
Scientia Iranica D (2015) 22(3), 1001{1017

Sharif University of Technology
Scientia Iranica

Transactions D: Computer Science & Engineering and Electrical Engineering
www.scientiairanica.com

A survey on formal, object-oriented program
development approaches

M. Naja�, H. Haghighi� and T. Zohdi Nasab

Faculty of Electrical and Computer Engineering, Shahid Beheshti University G.C., Tehran, Iran.

Received 6 September 2014; received in revised form 19 March 2015; accepted 15 June 2015

KEYWORDS
Formal program
development;
Object-orientation;
Formal speci�cation;
Object-Z;
VDM;
VDM++;
B;
Event-B;
UML-B.

Abstract. Due to the popularity of object-oriented programming approaches, there is a
growing interest in utilizing object-oriented concepts, such as encapsulation and reuse, when
applying formal methods. The main contribution of this paper is to review and compare
existing formal methods to develop object-oriented programs from formal speci�cations.
The secondary contribution is providing a comparison between widely used object-oriented
formal speci�cation languages. The results of this paper can be utilized by researchers
wishing to know what open problems are outstanding in the areas of formal, object-
oriented speci�cation and program development. Our �ndings are also useful for those
who are looking for proper speci�cation languages and program development methods to
specify and develop object-oriented programs formally. In addition, the provided criteria
are suitable for evaluating numerous object-oriented formal speci�cation languages that
are under development, either by extending existing formal approaches or formalizing
informal OO-methods. As one consequence of this work, it can be mentioned that among
formal speci�cation languages, OZ and VDM++ support OO concepts more strongly in
comparison to VDM++ and UML-B. Program development methods based on OZ have
less tool support. Finally, most proposed methods for formal, object-oriented program
development have been evaluated using only case studies, rather than employing formal
approaches.
c 2015 Sharif University of Technology. All rights reserved.

1. Introduction

In the late 1960s, formal methods based on math-
ematics were proposed as an option for providing
software reliability [1]. Formal methods are used to
uncover ambiguity, incompleteness and inconsistency
in a system. These methods can be used at any stage
of software development, from the initial statement of a
customer's requirements to system implementation and
veri�cation. Usually, these methods are introduced to

*. Corresponding author. Tel.: +98 21 29904190;
Fax: +98 21 29904181
E-mail addresses: M.Naja�@sbu.ac.ir (M. Naja�);
h haghighi@sbu.ac.ir (H. Haghighi); t.Zohdinasab@sbu.ac.ir
(T. Zohdi Nasab).

the software life-cycle by adding the formal speci�ca-
tion stage to the stages of software projects. At this
stage, we describe WHAT has to be done in the �nal
software, instead of HOW it has to be done.

Formal program development is a process pro-
ducing software program code in relatively high level
programming languages, such as C and Java, from a
given formal speci�cation of the software. A formal
program development process has two stages. First,
programs are speci�ed using formal speci�cation lan-
guages, and are then developed from formal speci�ca-
tions applying one of the formal program development
methods. Formal program development methods are
categorized as animation, re�nement, or constructive
approaches.

There are two approaches which have been pro-

1002 M. Naja� et al./Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 1001{1017

posed for animating a formal speci�cation: direct
execution and rapid prototyping. Direct execution
means that the formal speci�cation statements are ex-
ecuted directly and normally by interpretation. Rapid
prototyping refers to any method that directly converts
speci�cations to programs in a high-level language by
using ad hoc rules [2,3]. By a re�nement technique,
one applies a set of well-de�ned re�nement rules to
alter a software speci�cation into a more concrete
mathematical model, i.e. its re�nement, while main-
taining the abstract properties involved in the initial
speci�cation [4]. Constructive approaches based on
constructive mathematics [5] derive programs from
correctness proofs of speci�cations.

Many researchers are interested in studying the
OO paradigm at speci�cation and program develop-
ment levels because object orientation is well adapted
to specifying interesting high level properties of de-
pendable systems. Precisely, by formal, object-oriented
program development approaches, we refer to those
approaches presented to re�ne formal speci�cations
into object-oriented code, or animate formal speci�ca-
tions with object-oriented code. While sharing almost
the same objective, the existing related publications
adopt di�erent approaches for formal, object-oriented
program development. They also use di�erent formal
speci�cation languages at the beginning stage of the
development process.

Naja� and Haghighi [6] presented a brief overview
on some of the existing formal approaches to develop
object-oriented programs from Object-Z, VDM (Vi-
enna Development Method), VDM++, Event-B, and
UML-B speci�cations. Furthermore, they provided a
comparison between Object-Z, VDM++, and UML-
B.

This paper presents a more complete review,
which relies on the following advantages in comparison
to our previous study [6]:

1. In this study, a larger set of criteria has been used in
order to compare Object-Z, VDM++, and UML-B,
as well-known object-oriented, formal speci�cation
languages. For instance, \polymorphism", \sub-
typing", \multiple inheritances" and \multiple sub-
typing" are new criteria considered in the present
study.

2. A brief description of existing formal methods to
develop object-oriented programs from Object-Z,
VDM, VDM++, B, Event-B, and UML-B speci-
�cations has been provided.

3. Formal methods to develop object-oriented pro-
grams from Object-Z, VDM, VDM++, B, Event-
B, and UML-B speci�cations have been compared
according to a larger set of criteria. For in-
stance, we have considered \interactivity", \simi-

larity degree", \validation approach", and \re�ne-
ment style" as new criteria.

4. We have summarized the strengths and weaknesses
of formal methods to develop object-oriented pro-
grams based on the given criteria.

Our methodology to perform this survey is as
follows:

1. The following eligibility criteria were �rst deter-
mined to include papers, theses, and books pub-
lished in English:

� Performing a survey of formal speci�cations or
formal program development;

� Proposing a method or tool under formal spec-
i�cations, formal program development or code
generation, regarding OO approaches and view-
points.

2. To search potentially eligible research and �nd
appropriate papers to satisfy the speci�ed cri-
teria, databases such as ACM digital library,
arXiv, CiteSeer, Scienti�c Literature Digital Li-
brary, IEEE/IET Electronic Library, and Google
scholar were used.

3. In a duplicate and independent manner, title and
abstract screening, and full text screening were un-
dertaken. Irrespective of discrepancies, all studies
selected at a title and abstract level were included
for the full text screening. Then, the full text
of studies was investigated and relevant studies
were selected, according to the mentioned eligibility
criteria, and others were disregarded.

4. Selected research was categorized into two over-
lapped categories:

� Research related to formal speci�cation;
� Research related to formal program development

or code generation.

5. Languages, methods, and tools mentioned in each
category were investigated and compared, based on
the criteria introduced in the next subsections.

6. The strengths and weaknesses of formal methods
to develop object-oriented programs were summa-
rized, based on the performed investigation and
comparison.

Section 2 introduces and compares well-known
object-oriented formal speci�cation languages. Sec-
tion 3 reviews existing formal methods to de-
velop object-oriented programs from Object-Z, VDM,
VDM++, B, Event-B, and UML-B speci�cations. Sec-
tion 4 compares these methods according to a set
of criteria. Finally, the last section is devoted to
conclusions and some directions for future studies.

M. Naja� et al./Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 1001{1017 1003

2. Object-oriented formal speci�cation
languages

Many object-oriented speci�cation languages, i.e. lan-
guages which cover known object-oriented concepts,
have been so far developed, but we only focus on
well-known languages that are based on the �rst-order
predicate logic and set-theory. They are Object-Z,
UML-B, and VDM++. Object-Z [7,8] was developed
by researchers at Queensland University as an object-
oriented extension of Z. Object-Z models systems as
collections of independent classes and objects [9]. The
structure of class schema, as a main new construct of
Object-Z, is described in [7].

VDM++ [10,11] is an extension of VDM, which
was developed since 1992, but the current notation
of VDM++ is a part of the Afrodite project [11].
Using this language, one can model OO systems that
have parallel and real-time behavior [12]. The major
new construct in VDM++, in comparison to VDM,
is a class whose structure is explained in the CSK
Corporation [12]. Also, there is a further construct
in VDM++ speci�cations that introduces the notion
of inheritance and multiple inheritance [12].

Based on UML [13], Snook et al. introduced
UML-B [14-16] as a graphical formal speci�cation
language. The old version of UML-B [14,15] relies on
the B Method, but its current version [16] relies on
Event-B. Also, UML-B was implemented by the Eclipse
Modeling Framework (EMF) as a plug-in for RODIN
toolkits. UML-B provides four kinds of diagram: pack-
age, class, context, and statemachine diagrams [16].

The package diagram indicates the relationships
between machines and contexts. In a machine, one
can de�ne classes, variables, events, statemachines and
invariants. Static data are modeled in the context
part [17]. More precisely, the context diagram is drawn
as a class diagram but has constant data represented
by Class Type, attributes, constants and association.
The dynamic part is modeled in a Class diagram and
used to describe a machine [17]. Classes may contain a
set of attributes, events, statemachines and invariants.
A statemachine is used to model the behaviors of a
system [17]. It can be de�ned in two ways: within
a corresponding class and as a statemachine [17]; a
statemachine is de�ned within a class in order to
explain the changes in the class states. In contrast,
if an object has to be represented by a statemachine, a
machine statemachine is utilized.

2.1. Comparison of object-oriented formal
speci�cation languages

In addition to \polymorphism" and \correspondence
with the typical object-oriented style", which we pro-
posed as two special criteria, a set of criteria presented
in [18] are used in Table 1 to demonstrate a comparison

between UML-B, Object-Z and VDM++ (for more
description of these criteria, see [18]). It is worth men-
tioning that we added column \UML-B" to Table 1,
and the rest come from [18]. In Table 1, \Y" means
that the related language bears that feature and \N"
stands for lack of that feature.

According to Table 1, we conclude that:

� Unlike UML-B, Object-Z and VDM++ have spec-
i�cation styles which correspond to constructs of
typical object-oriented programming languages;

� Object-Z and VDM++ support important concepts
of object-orientation, such as \object" and \multiple
inheritance" which have been supported weakly in
UML-B.

3. Formal development of object-oriented
programs

Formal methods are described to develop object-
oriented programs by categorizing them into animation
and re�nement techniques. It must be stated that
no constructive approach with the aim of developing
object-oriented programs from formal speci�cations
has to date been proposed.

3.1. Animation
As mentioned in Section 1, we consider both cat-
egories of approaches that have been proposed for
animating a formal speci�cation: direct execution and
rapid prototyping. Direct execution means that the
formal speci�cation statements are executed directly,
normally by interpretation. Rapid prototyping refers
to any method which directly converts speci�cations
to programs in a high-level language by using ad hoc
rules.

To investigate animation techniques, we classify
them based on their formal speci�cation languages in
the following subsections. However, prior to investi-
gating these techniques, we should mention that no
animation technique for mapping Event-B and UML-
B speci�cations into object-oriented code has been
proposed to date.

3.1.1. Object-Z
Rafsanjani and Colwill [20] introduced rules to trans-
late constants, state variables, inheritance, multiple
inheritance, and operations into C++ constructs. Also,
they considered a null constructor, a copy constructor,
a destructor, and an assignment operator for each class
of C++. Johnston and Rose [21] proposed guidelines
for manual conversion of class schema, visibility list,
inheritance, type de�nition, state schema, initial state
schema and operations to C++ constructs. Fukagawa
et al. [22] augmented the work of Rafsanjani and
Colwill [20] by considering constructor for types of
constants and template classes for generic parameters.

1004 M. Naja� et al./Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 1001{1017

Table 1. Comparing object-oriented speci�cation languages.

Criterion Object-Z VDM++ UML-B

Encapsulation Y Y Y

Object Y Y
Y: It does not support

object diagram

Object identity Y Y Y

Objects data structures Y Y N

Inheritance Y Y
N: Inheritance represents

sub-typing of a class

Sub-typing Y Y Y [15]

Multiple inheritance Y Y N

Mutiple sub-typing Y Y N [4,16]

Inheritance 6= sub-typing Y Y
N: It only supports

sub-typing concept

Polymorphism Y Y [19] N

Classes as templates Y Y Y

Classes as object N N N

Collection of objects Y Y N

Genericity or

parameterization

of classes

Y N N

Intra-object concurrency Y Y Y

Semantics Y Y

Partially Y: We have only

found references which

partially de�ne the

semantics of the current

version of UML-B

Calculus Y Y [11] Y

Correspondence with the

typical object-oriented

style. (Compatibility of

constructs of the

language with typical

object-oriented constructs

such as class, attributes,

methods, inheritance and

threads.)

Strong: The main

construct of the

formalism is the class

which contains

visibility list,

inherited classes,

local de�nitions,

state, initial state

and operations.

Strong: The main

construct of the

formalism is the class

which contains values,

instance variables,

methods (operations and

functions), threads,

traces, synchronizations

and inheritance clause.

Weak: UML-B has more

than one major construct

(instead of only having

class) such as machine,

context and statemachines

which do not have equivalent

constructs in the typical

object-oriented style. Also,

the class construct contains

attributes, events,

statemachines, invariants

and theorems.

Gri�ths [23] proposed a method which maps
Object-Z speci�cations to Ei�el code. Ramkarthik and
Zhang [9] developed a tool for animation of Object-
Z speci�cations to Java code. This tool consists of a
main control system, a graphical user interface, XML

manager, and Java skeletal code generator. XML man-
ager �rst generates a XML document for an Object-Z
speci�cation, and then a Java skeletal code generator
generates Java code from developed XML documents.
In this work, general mapping rules are described for

M. Naja� et al./Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 1001{1017 1005

class schema, class constants, class variables, class
invariants, initialization schema, operation schema and
visibility lists.

Ni and Zhang [24] developed a tool for conversion
of Object-Z speci�cations to Spec# code. Their tool
provides a GUI which accepts and facilitates formal
speci�cation in Object-Z, converts the Object-Z class
schemas to XML representations, and generates a
Spec# skeletal code through processing of the XML
representation. Spec# skeletal code generated through
this tool includes state variables with their types,
class constants and initial schema, in addition to
class invariants, and all inputs, preconditions and
postconditions for operations. Wang et al. [25] pro-
posed transformation mechanisms for conversion from
Object-Z speci�cations to Java code, which support
the mapping of class, inheritance, polymorphism, and
object.

Naja� and Haghighi [26] described some mapping
rules from Object-Z speci�cations to C++ code. Their
method supports the mapping of formal generic param-
eters, visibility list, local de�nitions, class union, object
aggregation, type de�nitions, object, state schema,
initial state schema, operations, inheritance, multiple
inheritance, object containment, and promotion. In
another publication, Naja� and Haghighi [27] pre-
sented general ideas (not speci�c rules and related
code) for mapping some new constructs and cases
of Object-Z speci�cations into C++ that have not
been considered in [26]. Naja� and Haghighi [28]
presented another much more comprehensive version of
their method, which has advantages, such as covering
more Object-Z constructs and proposing mapping rules
in a much more detailed way in comparison to the
previous work. In addition, they provided templates
for constructors and destructors that have not been
considered in any previous work. Finally, Naja�
and Haghighi [29] presented new work that describes
mapping rules formally and proves their correctness
formally, too.

3.1.2. VDM and VDM++
Jackson [30] presented a method for systematic devel-
opment of sequential Ada programs using VDM. His
approach is based upon using the facilities of Ada
for supporting parameterized abstract data types to
implement the primitives of the VDM speci�cation
language. Chedgey et al. [31] described the use of
VDM in the context of development of software to be
targeted at the Ada programing language. Moulding
and Newton [32] investigated the formal re�nement of
a VDM speci�cation to an Ada implementation. Also,
O'Neill et al. [33] proposed a semiautomatic translation
from VDM speci�cation language to Ada, including the
translation of composite types, domain equations, and
expressions.

Lou [34] described a methodology for deriving
C++ implementations from VDM speci�cations. To
derive an object-oriented design from a given VDM
speci�cation, the methodology tries to link classes,
their attributes and member functions in the design,
with data types, variables, and operations in the
speci�cation, respectively. This process is independent
from target object-oriented language. There are four
stages in the mentioned transformation: identifying the
classes in the design, identifying the attributes within
each class, deriving member functions for each class
and deriving relationships between the classes. Lou [34]
then proposed rules for deriving C++ code from the
obtained object-oriented designs.

In addition, code generators exist that convert
VDM speci�cations to Smalltalk and Ada95 code [35].
Albalooshi and Long [36] proposed a software devel-
opment environment that supports transformation be-
tween VDM and Ada. This automatic transformation
supports the mapping of VDM types, value de�nitions,
state variables, and methods.

Chartan and Kans [37] proposed a method that
maps VDM speci�cations to Java code. It supports
the mapping of state, value clauses, state clauses,
initialization clauses, invariants, operations, sets, se-
quences, composite objects, maps and operators. The
CSK group [38] developed a C++ code generator for
VDM speci�cations. Their code generator supports
approximately 95% of all VDM++ constructs, such as
classes, types, functions, operations, instance variables,
values, expressions, and statements.

Besides work that maps VDM speci�cations into
object-oriented code, there is also work that trans-
lates VDM++ speci�cations to object-oriented code.
Bousquet [39] describes translation rules which map
VDM++ speci�cations to Ada95 code. In addition,
the CSK group has developed VDMTools [40,41] for
mapping VDM++ speci�cations to Java and C++
code. They support the mapping of class, type
de�nitions, inheritance, function and operation de�ni-
tions, instance variables, value de�nitions, expressions,
statements and class members.

3.2. Re�nement
We categorize re�nement techniques into approaches
that re�ne speci�cations to designs, and methods that
re�ne designs to code. The former is also known
as refactoring, which is a process of extending a
speci�cation to contain design elements [42]. Of course,
refactoring is a technique which has long been used
by programmers to improve the design of their code
once it became unreadable. In this way, refactoring
is the term given to the process of remodeling object-
oriented software to improve an existing design whilst
preserving its behavior [43]. At the formal speci�cation
level, however, refactoring means the use of more

1006 M. Naja� et al./Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 1001{1017

general rules, similar to refactoring rules presented by
Fowler [43] to introduce designs from speci�cations
rather than improve existing designs.

3.2.1. Re�nement from speci�cation to design
We categorize this group of re�nement techniques
based on their formal speci�cation languages as follows.
We only review those re�nements from speci�cation to
design whose corresponding re�nements from design to
object-oriented code have been also proposed. Hence,
we do not review existing re�nements from Z or VDM
speci�cations to design, because their re�nements from
design to object-oriented code have not yet been
proposed.

3.2.1.1 Object-Z
Derrick and Boiten [44,45] proposed a rule, called
downward simulation, to re�ne one class to another
class without considering object references. They also
proposed re�nement of one class to another class in
the case of decomposing a class to multiple interacting
classes (i.e., by considering object references). More
precisely, in comparison to their former work, their
later work uses instantiated objects in retrieve rela-
tions. However, the needed proof obligations in the
two approaches are the same. Smith [46] described a
process for re�nement of the value semantics of classes
(a class is denoted as a set of values representing its
objects) to the reference semantics of classes (a class is
denoted as a set of pointers to values representing its
objects).

McComb [47] proposed \annealing" and \coales-
cence" rules as refactoring rules for Object-Z speci-
�cations. The former enables us to decompose one
class into two, and the latter allows two classes, A
and B, to be replaced with one class, C. Although he
proves that these two rules are behavior preserving,
they are not powerful enough to derive MVC (Model-
View-Controller), as the observer pattern cannot be
implemented. The reason for this is that the two rules
provide structure modi�cation by reorganizing state
information, operations, and classes, but o�er no means
for adding redundancy to a system or expanding a
system at a structural level. Therefore, McComb and
Smith [48] have introduced a new behavior preserving
rule, called \reection", which adds redundancy to a
system or expands a system at a structural level. Also,
they [49] proposed a compositional class re�nement,
which is introduced in order to overcome the limitation
where coupling constraints between classes make class
re�nement non-compositional. Moreover, Ruhroth [50]
described an approach to transfer refactoring tech-
niques in programming languages to formal methods
through introducing an \Extract method" rule. He
proposed a schema for the correctness proof of refac-
toring rules.

In another publication, McComb and Smith [42]
proposed the following four refactoring rules:

1. Introducing generic parameter: replaces instanti-
ated types with new formal parameters;

2. Introducing polymorphism: creates a union of
classes through dividing the behavior of a class into
separate classes;

3. Introducing inheritance: assists in building an
inheritance hierarchy from existing classes;

4. Introducing instances: performs a similar function
to the annealing rule; however, it overcomes the
restriction of the annealing rule which is limited to
introducing only one instance of a new class into
the speci�cation. Thus, having this rule, object
construction and disposal no longer introduce chal-
lenges.

McComb and Smith [51] present a minimal set of
refactoring rules, namely \introduce generic param-
eters", \introduce inheritance" and \introduce poly-
morphism", and show that these rules, along with
compositional class re�nement and annealing, make de-
signing in Object-Z completely possible. Furthermore,
regarding references to objects of a class that is being
re�ned, McComb and Smith [52] have shown how an
arbitrary number of object instances can be introduced
into a speci�cation.

Liu and Zhu [53] present a set of refactoring
rules which are more �ne-grained than the refactoring
rules presented by McComb and Smith. These rules
are renaming, moving, removing entities (e.g., classes,
variables, operations and parameters), adding new
entities, replacing expressions with equivalent expres-
sions, refactoring (with generic entities, generalization
and specialization), separating quali�ers, simplifying
expressions, explaining literal and simplifying schemas.

3.2.1.2 VDM++
Lano and Goldsack [54] proposed re�nement, sub-
typing and subclassing in VDM++. Also, Goldsack
et al. [55] described how veri�cation, as understood
in VDM, can be applied to VDM++. In another
publication, Goldsack and Lano [56,57] built upon [58],
which introduced data decomposition in VDM speci�-
cations, to formalise annealing for decomposing classes
in VDM++. Since they concentrated on invariant
distribution in the decomposition process, they did not
propose a complete method for object-oriented design
based on formal speci�cations. In this work, annealing
is proposed in two forms. In both forms, a main class
is divided into classes one of which is the client and
the rest of which are servers. However, in one form,
the client maintains references of instances of servers,
while in the other, servers will be held in one class
through multiple inheritance.

M. Naja� et al./Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 1001{1017 1007

3.2.1.3 B
In B, re�nement of an abstract machine is described
using a REFINEMENT part. The structure of RE-
FINEMENT is similar to the abstract machine struc-
ture with two di�erences: It does not have parameters
and only contains SEES relations. Suppose that we
have an abstract machine, M, and its re�nement, N.
The following properties must be satis�ed in order to
say that N is a re�nement of M [59]:

� There is a composition of abstract and real states
which satis�es the re�nement relationship (the cor-
respondence between abstract and real states) and
invariants of the abstract machine;

� Real initial state is a re�nement of abstract initial
state under the conditions de�ned in both abstract
and re�nement machines;

� If we suppose that operation op in abstract and
re�nement machines is de�ned as follows, then,
each execution of Defop,N (when Preop,M is sat-
is�ed) has a corresponding execution of Defop, M.
y op (x) = y op (x) =
PRE Preop, M PRE Preop, N
THEN Defop, M THEN Defop, N
END END

3.2.1.4 Event-B
M�etayer et al. [60], and Abrial and Hallerstede [61]
proposed the following re�nements in Event-B:

1. Extending the list of state variables;

2. Adding new carrier sets and new constants to
existing sets and constants;

3. Re�ning abstract events into corresponding con-
crete events;

4. Adding new events.

Abrial et al. [62] showed that the proposed
method for re�ning events is not always possible in
the development of large systems and, thus, applied
some non-deterministic actions to preserve the in-
variant instead of re�ning events. Also, M�etayer et
al. [60] introduced the concept of generic instantiation.
More precisely, a development \M" (i.e., a set of
machines and their contexts) is said to be generic
if it is parameterized by the carrier sets \s" and
the constants \c" that have been accumulated in its
contexts. Now, it is possible to instantiate development
\M" by instantiating sets \s" and constants \c". In
addition, to provide reusability through instantiation,
the generic instantiation is also introduced to construct
large models more easily.

Abrial [63] has described an Event-B development
process and developed a tool on the Rodin Platform
which supports Event-B re�nement. Butler et al. [64]

categorized Event-B re�nement into feature augmen-
tation (the re�nements of existing model features are
maintained, and additional features are added) and
structural re�nement (detailed design is added to the
implementation).

Butler [65,66] modelled atomicity decomposition
(i.e., event decomposition) by which more �ne-grained
atomicities could be obtained through the re�nement
of a coarse-grained atomicity by means of an event
re�nement diagram. Also, Butler proposed the notion
of basic parallel composition (i.e., k) and parallel
composition with shared event operators. Finally, he
described machine decomposition using the compo-
sition operator in reverse. Abrial [67] proposed an
event model decomposition in which for decomposing
an event model, M, �rstly, M is split into several sub-
models, say N, ..., P. Next, the events and then the
variables of M are partitioned over sub-models. Then,
sub-models are re�ned several times independently
yielding, eventually, NR,..., PR.

The decomposition of machines is where an Event-
B machine is separated into a number of smaller
components that are easier to manage [4]. Machine
decomposition in Event-B is in the style of either shared
variable decomposition or shared event decomposition.
The former style of machine decomposition is also
proposed by Abrial [67], M�etayer et al. [60], Abrial and
Hallerstede [61] and also Jones [68] in which a machine
is decomposed into two or more machines, based on an
arbitrary shared variable. Shared variables are those
accessed by the events of di�erent sub-machines.

Shared event decomposition is also proposed by
Butler [65]. In this style of machine decomposition,
a machine is decomposed into an arbitrary number of
sub-machines, based on a shared event in that machine.
Also, Pascal and Silva [69] developed a tool for both
styles of machine decomposition as a decomposition
plug-in of the Rodin platform. Silva et al. [70]
described a complete speci�cation of the mentioned
decomposition plug-in. Also, they developed context
decomposition as a plug-in of the Rodin platform.
Furthermore, Hoang and Abrial [71] proposed an ap-
proach to develop parallel programs using re�nement
and decomposition.

Poppleton [72] proposed Event-B model compo-
sition based on shared variables. More precisely, he
introduced Event-B model composition by introducing
the notion of event fusion and model fusion. In order to
perform model fusion, he divided the variables of two
models, which are considered to be composed into two
lists; \actioned variables" and \skipping variables".
Thus, the composed model has variables existing in the
intersection of actioned and skipping variables of two
models. Also, its events are obtained through applying
an event fusion operator on the events of two models.
Finally, contexts and invariants of the composed model

1008 M. Naja� et al./Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 1001{1017

are a conjunction of the contexts and invariants of the
two models.

Silva and Butler [73] proposed a shared event
decomposition which is necessary to recompose de-
composed machines. They have described this form
of composition through adding the composed machine
notation to Event-B, and also using the notion of a
parallel composition operator for events. Moreover,
they developed a tool to support composition in Event-
B as a plug-in of the Rodin platform. In another
related work, Silva and Butler [74] proposed a way
to instantiate generic models, previously de�ned by
M�eteyer et al. [60]. More precisely, they introduced
the notion of an instantiated machine that allows
one to replace elements in the context(s) of generic
development and to rename variables and events in the
generic development.

Hallerstede et al. [75] provided a detailed de-
scription of re�nement in Event-B. This description
was then used to assist simultaneous animation of
multiple levels of re�nement. Finally, besides work
re�ning Event-B speci�cations directly, there is work
which re�nes Event-B speci�cations through B method
re�nements using Atelier-B [76]. In other words,
Atelier-B supports the re�nement of Event-B speci-
�cations through mapping of Event-B speci�cations
into B method speci�cations, and then re�nement of
B method speci�cations.

3.2.1.5 UML-B
Said et al. [77] proposed rules for re�ning classes and
state machines. Re�nement of classes can be done by
either removing or adding attributes. To re�ne a state
machine, its structure should be elaborated either by
replacing each transition by one or more transitions
or by elaborating an abstract state by a nested state
machine. In addition, a technique for moving class
events is proposed in [77].

Also, Said [4] proposed a more complete approach
for re�nement of UML-B speci�cations. Rules given
in [4] support the re�nement of machines, classes, state
machines and context diagrams. Rules for re�ning
machines include \decomposition with a shared event
approach", \composition" and also \machine re�ne-
ment via re�ning its class diagram". Rules for re�ning
class diagrams include machine variables, events and
invariant re�nements (similar to Event-B rules for
re�ning these constructs), class and state machine
re�nements, adding new classes and dropping abstract
classes. The followings are rules for class re�nement:

1. Introducing new associations and attributes;
2. Dropping abstract associations and attributes;
3. Re�nement of class events and invariants (similar

to Event-B rules for re�ning these constructs).

Besides the two ways proposed in [77] for the re�nement

of state machines, Said [4] introduces a attening state
machine (re�nement of a machine with nested state
machines to a state machine without any nested state
machines) and state grouping (adding a new structure
or state to a state machine and nesting some of its
states in the new structure). Rules for re�ning context
diagrams include introducing new associations and at-
tributes to the extended classtype and also introducing
new classtypes to the re�nement. Other rules support
a moving event or transition in the re�nement class or
new class.

3.2.2. Re�nement from speci�cation to code
This group of re�nement techniques is categorized
based on their formal speci�cation languages, as fol-
lows.

3.2.2.1 Object-Z
Besides Derrick and Boiten [44,45] who re�ne one
class schema to another class schema, there are other
researchers who re�ne Object-Z into code using Perfect
Developer [78,79] and Spec# [80]. Stevens [78] and
Kimber [79] demonstrated how an Object-Z speci�ca-
tion can be expressed in Perfect and re�ned towards an
implementation. Qin and He [80] described a linking
process between Object-Z and Spec#.

In another publication, Naja� and Haghighi [81]
described a set of mapping functions that map
Object-Z constructs to Morgan's Re�nement Calculus
(MRC) [82] constructs. Using the provided mappings,
the speci�er can develop �nal programs by applying
MRC rules to resulting MRC speci�cation constructs.

3.2.2.2 VDM++
Based on our investigations, there is no work in
VDM++ in this area.

3.2.2.3 B
B provides a notation for implementation which is a
basis for translating abstract machine/re�nement into
code. The form of IMPLEMENTATION is as follows:

IMPLEMENTATION Name
REFINES component (machine or re�nement)
SEES seen machines
IMPORTS imported machines
PROMOTES operations of imported machines
(without any changes)
SETS local sets
CONSTANTS scalar local constants
VALUES local values
INVARIANT relationship between re�ned and
imported states
OPERATIONS implementation of re�ned
operations

END

A description of the above clauses is as follows:

M. Naja� et al./Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 1001{1017 1009

� The IMPLEMENTATION clause introduces the
name of implementation;

� The REFINES clause contains the name of the
re�ned component (also called abstraction) for the
re�nement;

� The SEES clause consists of a list of instances of
seen machines;

� The IMPORTS clause contains the declaration of
the list of imported machine instances and creates
concrete instances of the modules in a project.
The implementation creates the imported abstract
machine instance to use its data and operations to
implement its own data and operations;

� The PROMOTES clause introduces a list of pro-
moted operations of instances of included machines;

� The SETS clause introduces the sets which are used
in the implementation;

� The CONSTANTS clause introduces the constants
which are used in the implementation;

� The VALUES clause is used to assign values to the
deferred sets and to the concrete constants;

� The INVARIANT clause indicates the relationship
between re�ned and imported states. It consists of
predicates separated by a conjunction operator;

� The OPERATIONS clauses are made up of concrete
expressions or substitutions.

Some proof obligations have been de�ned to
show that an implementation implements a re�ne-
ment/abstract machine appropriately. In addition,
Atelier-B [76] has been developed that supports code
generation from B speci�cations to Ada and C++ code.

3.2.2.4 Event-B
Although ProB is an animator for Event-B, it does
not support Event-B code generation; hence, we would
like to mention some works approaching Event-B code
generation.

Based on [83-85], one can link Event-B speci�ca-
tions with concurrent object-oriented programs using
Object-oriented Concurrent-B (OC-B). In this way,
speci�cation of concurrency issues and reasoning about
them in an abstract manner become possible. For this
purpose, Edmunds and Butler interpreted details of
concurrent features, such as processes and monitors,
in Event-B. Then, they introduced an approach to
re�ne Event-B speci�cations to their OC-B counter-
parts. Finally, they described the mapping of OC-B
speci�cations to object-oriented code (for example, in
Java). Also, they have developed a tool which is based
on Eclipse, and maps Event-B speci�cations to object-
oriented code.

As another related work, Edmunds and But-
ler [86] showed how one could develop the Ada source

code from Event-B speci�cations. For this purpose,
they introduced an extension of Event-B, called Task-
ing Event-B, which includes tasking and shared ma-
chines. Using this approach, one can convert Event-B
models to Tasking Event-B models, and then convert
Tasking Event-B models to Ada code using translation
rules and decomposition rules de�ned for Event-B,
and also extension rules de�ned for Tasking Event-
B. Moreover, Edmunds, Rezazadeh, and Butler [87]
describe a streamline process, where the abstract mod-
elling artefacts are mapped to Ada language constructs
using re�nement, decomposition, and implementation
annotations.

In addition, M�ery and Singh [88] developed a set
of software tools, i.e. EB2C, EB2C++, EB2J and
EB2C#, that generate programming code in C, C++,
Java, and C# from Event-B speci�cations, respectively.
These tools perform code generation from Event-B
models using Event-B grammar and through syntax-
directed translation, code scheduling architecture and
veri�cation of an automatic code generation. EB2C,
EB2C++, EB2J and EB2C# have been developed as
a set of Rodin plug-ins under the Eclipse development
framework. In comparison to [83,84], these tools
support set theory based notations.

3.2.2.5 UML-B
The current code generation technique for UML-B
speci�cations is based on using the Event-B code
generation tool [83-85]. UML-B speci�cations are �rst
converted to Event-B speci�cations using the U2B
tool [89]. Then, an object-oriented code is generated
using the Event-B code generation tool. Some conver-
sion rules of the U2B tool are described in Table 2.

Table 2. Mapping rules from UML-B constructs to
Event-B constructs.

UML-B construct Event-B construct

Machine Implicit context and machine

Class Machine variable

Class attribute

Machine variable with an

invariant which demonstrates

attribute membership in a

relationship between its

class and its type

Class event Machine event

Class invariant Machine invariant

Class theorems Machine theorems

Context Context

ClassType Context sets

ClassType association Context constant

State machine transition Machine event

1010 M. Naja� et al./Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 1001{1017

4. Comparison

In this section, we �rst de�ne a set of criteria used to
compare overviewed formal, object-oriented program
development techniques. Then, these techniques will
be compared in terms of the given criteria.

4.1. Criteria de�nition
Table 3 shows the criteria that will be used for com-
paring formal, object-oriented program development
techniques:

Remarks:

> Two main styles are considered for the \Re�nement

Style": \Posit-and-Prove" is where a re�nement of
speci�cation is proposed and then justi�ed against
its abstract speci�cation via the veri�cation of a
set of proof obligations, and \Transformational"
re�nement is where algorithms or rules are applied
to a speci�cation to generate a more concrete
speci�cation [4].

> For \Expressiveness" criterion, we determine
whether \Mapping rules are proposed with enough
details (and thus are informative enough to show
various aspects and cases of the mapping) or not"
based on our intuition.

> A high \Similarity Degree" makes it easier for the

Table 3. Criteria for comparing formal, object-oriented program development techniques.

Category Criterion Description of criterion

Context

Main Approach (MA)
Main approach of a technique may be Animation (A)

or Re�nement (R).

Re�nement Style (RS)

If the main approach is re�nement, the style of a

technique can be Transformational (T) or

Posit-and-Prove (P); see [4] for more details about

these styles.

Expressiveness
How mapping rules are proposed? Are mapping

rules proposed with enough details?

Similarity Degree (SD)

The degree of similarity between constructs in

the initial speci�cation and constructs in the

resulting code.

Content

Formal language coverage
The portion of the formal speci�cation language

grammar treated successfully by the technique.

Programming language coverage

The portion of the programming language

grammar that can be generated by using the

technique

Execution
Interactivity

Does the technique have interaction with users?

If yes, is interaction done to increase the exibility

of code generation (by considering user's opinion)

and to allow making changes in speci�cations

at any stage of the mapping process?

Tool support |

Reliability Validation approach

Validation of the technique is done via a

mathematical proof, a case study, or other

approaches.

Reusability Library development Libraries which are developed by the technique.

M. Naja� et al./Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 1001{1017 1011

developer to understand how some constructs in
the �nal programming language correspond to some
speci�cation constructs and vice versa.

> We regard \Programming language coverage" as
a criterion because using some special constructs
of the programming language (such as macro and
the notion of operator overloading in C++) may
provide more e�cient programs and also reveal the
distinguishing features of programming languages
between them.

4.2. Comparison between techniques
4.2.1. Context
As Tables A.1 to A.3 of [90] show, 30% of the existing
formal methods for object-oriented program develop-
ment are animation, and 70% of them are re�nement.
Most of the existing animation techniques:

1. Propose their mapping rules using natural lan-
guage, while formal presentation of mapping rules
increases precision and provides the possibility of
proving the correctness of the method (the correct-
ness of the mapping rules) formally.

2. Do not consider special cases of constructs in the
speci�cation language when presenting their map-
ping rules; however, they describe these rules with
enough level of detail. For example, in animation
of Object-Z speci�cations, the mapping of a local
abbreviation de�nition when its left hand side is
a variable name, and its right-hand side is the
class union, has never been covered in many related
publications, such as [20-22].

3. Bene�t from a degree of high similarity.

In contrast, most of the existing re�nement
techniques propose their re�nement rules using both
natural language and �rst order predicate logic. Also,
they propose their rules with enough level of de-
tail.

4.2.2. Content
As Tables B.1 to B.3 of [90] show, none of the
existing animation techniques cover all constructs of
the formal speci�cation language. Instead, most of the
existing animation and re�nement techniques propose
rules for mapping common constructs of the formal
speci�cation language. Moreover, they use a small
set of programming language constructs in their map-
pings.

4.2.3. Execution
� Object-Z: Most of the techniques available for ani-

mating Object-Z speci�cations interact with users
and are not fully automatic. Also, few existing
re�nement techniques for the mentioned language
have tool support.

� VDM and VDM++: Most of the existing animation
and re�nement techniques for these languages, in
papers to which we had access, have tool support. In
addition, all of them, except [34,36], have interaction
with users.

� B, Event-B and UML-B: Considering Table C.3
of [90], most of the re�nement techniques for B,
Event-B and UML-B speci�cations have tool sup-
port and interact with users.

In addition, all the existing techniques (either anima-
tion or re�nement), except [27,28,34,36,88], regard in-
teractivity only for the purpose of getting speci�cations
and �lling those parts of the code whose techniques
cannot present any mapping and cannot con�rm the
correctness of the performed mapping with users. In
this case, we put \Y: Weak", in Tables C.1 to C.3
of [90], because interaction with users can also be done
for other reasons, such as:
� Increasing exibility of techniques by considering

user opinion when obtaining code from speci�ca-
tions;

� Requesting and making changes in speci�cations at
any stage when executing the mapping process.

4.2.4. Reliability
As Tables D.1 to D.3 of [90] show, most existing works,
except [29] try to validate their methods based on
case studies, while using mathematical proof is a more
powerful validation approach.

4.2.5. Reusability
As Tables E.1 to E.3 of [90] show, most existing
techniques did not develop libraries for their mapping
rules.

5. Conclusion and future work

Using object-orientation in formal program develop-
ment has led to methods which have the advantages of
both formal methods and object oriented approaches.
In this paper, we �rst compared Object-Z, VDM++
and UML-B speci�cation languages. Then, we re-
viewed existing formal, object-oriented program devel-
opment from Object-Z, VDM, VDM++, B, Event-B
and UML-B speci�cations. Finally, we compared these
methods according to a set of criteria classi�ed into
categories of context, content, reliability, reusability,
and execution.

Tables 4 and 5 show a summary of our investiga-
tion. Some interesting topics for future work can be
extracted from these two tables, along with detailed
information extracted from the tables shown in [90]
in order to reduce the weaknesses of existing methods
while preserving their strengths through presenting
new formal methods for object-oriented program de-
velopment.

1012 M. Naja� et al./Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 1001{1017

Table 4. Strengths of existing formal methods for object-oriented program development.

Speci�cation
language

Strengths

Object-Z

� Most of the existing animation techniques have tool
support.

� Static and dynamic veri�cations have been considered
in one of the animation techniques, i.e. [24].

� The formal speci�cation of mapping rules and proving
their correctness formally have been considered in one
of the animation techniques, i.e. Naja� and Haghighi
(2013) [29].

� Animation of Object-Z with C++, Java, C# and Ei�el
has been proposed.

� Animation of Object-Z with C++, Java, C# and Ei�el
has tool support.

VDM++

� Animation of VDM++ with C++ and Java has been
proposed.

� All of the animation techniques have tool support.
� Help manuals for these animation techniques are

well-documented.

VDM

� Animation of VDM with C++, Ada, Ada95, Smalltalk
and Java has been proposed.

� In animation of VDM with C++, interaction with the
purpose of getting speci�cation, �lling parts of the code
for which the technique could not present any mapping,
con�rming the correctness of the performed mapping
with the user and improving obtained object-oriented
designs is considered.

� In animation of VDM with Ada, interaction with the
purpose of getting speci�cation, �lling parts of the
code for which the technique could not present any
mapping, con�rming the correctness of the performed
mapping with the user and increasing the exibility of
the technique by requesting and making changes to
speci�cations at any stage is considered.

� As far as we know, all of the proposed techniques have
tool support.

B

� All of the proposed re�nement techniques for this
language have tool support. In addition, help manuals
for these re�nement tools are well-documented.

� Re�nement of B Method to Ada and C++ has been
proposed.

Event-B
� All of the proposed re�nement techniques, except \machine

composition with shared variable", have tool support.

UML-B
� State grouping and attening rules for state machine

re�nement have been proposed formally.
� All of the proposed re�nement rules have tool support.

M. Naja� et al./Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 1001{1017 1013

Table 5. Weaknesses of existing formal methods for object-oriented program development.

Speci�cation
language

Weaknesses

Object-Z

� None of the animation techniques covers mapping of some important constructs of Object-Z,
such as distributed operators, free type de�nitions (when constructors are used in the de�nition)
and recursion.

� Only one of the existing animation techniques proposes mapping rules formally.
� Only one of the existing animation techniques proves the correctness of their mapping

rules.
� Few animation techniques consider special cases of Object-Z constructs in their mapping

rules. For example, in animation of Object-Z speci�cations, the mapping of a local abbreviation
de�nition, when its left hand side is a variable name, and its right-hand side is class union,
has never been covered in many related publications, such as [20-22].

� Case studies used in animation techniques are not large enough to cover all of the
proposed rules.

� Most animation techniques use only a small set of programming language constructs.
� No tool exists to support direct re�nement of Object-Z speci�cations.

VDM++

� Few animation techniques cover mapping of some important constructs of VDM++, such
as function composition, function iteration and equality.

� None of the existing animation techniques proposes mapping rules formally.
� None of the existing techniques considers user interaction with the purpose of

providing exibility (see Subsection 4.2.3).
� Most of the animation techniques use only a small set of programming language

constructs.
� No tool exists to supports re�nement of VDM++ speci�cations.
� None of the existing animation techniques proves the correctness of their mapping rules.
� No re�nement technique has been proposed to re�ne VDM++ speci�cations to �nal code.

VDM

� None of the animation techniques covers mapping of some important constructs of VDM,
such as compose, iterate and equality for functions.

� None of the existing animation techniques proposes mapping rules formally.
� None of the existing animation techniques proves the correctness of their mapping rules.

B

� Proving the correctness of re�nements is a tedious and time-consuming task.
� Having a large number of re�nement rules makes the identi�cation and selection of appropriate

rules complex. Thus, it is necessary to have an intuition of the �nal program to perform a
successful re�nement.

Event-B

� Composition and decomposition rules have not been proposed explicitly for contexts.
� Decomposition rules have not been proposed formally.
� No tool exists to support machine composition with a shared variable approach.
� It is necessary to have an intuition of the �nal program to perform a successful

re�nement.

UML-B

� Some re�nement rules, such as annealing and introduced sub-typing, have not been proposed
for UML-B speci�cations, while they are well-known re�nement rules in other object-oriented
formal speci�cation languages.

� Only state grouping and attening rules for mapping state machines have been described
formally.

� None of the existing techniques considers user interaction with the purpose of providing
exibility (see Subsection 4.2.3).

1014 M. Naja� et al./Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 1001{1017

References

1. Naur, P. and Randell, B., Eds. \Software engineering",
Report on a Conference Sponsored by the NATO Sci-
ence Committee, Scienti�c A�airs Division (1969).

2. Mirian-Hosseinabadi, S.H. \Constructive Z", Ph.D.
Thesis, University of Essex, Essex, UK (1997).

3. Kemmerer, R.A. \Testing formal speci�cations to
detect design errors", Software Engineering, IEEE
Transactions (1985).

4. Said, M.Y. \Methodology of re�nement and decom-
position in UML-B", Ph.D. Thesis, University of
Southampton, Southampton, UK (2010).

5. Beeson, M.J., Foundations of Constructive Mathemat-
ics: Mathematical Studies, Springer-Verlag (1985).

6. Naja�, M. and Haghighi, H. \Formal methods to
develop object-oriented programs: A survey", Second
World Conference on Information Technology, An-
talya, Turkey (2011).

7. Smith, G., The Object-Z Speci�cation Language,
Kluwer Academic Publishers, USA (2000).

8. Duke, R. and Rose, G., Formal Object-Oriented Spec-
i�cation Using Object-Z, Macmillan, UK (2000).

9. Ramkarthik, S. and Zhang, C. \Generating java skele-
tal code with design contracts from speci�cations in a
subset of object-Z", In Fifth IEEE/ACIS Int. Conf. on
Computer and Information Science, Honolulu, HI, pp.
405-411 (2006). [doi: 10.1109/ICIS-COMSAR.2006.41]

10. D�urr, E. and Katwijk, J.V. \VDM++: A formal
speci�cation language for object-oriented designs",
Computer Engineering and Software Systems (Com-
pEuro'92), pp. 214-219 (1992). [doi: 10.1109/CM-
PEUR.1992.218511]

11. Fitzgerald, P., Larsen, P.G., Mukerji, P., Plat, N. and
Verhoef, M., Validated Designs For Object-Oriented
Systems, Springer-Verlag, USA (2004).

12. CSK Corporation, The VDM++ Language Manual
1.0, Available at: http://www.vdmtools.jp/en/ mod-
ules/tinyd2/index.php?id=2/langmanpp a4E.pdf
(2010).

13. Booch, G., Jacobson, I. and Rumbaugh, J., The
Uni�ed Modeling Language - A Reference Manual,
Addison Wesley (1998).

14. Snook, C., Butler, M. and Oliver, I. \The UML-B
pro�le for formal systems modeling in UML", ACM
Transactions on Software Engineering and Methodol-
ogy (TOSEM), 15(1), pp. 92-122 (2004).

15. Snook, C. and Butler, M. \UML-B: Formal modeling
and design aided by UML", ACM Transactions on
Software Engineering and Methodology, 15(1), pp. 92-
122 (2006).

16. Snook, C. and Butler, M. \UML-B and event-B: An
integration of languages and tools", In The IASTED
Int. Conf. on Software Engineering, pp. 1-6 (2008).
[doi: 10.1016/j.infsof.2007.10.010]

17. Joochim, T. \Bringing requirements engineering to
formal methods: timing diagrams for event-B and
KAOS", Ph.D. Thesis, University of Southampton,
Southampton, UK (2010).

18. Guel�, N., Biberstein, O., Buchs, D., Canver, E.,
Gaude, M.C., Henke, F.V. and Schwier, D. \Com-
parison of object-oriented formal methods", Technical
Report of the Esprit Long Term Research Project
20072 \Design for Validation", University of New-
castle Upon Tyne, Department of Computing Science
(1997).

19. Chrietensen, T.J.H. \Extending the VDM++ formal
speci�cation language with type inference and generic
classes", M.S. Thesis, University of Aarhus, Aarhus,
Denmark (2007).

20. Rafsanjani, G. and Colwill, S.J. \From object-Z to
C++: A structural mapping", In Z User Meeting
(ZUM'92), pp. 166-179 (1992).

21. Johnston, W. and Rose, G. \Guidelines for the manual
conversion of object-Z to C++", SVRC Technical
Report No. 93-14, University of Queensland, Canada
(1993).

22. Fukagawa, M., Hikita, T. and Yamazaki, H.
\A mapping system from object-Z to C++",
In First Asia-Paci�c Software Engineering Con-
ference (APSEC94), pp. 220-228 (1994). [doi:
10.1109/APSEC.1994.465258]

23. Gri�ths, A. \From object-Z to Ei�el: A rigorous
development method", Technology of Object-Oriented
Languages and Systems: TOOLS 18, Prentice-Hall
(1995).

24. Ni, X. and Zhang, C. \Converting speci�cations in a
subset of object-Z to skeletal spec# code for both static
and dynamic analysis", Journal of Object Technology,
7(8), pp. 165-185 (2008). [doi: 10.5381/jot.2008.7.8.a6]

25. Wang, Z., Xia, M. and Zhao, Y. \Transform mech-
anisms of object-Z based formal speci�cation to
java", In Computational Intelligence and Software
Engineering (CISE), Wuhan, pp. 1-4 (2009). [doi:
10.1109/CISE.2009.5365403]

26. Naja�, M. and Haghighi, H. \An animation approach
to develop C++ code from object-Z speci�cations",
CSI International Symposium on Computer Science
and Soft-ware Engineering (CSSE 2011), Tehran, Iran,
pp. 9-16 (2011). [doi: 10.1109/CSICSSE.2011.5963990]

27. Naja�, M. and Haghighi, H. \An approach to develop
C++ code from object-Z speci�cations", In Second
World Conference on Information Technology, An-
talya, Turkey (2011).

28. Naja�, M. and Haghighi, H. \An approach to
animate object-Z speci�cations using C++", Sci-
entia Iranica, 19(6), pp. 1699-1721 (2012). [doi:
10.1016/j.scient.2012.06.021]

29. Naja�, M. and Haghighi, H. \A formal mapping from
object-Z speci�cation to C++ code", Scientia Iranica,
20(6), pp. 1953-1977 (2013).

M. Naja� et al./Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 1001{1017 1015

30. Jackson, M.I. \Developing Ada programs using the
Vienna development method (VDM)", Software: Prac-
tice and Experience, 15(3), pp. 305-318 (1985).

31. Chedgey, C., Kerney, S. and Kugler, H. \Using VDM
in an object-oriented development method for Ada
software", VDM-Europe Symposium 1987 on VDM'87:
VDM - A Formal Method at Work, LNCS 252, pp. 63-
76 (1987). [doi: 10.1007/3-540-17654-3 5]

32. Moulding, M.R. and Newton, A.R. \Rapid prototyping
from VDM speci�cations using Ada", IEEE Colloqium
on Automating Formal Methods for Computer Assisted
Prototyping, London, UK, pp. 11-22 (2002).

33. O'Neill, D., Bloom�eld, R., Marshall, L. and Jones, R.
\VDM development with Ada as the target language",
VDM'88-The Way Ahead, LNCS 328, pp. 116-123
(1988). [doi: 10.1007/3-540-50214-9 11]

34. Lou, Y. \VDM/C++: A design and implementation
framework", M.S. Thesis, Concordia University, Mon-
treal, Canada (1994).

35. Katwijk, J.V., D�urr, E. and Goldsack, S. \Hy-
brid object-oriented real-time software development",
In First IEEE Int. Conf. on Formal Engineering
Methods, Hiroshima, Japan, pp. 17-26 (1997). [doi:
10.1109/ICFEM.1997.630393]

36. Albalooshi, F. and Long, F. \Multiple view environ-
ment supporting VDM and Ada", IEEE Proceedings
Software, 146(4), pp. 203-219 (2002). [doi: 10.1049/ip-
sen:19990487]

37. Chartan, Q. and Kans, A., Formal Software Develop-
ment: from VDM to Java, Palgrave Macmillan, China
(2004).

38. CSK Corporation, The VDM-SL to C++ Code
Generator Manual 1.0, Available at: http://www.
vdmtools.jp/en/modules/tinyd2/index.php?id=2/ cg-
mansl a4E.pdf (2010).

39. Bousquet, F. \VDM++ to Ada95 translation rules",
Technical Report VICE-MBDF-17, MatraBAe Dy-
namics, Rue Grange Dame Rose 20/22, 78141 Velizy-
Villacoublay, France (2000).

40. CSK Corporation, The VDM++ to C++ Code
Generator Manual 1.0, Available at: http://www.
vdmtools.jp/en/modules/tinyd2/index.php?id=2/ cg-
manpp a4E.pdf (2010).

41. CSK Corporation, The VDM++ to Java Code Gen-
erator Manual 1.1, Available at: http://www. vdm-
tools.jp/en/modules/tinyd2/index.php?id=2/ javacg-
manpp a4E.pdf (2010).

42. McComb, T. and Smith, G. \Refactoring object-
oriented speci�cations: A process for deriving de-
signs", Technical Report SSE-2006-01, University of
Queensland, Aus-tralia (2006).

43. Fowler, M., Refactoring: Improving the Design of
Existing Code, Addison Wesly (1999).

44. Derrick, J. and Boiten, E.A. \Re�nement of objects
and operations in object-Z", Int. Conf. on Formal

Methods for Open Object-Based Distributed Systems
IV, IFIP Advances in Information and Communica-
tion Technology, Stanford, California, USA, pp. 257-
277 (2000). [doi: 10.1007/978-0-387-35520-7 13]

45. Derrick, J. and Boiten, E.A. \Re�nement in Z and
object-Z: Foundations and advanced applications", 1st
Ed., Formal Approaches to Computing and Informa-
tion Technology, Springer-Verlag (2001).

46. Smith, G. \Introducing reference semantics via re�ne-
ment", In Fourth Int. Conf. on Formal Engineering
Methods: Formal Methods and Software Engineering,
pp. 588-599 (2002).

47. McComb, T. \Refactoring object-Z speci�cations",
Fundamental Approaches to Software Engineering,
Barcelona, Spain, LNCS 2984, pp. 69-83 (2004). [doi:
10.1007/978-3-540-24721-0 5]

48. McComb, T. and Smith, G. \Architectural de-
sign in object-Z", Australian Software Engineer-
ing Conference (ASWEC), pp. 77-86 (2004). [doi:
10.1109/ASWEC.2004.1290460]

49. McComb, T. and Smith, G. \Compositional class
re�nement in object-Z", In FM2006: Formal Methods
Conference, Hamilton, Canada, LNCS 4085, pp. 205-
220 (2006). [doi: 10.1007/11813040 15]

50. Ruhroth, T., Refactoring Object-Z Speci�cations,
Available at: http://citeseerx.ist.psu.edu/viewdoc/
download?doi= 10.1.1.106.2651.pdf (2006).

51. McComb, T. and Smith, G. \A minimal set of
refactoring rules for object-Z", Formal Methods for
Open Object-Based Distributed Systems, Oslo, Norway,
LNCS 5051, pp. 170-184 (2008). [doi: 10.1007/978-3-
540-68863-1 11]

52. McComb, T. and Smith, G. \Introducing objects
through re�nement", In FM2008: Formal Methods
Conference, Turku, Finland, LNCS 5014, pp. 358-373
(2008). [doi: 10.1007/978-3-540-68237-0 25]

53. Liu, H. and Zhu, B. \Refactoring formal speci�cations
in object-Z", In International Conference on Computer
Science and Software Engineering, Wuhan, Hubei, pp.
342-345 (2008). [doi: 10.1109/CSSE.2008.260]

54. Lano, K. and Goldsack, S.J. \Re�nement, subtyping
and subclassing in VDM++. computing", Workshop
on Theory and Formal Methods, pp. 341-363 (1994).

55. Goldsack, S.J., D�urr, E.H. and Plat, N. \Object rei�-
cation in VDM++", ICSE 17: Workshop on Formal
Methods Application in Software Engineering Practice,
pp. 194-201 (1995).

56. Goldsack, S.J. and Lano, K. \Annealing and data
decomposition in VDM++", ACM SIGPLAN, 13(4),
pp. 32-38 (1996).

57. Lano, K. and Goldsack, S. \Re�nement of distributed
object systems", Workshop on Formal Methods for
Open Object-based Distributed Systems, Chapman and
Hall (1996).

58. Lu, J. \Introducing data decomposition into VDM for

1016 M. Naja� et al./Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 1001{1017

tractable development of programs", ACM SIGPLAN
Notices, 30(9), pp. 41-50 (1995).

59. Lano, K. \Speci�cation in B: An introduction using
the B toolkit", World Scienti�c Publishing Company,
Imperial College Press (1996).

60. M�etayer, C., Abrial, J.R. and Voisin, L. \Event-
B language", Technical Report, Deliverable 3.2, EU
Project IST-511599-RODIN (2005).

61. Abrial, J.R. and Hallerstede, S. \Re�nement, decom-
position, and instantiation of discrete models: Appli-
cation to event-B", Fundamenta Informaticae, 77(1-2),
pp. 1-28 (2007). [doi: 10.1145/362575.362577]

62. Abrial, J.R., Cansell, D. and M�ery, D. \Re�nement
and reachability in event-B", In Fourth International
Conference of B and Z Users, Guildford, UK, LNCS
3455, pp. 222-241 (2005). [doi:10.1007/11415787 14]

63. Abrial, J.R. \A system development process with
event-B and the rodin platform", In Ninth Inter-
national Conference on Formal Methods and Soft-
ware Engineering, LNCS 4789, pp. 1-3 (2007). [doi:
10.1007/978-3-540-76650-6 1]

64. Butler, M., Abrial, J.R., Damchoom, K. and Edmunds,
A. \Applying event-B and Rodin to the �le store",
Abstract State Machines, B and Z, London, UK,
ASRNET (2008).

65. Butler, M. \Synchronization-based decomposition for
event-B", RODIN Deliverable D19 Intermediate Re-
port on Methodology (2006).

66. Butler, M. \Incremental design of distributed systems
with event-B", Engineering Methods and Tools for
Software Safety and Security, Marktoberdorf Summer
School 2008, IOS Press, pp. 131-160 (2008). [doi:
10.3233/978-1-58603-976-9-131]

67. Abrial, J.R. \Event model decomposition", Technical
Report, 626, ETH Zurich (2009)

68. Jones, C.B. \RODIN deliverable D19",
Intermediate Report on Methodology, Available
at: http://rodin.cs.ncl.ac.uk/deliverables/D19.pdf,
Technical report, University of Newcastle-upon-Tyne,
UK (2006).

69. Pascal, C. and Silva, R. \Event-B model decomposi-
tion", DEPLOY Plenary Technical Workshop (2009).

70. Silva, R., Pascal, C., Hoang, T.S. and Butler, M.
\Decomposition tool for event-B", Workshop on Tool
Building in Formal Methods- ABZ Conference (2010).

71. Hoang, T.S. and Abrial, J.R. \Event-B decomposition
for parallel programs", In Second Int. Conf. on Ab-
stract State Machines, Alloy, B and Z, pp. 319-333
(2010). [doi: 10.1007/978-3-642-11811-1 24]

72. Poppleton, M. \The composition of event-B models",
In First Int. Conf. on Abstract State Machines, B and
Z, London, UK, pp. 209-222 (2008). [doi: 10.1007/978-
3-540-87603-8 17]

73. Silva, R. and Butler, M. \Supporting reuse mech-
anisms for developments in event-B: Composition",

Technical Report ECS, University of Southampton,
Southampton, UK (2009).

74. Silva, R. and Butler, M. \Supporting reuse of event-
B developments through generic instantiation", In
Eleventh Int. Conf. on Formal Engineering Methods:
Formal Methods and Software Engineering (ICFEM),
pp. 466-484 (2010). [doi: 10.1007/978-3-642-10373-
5 24]

75. Hallerstede, S., Leuschel, M. and Plagge, D.
\Re�nement-animation for event-B-towards a method
for validation", In Second International Conference on
Abstract State Machines, Alloy, B and Z, LNCS 5977,
pp. 287-301 (2010). [doi: 10.1007/978-3-642-11811-
1 22]

76. Atelier-B, Available at: http://www.atelierb.eu/en/
atelier-b-tools/atelier-b-4-0/ (2011).

77. Said, M.Y., Butler, M. and Snook, C. \Language and
tool support for class and state machine re�nement
in UML-B", FM 2009: Formal Methods, pp. 579-595
(2009). [doi: 10.1007/978-3-642-05089-3 37]

78. Stevens, B. \Implementing object-Z with perfect devel-
oper", Journal of Object Technology, 6(2), pp. 189-202
(2006). [doi: 10.5381/jot.2006.5.2.a5]

79. Kimber, T.G. \Object-Z to perfect developer", M.S.
Thesis, Imperial College Lon-don, London, UK (2007).

80. Qin, S. and He, G. \Linking object-Z with spec#",
In Twelfth IEEE Int. Conf. on Engineering Complex
Computer Systems, Auckland, New Zealand, pp. 185-
196 (2007). [doi: 10.1109/ICECCS.2007.27]

81. Naja�, M. and Haghighi, H. \Re�nement of object-
Z speci�cations using Morgan's re�nement calculus",
In Int. Conf. on Software Engineering and Technology
(ICSET2011), Venice, Italy, pp. 1735-1744 (2011).

82. Morgan, C., Programming from Speci�cations,
Prentice-Hall (1990).

83. Edmunds, A. and Butler, M. \Linking event-B
and concurrent object-oriented programs", Thir-
teenth BAC-FACS Re�nement Workshop (REFINE
2008), ENTSC 214, pp. 159-182 (2008). [doi:
10.1016/j.entcs.2008.06.008]

84. Edmunds, A. and Butler, M. \Tool support for Event-
B code generation", Workshop on Tool Building in
Formal Methods, Qu�ebec, Canada (2010).

85. Edmunds, A. \Providing concurrent implementations
for event-B developments", Ph.D. Thesis, University
of Southampton, Southampton, UK (2010).

86. Edmunds, A. and Butler, M. \Tasking event-B: An
extension to event-B for generating concurrent code",
Programming Language Approaches to Concurrency
and Communication-Centric Software, Saarbrucken,
Germany (2011).

87. Edmunds, A., Rezazadeh, A. and Butler, M. \Formal

M. Naja� et al./Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 1001{1017 1017

modelling for Ada implementations: Tasking event-B",
In Ada-Europe, LNCS, 7308, pp. 119-132 (2012).

88. M�ery, D. and Singh, N.K. \Automatic code generation
from event-B models", In Second Symposium on Infor-
mation and Communication Technology, ACM Press,
pp. 179-188 (2011). [doi: 10.1145/2069216.2069252]

89. Snook, C. and Butler, M., U2B- A Tool for Translat-
ing UML-B into B, UML-B Speci�cation for Proven
Embedded Systems Design, Chapter 5, Springer-Verlag
(2004).

90. Appendix, Available at: http://ticksoft.sbu.ac.ir/?
page id=5116 (2015).

Biographies

Mehrnaz Naja� received both her MS and BS de-

grees in Computer Engineering-Software from Shahid
Beheshti University, Iran, in 2012 and 2010, respec-
tively. Her research interests are formal program
development and formal veri�cation.

Hassan Haghighi received his PhD degree in Com-
puter Engineering-Software from Sharif University of
Technology, Iran, in 2009, and is currently Assistant
Professor in the Faculty of Electrical and Computer En-
gineering at Shahid Beheshti University, Tehran, Iran.
His main research interests include formal methods in
the software development life cycle.

Tahereh Zohdi Nasab received her BS degree in
Computer Engineering Software from the University of
Tehran, Iran, in 2009. Her research interest is formal
program development.

