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Abstract. An e�cient method for the stereoselective synthesis of (Z)-1-bromo-1-alkenes
through debrominative decarboxylation of anti-2,3-dibromoalkanoic acids using KF/Al2O3

is described. KF/Al2O3 showed to be an e�ective base in this reaction leading to a relatively
high selectivity and good to excellent yield of the (Z)-1-bromo-1-alkenes.

c
 2015 Sharif University of Technology. All rights reserved.

1. Introduction

1-Halo-1-alkenes are important precursors in many
useful organic transformations including Stille, Suzuki,
Sonogashira and Buchwald-Hartwig reactions [1]. Ge-
ometrically pure alkenyl halides have gained increas-
ingly interest as they are required in the stereospe-
ci�c synthesis of conjugated polyenes and eneyens [2].
Many biologically active natural products possess (Z)-
ole�n moiety in their structures (e.g., rhodopsins [3],
eicosanoids [4] and enediyne antibiotics [5]).

Numerous methods are reported for the prepara-
tion of (E)-1-bromo-1-alkenes. Among the reported
methods, the Hunsdiecker reaction is a popular ap-
proach, which involves the oxidative bromodecarboxy-
lation of a silver salt of carboxylic acid with bromine.
This reaction requires a heavy metal salt, and high tem-
perature. Several attempts were made to improve this
reaction using various reagents [6]. In the other hand,
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there are a few methods for the stereo-controlled prepa-
ration of (Z)-1-halo-1-alkenes including: replacement
of the boronic acid substituent by bromine in alkenyl
boronic acids [7], haloalkenylation of aldehydes with
Wittig type reagents [8], Pd-catalyzed reaction of 1,1-
dibromo-1-alkenes by tributyltin hydride [9], hydroa-
lumination of alkynes [10], hydroboration of 1-halo-
1-alkynes followed by protonolysis [11] and debromi-
native decarboxylation of cinnamic dibromides [12].
Although many of these methods are e�ective, some
of these synthetic methods have several drawbacks,
including the use of complex reagents, long reaction
times, low yields or need to expensive instruments such
as microwave. Among these procedures, debromina-
tive decarboxylation of 2,3-dibromoalkanoic acids is a
synthetically useful route for the preparation of (Z)-
vinyl bromides. Several improvements of this method
were reported with a number of solvents and bases [12].
Some bases, such as Cs2CO3 are very moisture sensitive
which reduce its ability in many organic reactions, or
organic bases like NEt3 are not easily separated from
the reaction mixture. On the other hand, application
of KF/Al2O3 in organic synthesis has provided new
methods for a wide range of organic reactions. It has
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Table 1. E�ect of di�erent solvents on the yield of 2.

Entry Solvent Yielda (%) Entry Solvent Yield (%)

1 H2O 10 8 THF:H2O (2:1) 60

2 PhCH3 20 9 DMF:H2O (2:1) 93

3 CH2Cl2 20 10 DMF:H2O (1:1) 96

4 THF 25 11 DMF:H2O (1:2) 80

5 DMF 55 12 DMF:H2O (4:1) 75

6 PhCH3:H2O (2:1) 65 13 DMF:H2O (1:1) 90b

7 CH2Cl2:H2O (2:1) 55 14 DMF:H2O (1:1) 70c

a: Reaction conditions: substrate 1 (1 mmol), KF/Al2O3 (1 mmol), time (1.15 h), temperature (100�C),

solvent (6 mL).
b: Substrate 1 (1 mmol), KF/Al2O3 (2 mmol).
c: Substrate 1 (2 mmol), KF/Al2O3 (1 mmol).

Scheme 1. Preparation of (Z)-�-bromostyrenes from 2,3-
dibromopropanoic acids in the presence of KF/Al2O3.

strong basic character and has been used in a number
of reactions. In many cases, the use of this base
provides milder conditions and simpler procedures than
previously reported methods [13].

Recently, we have used KF/Al2O3 as a suitable
base in many cross-coupling reactions [14]. Herein,
we report a convenient method for the synthesis of
(Z)-�-bromostyrenes from cinnamic acid derivatives
through debrominative decarboxylation of dibromoaryl
propanoic acids using KF/Al2O3 as a cheap, nontoxic
and stable base which can be easily separated at the
end of the reaction (Scheme 1).

2. Results and discussion

To �nd the optimum reaction conditions, the reac-
tion of anti-2,3-dibromo-3-phenyl propanoic acid with
KF/Al2O3 was chosen as a model reaction (Scheme 2),
and the progress of reaction and the Z=E ratio of
the corresponding products were determined by GC
analysis.

Scheme 2. Transformation of 2,3-dibromopropanoic acids
to (Z)-�-bromostyrenes in di�erent conditions.

Various conditions were examined to optimize the
yield and the stereoselectivity of this reaction and the
results are shown in Table 1. As is clear from Table 1,
water or organic solvents alone gave a low yield of
the products (entries 1-5), whereas when the reaction
was conducted in the mixture of water and organic
solvents, the reaction yields were increased (entries
6-14). However, the best reaction conditions were
ascertained by treatment of 1 equivalent of anti-2,3-
dibromo-3-phenyl propianoic acid with 1 equivalent of
KF/Al2O3 in 6 ml DMF:H2O (2:1) at 100�C, giving
excellent yield of the corresponding (Z)-1-bromo-1-
alkenes (2) with high (Z)-selectivity (entry 9).

In order to examine the applicability and lim-
itations of the above protocol, a series of dibromo
aryl propanoic acid derivatives with electron donating
and electron withdrawing groups were treated with
KF/Al2O3 under optimum conditions, and, as shown in
Table 2, a good to excellent yield of the corresponding
(Z)-�-bromostyrenes was obtained.

When unsubstituted cinnamic acid dibromides
(Table 2, entries 1, 12 and 13) and those derivatives
with electron-withdrawing groups (Table 2, entries 2-7
and 11) were used, the reactions proceeded via E2-like
mechanism involving simultaneous loss of carbon diox-
ide and bromide ion, as reported in the literature [12g],
to give the corresponding (Z)-�-bromostyrenes in ex-
cellent yields with high stereoselectivies (Scheme 3). In
the case of weak electron donating group such as methyl
group (Table 2, entry 8) the reaction proceeded well
to give the desired product in excellent yield but the

Scheme 3. Stereospeci�c transformation of anti-2,3-di-
bromopropanoic acids to (Z)-�-bromostyrenes.
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Table 2. Stereoselective synthesis of (Z)-�-bromostyrenes from corresponding cinnamic acid dibromides.
Entry Substrate Product Yield (%)a,b Z=Ec

1 95 95/5

2 95 98/2

3 75 98/2

4 85 99/1

5 90 99/1

6 90 92/8

7 97 99/1

8 95 86/14

9 90 18/82

10 90 10/90

11 90 95/5

12 95 91/9
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Table 2. Stereoselective synthesis of (Z)-�-bromostyrenes from corresponding cinnamic acid dibromides (Continued).

Entry Substrate Product Yield (%)a,b Z=Ec

13 95 89/11

14 60 97/3

15 85 96/4

a: Yields refer to isolated products.
b: All products were identi�ed by comparing 1H and 13C NMR spectra with those of authentic samples

reported in literature.
c: The Z=E ratios were determined by GC and 1H NMR analysis.

Scheme 4. Stereospeci�c transformation of anti-2,3-di-
bromopropanoic acids bearing strong electron-donating
groups to (E)-�-bromostyrenes.

stereoselectivity of Z=E was decreased a little (86/14).
Interestingly, stronger electron-donating group like
methoxy at ortho and para positions of cinnamic
acid dibromide showed opposite Z=E stereoselectivity
(Table 2, entries 9-10). This might be due to the
elimination of bromide ion and CO2 through E1-like
pathway. Probably, elimination occurs predominately
through the more stable conformation of the inter-
mediate carbocation to a�ord the (Z)-and (E)-vinyl
bromides, with a preferential formation of (E)-isomer
(Scheme 4). Anti-3-pyridyl-2,3-dibromopropionic acid
under optimum reaction conditions showed the ex-
pected Z=E stereoselectivity (97/3), although the yield
was moderate (entry 14). Finally, (Z)-1,4-bis-(�-
bromovinyl)benzene was obtained in high yield under
reaction conditions with excellent Z=E stereoselectivity
(entry 15).

3. Conclusion

In conclusion, we have developed an e�cient method
for stereoselective synthesis of (Z)-�-arylvinylbromides
from the corresponding anti-3-aryl-2,3-dibromopro-

panoic acids using KF/Al2O3 as base in DMF/H2O
solvent. In the case of strong donating group such
as methoxy, (E)-�-arylvinylbromides were obtained
in high yields. Products in all reactions were easily
separated from the reaction mixture and the stereose-
lectivity of the products were determined by 1H NMR
spectroscopy.

4. Experimental

4.1. General information
Anti-2,3-dibromoalkanoic acids (1) were obtained
by bromination of the corresponding trans-�,�-
unsaturated carboxylic acids according to the proce-
dure reported in the literature [12g]. All the products
were characterized by 1H and 13C NMR data and GC
analyses. 1H and 13C-NMR spectra were obtained
on a Bruker Avance instrument at 400 and 100 MHz,
respectively using CDCl3 as solvent. GC analyses were
performed on a Perkin Elmer 8500 instrument using
a Capillary column 30 M with a FID detector under
helium as carrier gas.

4.2. General procedure for stereoselective
synthesis of (Z)-�-bromostyrenes from
anti-2,3-dibromoalkanoic acids

Into a round bottom 
ask, equipped with a
magnetic stirrer and a condenser, anti-3-aryl-2,3-
dibrobopropanoic acids (1 mmol), KF/Al2O3 (1 mmol)
and DMF:H2O (2:1, 6 mL) was added. Then the mix-
ture was stirred for 1.15 h at 100�C. After completion of
the reaction, as indicated by the TLC, the cooled mix-
ture was extracted with diethyl ether (20 mL) and the
combined organic layers were washed with water and
brine, dried with anhydrous MgSO4 and �ltered. Evap-
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oration of the solvent under reduced pressure gave al-
most pure products. If further puri�cation was needed,
the crude products were puri�ed by column chromatog-
raphy on silica gel with ethylacetate-hexane (1:4) as
eluent. Stereoselectivity and characterization of the
products were determined by 1HNMR and 13C NMR
spectroscopy and compared with authentic samples.

4.3. Spectral data of products in Table 2
(Z)-�-Bromostyrene (entry 1): 1H NMR (400 MHz,
CDCl3): � (ppm) = 6.47 (d, J = 8:2 Hz, 1H), 7.11
(d, J = 8:2 Hz, 1H), 7.34-7.45 (m, 3H), 7.72-7.74 (m,
2H); 13C NMR (100 MHz, CDCl3): � (ppm) = 21.33,
105.40, 128.89, 132.14, 138.26. Z=E = 95=5.

(Z)-�-Bromo-4-chlorostyrene (entry 2): 1H NMR
(400 MHz, CDCl3): � (ppm) = 6.48 (d, J = 8:2 Hz,
1H), 7.04 (d, J = 8:2 Hz, 1H), 7.37 (d, J = 8:4 Hz,
2H), 7.65 (d, J = 8:4 Hz, 2H); 13C NMR (100 MHz,
CDCl3): � (ppm) = 107.19, 128.48, 130.27, 131.24,
133.35, 134.06. Z=E = 98=2.

(Z)-�-Bromo-2-chlorostyrene (entry 3): 1H NMR
(400 MHz, CDCl3): � (ppm) = 6.62 (d, J = 8:4 Hz,
1H), 7.29 (d, J = 8:4 Hz, 1H), 7.31-7.34 (m, 2H), 7.43-
7.45 (m, 1H), 7.85-7.88 (m, 1H); 13C NMR (100 MHz,
CDCl3): � (ppm) = 109.43, 126.29, 129.44, 129.47,
129.99, 130.32, 133.33, 133.55. Z=E = 98=2.

(Z)-�-Bromo-3-chlorostyrene (entry 4): 1H NMR
(400 MHz, CDCl3): � (ppm) = 6.52 (d, J = 8:2 Hz,
1H), 7.04 (d, J = 8:2 Hz, 1H), 7.32-7.34 (m, 2H),
7.56-7.59 (m, 1H), 7.71 (s, 1H); 13C NMR (100 MHz,
CDCl3): � (ppm) = 108.02, 127.15, 128.36, 128.87,
129.52, 131.17, 134.15, 136.62. Z=E = 99=1.

(Z)-�-Bromo-2-bromostyrene (entry 5): 1H NMR
(400 MHz, CDCl3): � (ppm) = 6.61 (d, J = 8:4 Hz,
1H), 7.20-7.25 (m, 2H), 7.35-7.39 (m, 1H), 7.63 (dd,
J = 8:0, 1.2 Hz, 1H), 7.81 (dd, J = 8:0, 1.2 Hz,
1H); 13C NMR (100 MHz, CDCl3): � (ppm) = 109.40,
123.76, 126.93, 129.65, 130.55, 132.36, 132.68, 135.16.
Z=E = 99=1.

(Z)-�-Bromo-4-bromostyrene (entry 6): 1H NMR
(400 MHz, CDCl3): � (ppm) = 6.49 (d, J = 8:2 Hz,
1H), 7.03 (d, J = 8:2 Hz, 1H), 7.52 (d, J = 8:4 Hz,
2H), 7.58 (d, J = 8:4 Hz, 2H); 13C NMR (100 MHz,
CDCl3): � (ppm) = 107.33, 122.30, 130.51, 131.29,
131.43, 133.78. Z=E = 92=8.

(Z)-�-Bromo-4-nitrostyrene (entry 7): 1H NMR
(400 MHz, CDCl3): � (ppm) = 6.70 (d, J = 8:4 Hz,
1H), 7.18 (d, J = 8:4 Hz, 1H), 7.85 (d, J = 8:8 Hz,
2H), 8.26 (d, J = 8:8 Hz, 2H). Z=E = 99=1.

(Z)-�-Bromo-4-methylstyrene (entry 8): 1H NMR
(400 MHz, CDCl3): � (ppm) = 2.37 (s, 3H), 6.40 (d,
J = 8:0 Hz, 1H), 7.06 (d, J = 8:0 HZ, 1H), 7.22 (d,
J = 8:0 Hz, 2H), 7.63 (d, J = 8:0 Hz, 2H); 13C NMR
(100 MHz, CDCl3): � (ppm) = 21.44, 105.50, 126.10,
128.99, 129.53, 132.24, 138.36. Z=E = 86=14.

(E)-�-Bromo-4-methoxystyrene (entry 9): 1H NMR
(400 MHz, CDCl3) (E): � (ppm) = 3.83 (s, 3H), 6.63
(d, J = 13:8 Hz, 1H), 6.87 (d, J = 8:8 Hz, 2H), 7.06
(d, J = 13:8 Hz, 1H), 7.26 (d, J = 8:8 Hz, 2H); 1H
NMR (400 MHz, CDCl3) (Z): � (ppm) = 3.83 (s, 3H),
6.32 (d, J = 8:0 Hz, 1H), 6.93 (d, J = 8:8 Hz, 2H),
7.50 (d, J = 8:8 Hz, 2H), 7.69 (d, J = 8:0 Hz, 1H); 13C
NMR (100 MHz, CDCl3) (E): � (ppm) = 55.32, 104.00,
113.60, 114.19, 127.36, 128.77, 136.55. Z=E = 18=82.

(E)-�-Bromo-2-methoxystyrene (entry 10): 1H NMR
(400 MHz, CDCl3) (E): � (ppm) = 3.86 (s, 3H), 6.88-
6.94 (m, 3H), 7.25-7.29 (m, 2H), 7.32 (d, J = 14:0 Hz,
1H); 13C NMR (100 MHz, CDCl3) (E): � (ppm) =
55.39, 107.87, 110.95, 120.71, 124.72, 127.95, 129.28,
133.03, 156.56. Z=E = 10=90.

(Z)-�-Bromo-2-bromo-5-methoxystyrene (entry 11):
1H NMR (400 MHz, CDCl3): � (ppm) = 3.84 (s, 3H),
6.60 (d, J = 8:2 Hz, 1H), 6.79 (dd, J = 8:8, 3.2 Hz, 1H),
7.20 (d, J = 8:2 Hz, 1H), 7.40 (d, J = 2:8 Hz, 1H), 7,49
(d, J = 8:8 Hz, 1H); 13C NMR (100 MHz, CDCl3): �
(ppm) = 55.59, 109.35, 115.68, 114.24, 115.89, 132.24,
133.19, 135.67, 158.33. Z=E = 95=5.

(Z)-1-(�-Bromovinyl)naphthalene (entry 12): 1H
NMR (400 MHz, CDCl3): � (ppm) = 6.79 (d, J =
8:0 Hz, 1H), 7.53-7.60 (m, 3H), 7.63 (d, J = 8:0 Hz,
1H), 7.77 (d, J = 7:2 Hz, 1H), 7.88-7.98 (m, 3H); 13C
NMR (100 MHz, CDCl3): � (ppm) = 110.11, 124.25,
125.23, 126.04, 126.32, 126.86, 128.58, 128.64, 131.15,
131.47, 132.25, 133.55. Z=E = 91=9.

(Z)-2-(�-Bromovinyl)naphthalene (entry 13): 1H
NMR (400 MHz, CDCl3): � (ppm) = 6.54 (d, J =
8:2 Hz, 1H), 7.26 (d, J = 8:2 Hz, 1H), 7.49-7.53
(m, 2H), 7.82-7.90 (m, 4H), 8.18 (s, 1H); 13C NMR
(100 MHz, CDCl3): � (ppm) =106.71, 126.31, 126.37,
126.45, 126.51, 127.67, 127.75, 128.31, 128.60, 132.42,
133.01, 133.06. Z=E = 89=11.

(Z)-3-(�-Bromovinyl)pyridine (entry 14): 1H NMR
(400 MHz, CDCl3): � (ppm) = 6.55 (d, J = 8:2 Hz,
1H), 7.02 (d, J = 8:2 Hz, 1H), 7.28 (dd, J = 8:0,
4.4 Hz, 1H), 8.11 (tt, J = 8:0, 3.6 Hz, 1H), 8.05 (dd,
J = 4:8, 1.6 Hz, 1H), 8.74 (d, J = 2:4 Hz, 1H); 13C
NMR (100 MHz, CDCl3): � (ppm) =109.29, 123.11,
129.09, 130.10, 135.60, 148.93, 150.14. Z=E = 97=3.
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(Z)-1,4-bis-(�-Bromovinyl)benzene (entry 15): 1H
NMR (400 MHz, CDCl3): � (ppm) = 6.49 (d, J =
8:2 Hz, 2H), 7.08 (d, J = 8:2 Hz, 2H), 7.73 (s, 4H); 13C
NMR (100 MHz, CDCl3): � (ppm) = 106.94, 128.85,
131.88, 134.82. Z=E = 96=4.
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