions provide
di�erent proposals. The Software architecture can
choose one solution based on the resource availability or
other considerations. Population diversity is presented
in Table 9. Since the scales of the parameters in
solution space are the same, they do not have to
be normalized. The results show that NSGA is the
best algorithm and has provided more stable solutions.
NSGA-II is close to NSGSA but with large di�erence,
MOGSA and MOPSO are in rank three and four.

6.3. Spacing
This metric demonstrates how uniformly the solutions
in the objective space are distributed [28]. It is de�ned
as:

S =
r

1
n� 1

X�
di � �d

�2;
Table 8. Diversity metric in objective space.

Rep=11 Rep=19

NSGA-II NSGSA MOGSA MOPSO NSGA-II NSGSA MOGSA MOPSO

Max 4.013 4.052 3.797 3.875 5.112 5.207 4.999 5.085

Min 3.601 3.646 3.683 3.629 4.772 4.691 4.779 4.804

Mean 3.814 3.910 3.729 3.770 4.951 5.058 4.881 4.940

STD 0.097 0.117 0.028 0.068 0.122 0.151 0.056 0.069

CV 0.025 0.030 0.008 0.018 0.025 0.030 0.011 0.014

Table 9. Diversity metric in problem space.

Rep=11 Rep=19

NSGA-II NSGSA MOGSA MOPSO NSGA-II NSGSA MOGSA MOPSO

Max 0.520 0.600 0.340 0.380 0.522 0.533 0.322 0.300

Min 0.380 0.420 0.160 0.180 0.278 0.322 0.167 0.144

Mean 0.466 0.513 0.222 0.243 0.391 0.392 0.232 0.227

STD 0.048 0.056 0.043 0.042 0.053 0.048 0.041 0.039

CV 0.103 0.110 0.196 0.172 0.136 0.123 0.176 0.172



1028 M. Amoozegar and H. Nezamabadi-pour/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 1018{1030

Table 10. Spacing metric.

Rep=11 Rep=19

NSGA-II NSGSA MOGSA MOPSO NSGA-II NSGSA MOGSA MOPSO

Max 0.313 0.427 0.442 0.340 0.211 0.323 0.275 0.283

Min 0.179 0.224 0.225 0.094 0.090 0.069 0.184 0.123

Mean 0.234 0.328 0.318 0.264 0.142 0.238 0.217 0.200

STD 0.038 0.061 0.065 0.050 0.038 0.062 0.026 0.031

CV 0.161 0.185 0.205 0.191 0.264 0.262 0.121 0.154

di = min
mX
k=1

����f ik(x)� f jk(y)
���� i; j = 1; � � � ; n;

(8)

where �d is the average of all di, m is the number of
objective functions, and n is the number of points in
a Pareto optimal set. A zero value indicates that all
members of solutions are uniformly spaced.

The di�erent objectives have di�erent scales. At
�rst, the obtained values are normalized between 0
and 1, then the spacing metrics are calculated. The
�nal results are shown in Table 10. These results
show that NSGA-II is the best. NSGSA is close
to it but MOPSO and MOGSA are very di�erent.
In addition, CV values con�rm the stability of the
results of the �rst two algorithms. Although NSGSA
focuses on spacing during the run, its spacing metric
is not satis�ed. Therefore, more study is needed about
it.

7. Conclusion and future work

This paper presented an automatic UML based bot-
tleneck improvement solution that optimizes strength
bottleneck of the software model. Performance speci�-
cations of optimized model have been tuned so that
strength bottleneck has been minimized. Response
time and cost have also been considered. Therefor
NSGSA and MOGSA, 2 multi-objective extension of
GSA have explored problem space and presented best
solutions. NSGA-II and MOPSO have also been
applied and comprehensive comparisons and analysis
of results have been presented.

Using this method, bottleneck detection and mit-
igation are done during the SPE process, and extra
evaluation was not required. This approach can be
extended considering other quality criteria, such as
reliability. Also bottleneck detection and measurement
strategy can be improved.

Acknowledgments

This research is supported under contract number
1/1719 by the Institute of Science and High Technology

and Environmental Sciences, Graduate University of
Advanced Technology, Kerman, Iran.

References

1. Neilson, J.E., Woodside, C.M., Petriu, D.C. and
Majumdar, S. \Software bottlenecking in client-server
systems and rendezvous networks", Software Engineer-
ing, IEEE Transactions on, 21, pp. 776-782 (1995).

2. Jung, G., Swint, G., Parekh, J., Pu, C. and Sahai, A.
\Detecting bottleneck in n-tier it applications through
analysis",Large Scale Management of Distributed Sys-
tems, pp. 149-160 (2006).

3. Kolia��, S., Bendifallah, Z., Tribalat, M., Valensi, C.,
Acquaviva, J.-T. and Jalby, W. \Quantifying perfor-
mance bottleneck cost through di�erential analysis",
In Proceedings of the 27th International ACM Confer-
ence on International Conference on Supercomputing,
pp. 263-272 (2013).

4. Dongarra, J.J. and Sorensen, D.C. \SCHEDULE:
Tools for developing and analyzing parallel Fortran
programs", Argonne National Lab., IL (USA) (1986).

5. Bennett, A.J. and Field, A. \Performance engineering
with the UML pro�le for schedulability, performance
and time: A case study", in Modeling, Analysis,
and Simulation of Computer and Telecommunications
Systems, (MASCOTS 2004), Proceedings. The IEEE
Computer Society's 12th Annual International Sympo-
sium on, pp. 67-75 (2004).

6. De Rose, L.A. and Reed, D.A. \SvPablo: A multi-
language architecture-independent performance analy-
sis system", in Parallel Processing, 1999. Proceedings.
1999 International Conference on, pp. 311-318 (1999).

7. Schumann, M. \Automatic performance prediction
to support cross development of parallel programs",
in Proceedings of the SIGMETRICS Symposium on
Parallel and Distributed Tools, pp. 88-97 (1996).

8. Arcelli, D. and Cortellessa, V. \Software model refac-
toring based on performance analysis: Better working
on software or performance side?", arXiv preprint
arXiv:1302.5171 (2013).

9. Franks, G., Petriu, D., Woodside, M., Xu, J. and Tre-
gunno, P. \Layered bottlenecks and their mitigation",



M. Amoozegar and H. Nezamabadi-pour/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 1018{1030 1029

in Quantitative Evaluation of Systems, QEST 2006.
Third International Conference on, pp. 103-114 (2006).

10. Garousi, V. \UML model-driven detection of perfor-
mance bottlenecks in concurrent real-time software",
in Performance Evaluation of Computer and Telecom-
munication Systems (SPECTS), International Sympo-
sium on, pp. 317-324 (2010).

11. Martens, A., Koziolek, H., Becker, S. and Reussner, R.
\Automatically improve software architecture models
for performance, reliability, and cost using evolution-
ary algorithms", in Proceedings of the First Joint
WOSP/SIPEW International Conference on Perfor-
mance Engineering, pp. 105-116 (2010).

12. Martens, A. and Koziolek, H. \Automatic, model-
based software performance improvement for
component-based software designs", Electronic Notes
in Theoretical Computer Science, 253, pp. 77-93
(2009).

13. Koziolek, A., Koziolek, H. and Reussner, R. \Per-
opteryx: Automated application of tactics in multi-
objective software architecture optimization", in Pro-
ceedings of the Joint ACM SIGSOFT Conference-
QoSA and ACM SIGSOFT Symposium-ISARCS on
Quality of Software Architectures-QoSA and Architect-
ing Critical Systems-ISARCS, pp. 33-42 (2011).

14. Amoozegar, M. and Nezamabadi-pour, H. \Software
performance optimization based on constrained GSA",
in Arti�cial Intelligence and Signal Processing (AISP),
16th CSI International Symposium on, pp. 134-139
(2012).

15. Smith, C.U., Performance Engineering of Software
Systems, Addison-Wesley, 1, p. 990 (1990).

16. Smith, C.U. and Williams, L.G., Performance So-
lutions: A Practical Guide to Creating Responsive,
Scalable Software, 1, Addison-Wesley Boston, MA
(2002).

17. OMG \UML pro�le for MARTE: Modeling and analy-
sis of real-time embedded systems", Version 1.0 OMG
Adopted Speci�cation formal/2009-11-02 (November
2009).

18. Amoozegar, M. \A solution for performance evaluation
of component-based software architecture", A Thesis
Submitted in Partial Ful�llment of The Requirement
for degree of Master of Science in Software Engineering
(2008).

19. Wu, X. and Woodside, M. \Performance modeling
from software components", ACM SIGSOFT Software
Engineering Notes, 29, pp. 290-301 (2004).

20. Franks, G., Maly, P., Woodside, M., Petriu, D.C. and
Hubbard, A., Layered Queueing Network Solver and
Simulator User Manual, Real-time and Distributed
Systems Lab, Carleton University, Ottawa (2005).

21. Franks, G., Hubbard, A., Majumdar, S., Neilson, J.,

Petriu, D., Rolia, J., et al. \A toolset for perfor-
mance engineering and software design of client-server
systems", Performance Evaluation, 24, pp. 117-136
(1995).

22. Hubbard, A. \SPEX: Software performance exper-
iment driver", http://www.sce.carleton.ca/rads/lqn/
lqn-documentation/spex.txt (August 1997).

23. Koziolek, H. \Performance evaluation of component-
based software systems: A survey", Performance
Evaluation, 67, pp. 634-658 (2010).

24. Woodside, M., Neilson, J.E., Petriu, D.C. and Ma-
jumdar, S. \The stochastic rendezvous network model
for performance of synchronous client-server-like dis-
tributed software", Computers, IEEE Transactions on,
44, pp. 20-34 (1995).

25. Wu, X., An Approach to Predicting Performance
for Component Based Systems, Carleton University
(2003).

26. Reyes-Sierra, M. and Coello, C.A.C. \Multi-objective
particle swarm optimizers: A survey of the state-
of-the-art", International Journal of Computational
Intelligence Research, 2, pp. 287-308 (2006).

27. Hyun, C.J., Kim, Y. and Kim, Y.K. \A genetic al-
gorithm for multiple objective sequencing problems in
mixed model assembly lines", Computers & Operations
Research, 25, pp. 675-690 (1998).

28. Schott, J.R., Fault Tolerant Design Using Single and
Multicriteria Genetic Algorithm Optimization, DTIC
Document (1995).

29. Rashedi, E., Nezamabadi-pour, H. and Saryazdi, S.
\GSA: a gravitational search algorithm", Information
Sciences, 179, pp. 2232-2248 (2009).

30. Nobahari, H., Nikusokhan, M. and Siarry, P. \Non-
dominated sorting gravitational search algorithm", in
Proc. of the 2011 International Conference on Swarm
Intelligence, ICSI, pp. 1-10 (2011).

31. Hassanzadeh, H.R. and Rouhani, M. \A multi-
objective gravitational search algorithm", in Com-
putational Intelligence, Communication Systems and
Networks (CICSyN), Second International Conference
on, pp. 7-12 (2010).

32. Cagnina, L., Esquivel, S. and Coello, C.A.C. \A parti-
cle swarm optimizer for multi-objective optimization",
Journal of Computer Science & Technology, 5, pp. 204-
210 (2005).

33. Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T.
\A fast and elitist multiobjective genetic algorithm:
NSGA-II", Evolutionary Computation, IEEE Transac-
tions on, 6, pp. 182-197 (2002).

34. Zitzler, E. and Thiele, L. \Multiobjective optimiza-
tion using evolutionary algorithms-A comparative case
study", in Parallel Problem Solving from Nature-PPSN
V, pp. 292-301 (1998).



1030 M. Amoozegar and H. Nezamabadi-pour/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 1018{1030

35. Burke, E. and Landa Silva, J. \The inuence
of the �tness evaluation method on the perfor-
mance of multiobjective search algorithms", European
Journal of Operational Research, 169, pp. 875-897
(2006).

Biographies

Maryam Amoozegar received her BSc degree in
Software Engineering from Kharazmi (Teacher Train-
ing) University of Tehran in 2003, and her MSc degree
in Software Engineering from Iran University of Science
and Technology in 2007. In 2012, she joined the Group
of Computer and Information Technology at Institute
of Science and High Technology and Environmental
Sciences, Kerman, Iran, as a researcher. Her interested

research area includes, software modeling, software
quality evaluation and soft computing.

Hossein Nezamabadi-pour received his BSc degree
in Electrical Engineering from Shahid Bahonar Univer-
sity of Kerman in 1998, and his MSc and PhD degrees
in Electrical Engineering from Tarbait Moderres Uni-
versity, Iran, in 2000 and 2004, respectively. In 2004,
he joined the Department of Electrical Engineering at
Shahid Bahonar University of Kerman, Kerman, Iran,
as an Assistant Professor, and was promoted to Full
Professor in 2012. Dr. Nezamabadi-pour is the author
and co-author of more than 300 peer reviewed journal
and conference papers. His interests include image
processing, pattern recognition, soft computing, and
evolutionary computation.




