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Abstract. The performance of visual servoing systems can be enhanced through nonlinear
controllers. In this paper, a sliding mode control is employed for such a purpose. The
controller design is based on the outputs of a pose estimator which is implemented on the
scheme of the Position-Based Visual Servoing (PBVS) approach. Accordingly, a robust
estimator based on unscented Kalman observer cascading with Kalman �lter is used to
estimate the position, velocity and acceleration of the target. Therefore, a PD-type sliding
surface is selected as a suitable manifold. The combination of the estimator and nonlinear
controller provides a robust and stable structure in PBVS approach. The stability analysis
is veri�ed through Lyapunov theory. The performance of the proposed algorithm is veri�ed
experimentally through an industrial visual servoing system.
© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Visual Servoing (VS) is applied for tracking the move-
ment of any speci�c objects based on a vision input.
Di�erent research �elds, like robotics, image process-
ing, and control are applied to achieve VS. It has
wide applications in robotics and mechatronic systems
like medical robotics, planetary robotics and especially
their extensive application in industrial robots [1,2].
The respective control loop in VS has di�erent ar-
chitectures such as look-and-move structure and per
Weiss structure [3]. Look-and-move structure has an
internal feedback controller, as being used in many
industrial robots. Such setups may accept Cartesian
velocity or incremental position commands and permits
to simplify the design of control signal [3].
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There are three main approaches in VS [4],
Position Based Visual Servoing (PBVS) [5], Image
Based Visual Servoing (IBVS) [6], and \2&1/2 D"
visual servoing [7], where PVBS is the most frequently
used method [5]. In PBVS, the control signal is
produced based on the estimation of position and
orientation (pose) of the target with respect to the
camera. The accuracy of the estimated pose is directly
related to the measurement noise and the camera
calibration [8]. Extended Kalman Filter (EKF) and
Unscented Kalman Filter (UKF) have been developed
to deal with the pose estimation in the noisy and
uncertain situations. The aforementioned estimators
have shown to be quite e�ective in practice [9-11].
In order to include the velocity and acceleration of
the target, the appropriate dynamic model for the
relative motion between the camera and the target is
necessary. Conventional models are applied based on
the constant velocity or the acceleration model which
assumes invariable relative velocity or acceleration at
each sample time [1].

After estimating the pose of the target object, the
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main goal in VS problem is to enhance the performance
of tracking via a controller. Since the system in hand (a
robot) has nonlinear dynamics, a nonlinear controller
has to be designed for this purpose. For such a design,
we use Sliding Mode Control (SMC) in order to achieve
the robust performance in the noisy environment as
in the industrial environments. Generally, in many
forms of VS, the path planning and controlling the
end e�ector of robot are performed separately. By
using SMC approach, the aforementioned tasks can be
combined together. The combination helps to tune the
whole control system together. In SMC, all states of
the system are enforced to converge toward a desired
sliding surface within a �nite time and to stay on this
manifold for all further times. In the present paper,
we de�ne a PD-type sliding mode surface to generate
a desired path. The novelty of such a selection is
the employment of the estimated position, velocity
and acceleration of the target for de�ning the sliding
manifold. The estimated values are obtained from
a UKF cascade structure which has been recently
proposed in [12]. The information of the estimated
model and the observation inherits uncertainties which
can be directly considered in the proposed controller.
The stability of the closed-loop system is proved by
Lyapunov theory. As the target object is dynamically
changing (in contrast to the pre-planned path), the
sliding surface is adapted to the varying positions in
the present case.

So far, various types of SMC have been used for
VS system in [12-14]. Usually, based on the nonlinear
dynamics model of the system, SMC is designed. To
the best knowledge of the authors, the stability analysis
of the closed-loop system with the combination of
the pose estimator in uncertain and noisy situations
has not been focused signi�cantly. SMC for PBVS
problem has been introduced theoretically for a 6
DOF robot manipulator in [15]. The desired path is
de�ned in which errors are bounded, and the target
visibility is guaranteed. In [16], a sliding surface is
designed with the consideration of uncertainties in
the nonlinear dynamics of the robot. The proposed
algorithm in [17] used dynamics of robot that is too
complex to implement on industrial robots. In our case,
PD-type sliding surface is developed for a �ve degrees
of freedom robot manipulator, with PBVS approach.
The existence of the internal feedback controller on
the industrial robot manipulator makes the controller
design simpler, since the robot accepts the position
command in the task space. Through the internal
loop, a simpli�ed motion kinematics model can be
used for the industrial robot, where the controller
inputs are the joint velocity signal. To produce
the control signal, the information of the pose es-
timator is used as the sliding manifold input. Fi-
nally, the tracking performance of the adapted control

Figure 1. Experimental setup.

scheme on the industrial robot is veri�ed experimen-
tally.

2. Theoretical background

In this section, �rst the experimental setup, that has
been used for VS purpose, is presented. Then, the
formulation of UKO+KF pose estimators is reviewed.
Furthermore, practical implementation issues of apply-
ing control outputs to an industrial manipulator are
described.

2.1. Experimental setup
The experimental hardware setup, which is shown in
Figure 1, consists of a 5-DOF RV-2AJ robot manipu-
lator produced by Mitsubishi Co. augmented with a
one degree of freedom linear gantry. This robot has
�ve degrees of freedom motion, with one degree of
redundancy, but the orientation of the wrist about the
tool axis is not presented in the structure. Additionally
a PC equipped with a Pentium IV (1.84 GHz) processor
and a 1 GB of RAM is utilized as the processor.
A camera is attached on the end e�ector of the
manipulator, which is a Unibrain Co. product with
30 fs frame rate and a wide lens with 2.1 mm focal
length. Since we need a real-time setup, OPENCV
Library is used in the Visual Studio environment.

2.2. Feature extraction and pose estimation
In the conventional pose estimation, the relative pose
of the object with respect to the camera frame in 3D
coordinates is calculated. To perform this calculation,
some speci�ed points as feature points attached to
the target object in 2D coordinates of the image are
needed. In Figure 2, the projections of feature points
are illustrated in the image frame which is denoted by
pimi = (ui; vi); i = 1; � � � ; n. The feature points in
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Figure 2. Camera, object and image frames.

the object frame can be expressed as poi = (xoi ; yoi ; zoi );
i = 1; 2; � � � ; n, n � 3, and represented in the camera
frame by pci = (xci ; yci ; zci ). The relationship between pci
and poi can be de�ned as the following equation:

pci = R(roll, pitch, yaw):poi + T; (1)

in which, roll, pitch and yaw are the orientation Euler
angles and the translation are represented by the vector
T = [XY Z]T .

Using a pin-hole camera model, the relationship
between pimi and pci can be formulated as follows:

�
ui
vi

�
] =

h� f
Px � f

Py

i264xcizci
yci
zci

375 ; (2)

where f is the focal length, and Px and Py are inter-
pixel spacing parameters along ui and vi. By folding
the 3n equations (1) into the camera model (2), a set
of 2n nonlinear equations is achieved. In order to solve
this set of nonlinear equations and achieve a unique
solution, at least 3 non-aligned points on the object
are required [17]. There are several researches that
have applied EKF and UKF for pose estimation [18,19].
Recently, [10] has proposed EKF in addition to KF
that guarantees its convergence; however, in [12], it is
shown that the performance of this method is directly
dependent on the initial condition, and therefore, the
employment of UKF instead of EKF leads to a better
performance. Due to the promising features of this
estimator, this technique has been used as the pose
estimator engine in this paper. In this estimator, the
nonlinear-uncertain estimation problem is decomposed
into a nonlinear-certain observation in addition to a
linear-uncertain estimation problem. The �rst part is

handled using the Unscented Kalman Observer (UKO)
and the second part is accomplished by a Kalman Filter
(KF). The pose estimator is fed to a robust and fast
modi�ed Principal Component Analysis (PCA) based
feature extractor proposed in [12]. This robust method
is used in this article to estimate the target pose in an
uncertain and noisy environment.

2.3. Singularity avoidance
After estimating the desired dynamic parameter of
the target, these parameters have to be converted to
the joint space of the robot manipulator. Since there
is no prior knowledge on the desired trajectory, and
the robot is a �ve degrees-of-freedom manipulator, the
robot may encounter singular con�gurations within its
prescribed trajectory. To remedy this issue, inverse
kinematics of the manipulator is solved in a real-time
routine to generate a singular free motion with the
consideration of the joint limits for the robot. A
practical motion planner, which is proposed by the
authors in [20], has been fully elaborated. The applied
method shows a well performance when there is no
prior information about the via-points and the �nal
destination of the desired trajectory.

Figure 3 represents the complete loop of the visual
servoing system. An image is captured by the camera
applied as the input of the \Feature Extractor" block.
After estimating the target pose by UKO+KF, the
relative pose is commanded to the SMC as a desired
position.

3. Design of SMC for PBVS system

The whole process of the VS loop is demonstrated in
Figure 4. In the �rst step, an image is captured by
a camera. Then the desired features are extracted
from the mentioned image. After that, the position,
velocity and acceleration of the object are estimated
by UKO+KF estimator. Error, which is de�ned as
the relative pose, is applied as the input to the sliding
surface. Then the control signal (in velocity level)
is produced via SMC, which is proportional to each
Degree Of Freedom (DOF) of the robot. According to
the singularity avoidance, such signals are employed
to solve the inverse kinematics problem in order to
calculate the angle of each joint. In the �nal step, the
outcome signal is commanded the internal controller of
our industrial robot. Note that, because of the internal

Figure 3. The complete VS loop.



M. Parsapour et al./Scientia Iranica, Transactions B: Mechanical Engineering 22 (2015) 844{853 847

G (X;Y; Z; roll, pitch, yaw) =
�
ui
vi

�
; i = 1; 2; � � � ; n; n � 3

=

264� f
Px �X+cos(roll)cos(pitch)xoi+(cos(roll)sin(pitch)sin(yaw)�sin(roll)cos(yaw))yoi+(cos(roll)sin(pitch)cos(yaw)+sin(roll)sin(yaw))zoi

Z�sin(pitch)xoi+cos(pitch) sin(yaw)yoi+cos(roll) cos(yaw)zoi

� f
Py � Y+sin(roll) cos(pitch)xoi+(sin(roll) sin(pitch) sin(yaw)+cos(roll) cos(yaw))yoi (sin(roll) sin(pitch) sin(yaw)�cos(roll) sin(yaw))zoi

Z�sin(pitch)xoi+cos(pitch) sin(yaw)yoi+cos(roll) cos(yaw)zoi

375 ;
(3)

Box I

Figure 4. Block diagram of the overall process.

controller, we can assume the controller as a prefect
tracker. The whole process is repeated until the target
object is tracked perfectly.

Traditionally, a visual servoing system includes
the feature tracking and the feedback controlling as
two separate processes. This separation limits tune
the whole system performance. In the present paper,
we propose to use SMC to perform VS for mentioned
tasks. The path planning is accomplished using the
sliding mode surface, and the performance is preserved
by the sliding mode control output. The stability of
the whole control system is proved by Lyapunov theory.
Moreover, the robust behavior of SMC against the esti-
mation noise provides a suitable tracking performance
for the whole visual servoing system.

3.1. Controller design
In this approach, instead of using the dynamics of
the system, we have used the estimated values from

UKO+KF and their corresponding desired values to
de�ne the sliding mode surface. The main purpose is
tracking a speci�c object whether the object is moving
or not. According to Section 2.1, by substituting
Eq. (1) into the pin-hole camera model (Eq. (2)), a
set of nonlinear equations is obtained as Eq. (3) and
shown in Box I.

These nonlinear equations show the relation be-
tween \the relative pose of the target object with
respect to the end-e�ector (camera) frame in the 3D
coordinates" and \the feature points attached to the
target object in 2D coordinate of the image frame".

By considering a constant velocity model that
assumes invariable relative velocity of the target object
with respect to the end-e�ector at each sample time,
we may reach the following model for the relative pose
of the object with respect to the end-e�ector:

Wk = AWk�1 + �k;

Pk = G(WK) + �k; (4)

where:

W=
h
X; _X;Y; _Y ; Z; _Z; roll; _roll; pitch; _pitch; yaw; _yaw

iT
;

and A is a block diagonal matrix with
�
1 T
0 1

�
blocks.

�k and �k are the model uncertainty and the mea-
surement noise, respectively, and they are expressed
by a zero mean Gaussian noise. Pk is a vector of
the normalized coordinates of the feature points in the
image plane.

ui and vi (for at least 3 non-aligned feature points
which are attached to the target object) are calculated
by Eq. (2). These points are fed into a UKO to
estimate the vector W . The estimation process is
explained in [21]. According to the proposed structure
in [10,12], the pose vector is estimated by UKO in an
iterative loop with the desired stop condition. Here,
the estimated velocity is zero, since the same input is
used in several epochs. Moreover, utilizing only one
set of input data causes an inaccurate estimation. To
overcome such a problem, and to estimate the velocity
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and acceleration of the object, the UKO output is
fed to a linear Kalman �lter. Then by changing the
output and considering a constant acceleration model
that assumes invariable relative acceleration at each
sample time, we may reach the following linear model:

Vk = BVk�1 + vk;

Pok = CVk + �k; (5)

where:

V =
�
X; _X; �X;Y; _Y ; �Y ; Z; _Z; �Z; roll; _roll; �roll;

pitch; _pitch ; �pitch; yaw; _yaw; �yaw
�
;

V is the state vector that shows the relative motion
parameters between the camera and the target object.

B is a block diagonal matrix with

241 T 0:5T 2

0 1 T
0 0 1

35
blocks. Pok is the pose vector with 6 translational and
rotational elements as X, Y , Z, roll, pitch and yaw. �k
and vk are the model uncertainty and the measurement
noise vectors, respectively. vk is related to the static
pose estimator precision. C is a 6�18 matrix with the
following format:

cij =

(
1 j = 4i� 3
0 otherwise

: (6)

Having mentioned the linear model and the desired
accuracy of the initial estimation, the KF method is
implemented by the recursive formulation to estimate
the pose, velocity and acceleration of the target object
with respect to the end-e�ector. After the estimation
process, we can de�ne the desired sliding surface. Let
us de�ne the following PD-type sliding surface:

S =
�
d
dt

+ �
�
e = _e+ �e; (7)

in which e is the relative pose of estimated position
of the target with respect to the position of the
end-e�ector: and, � is the positive constant which
speci�es the rate of convergence toward the sliding
mode manifold. The sliding surface vector in Eq. (7)
is a �ve tuple S =

�
sx sy sz sA sB

�T which
contains the manifold motion variable in x, y and z
directions, and orientation about the z and y axis of
the robot base coordinate, called in here A, and B
orientations, respectively. Based on the relative pose,
the state vector is converged toward the sliding surface.
Then the state shall smoothly slide on the surface to
reach the target state. Because of the movement of

the target, the trajectory path is dynamically changing.
Therefore, the position of the current state may diverge
from the sliding surface. Hence, the process has to
be executed iteratively with a short refreshing period
to adapt to the varying positions. There are two
approaches to de�ne the required control signal.

The �rst control design is proposed as follows:

v1
e�e = ��(t) sgn(S); (8)

in which �(t) is a varying time coe�cient which will
be discussed in the next section. sgn(:) denotes the
signum function.

The second control signal design is proposed as
follows:

v2
e�e = ���1�e+ vdes � k sgn(S); (9)

in which k is the positive constants; �e is the acceleration
error between the end-e�ector and the goal; and, vdes
is the desired velocity of the object.

The �rst design consists of only a switching
term, while in the second design, a linearizing term
is added to the switching term to ensure the sliding
condition [22].

3.2. Stability analysis
In the design of the control laws, the sliding condition
of the manifold is equal to _e + �e = 0 that constrains
the motion of the system. Choosing � > 0 guarantees
that all the states of the system tend to zero as time
tends to in�nity. The rate of the convergence can be
controlled by the choice of �. The following derivative
equation is needed to obtain the control signal:

_S = �e+ � _e = �e+ �
�
v1
e�e � vdes

�
; (10)

where _e represents the di�erence between the velocity
of the end-e�ector and the target. Furthermore, ve�e
is the end e�ector velocity, which has been used as the
control signal in the practical implementation.

The stability analysis of this algorithm is based
on Lyapunov direct method. Consider the following
positive de�nite Lyapunov function candidate V =
1
2S

TS. To show the stability of this algorithm, the
derivative of the Lyapunov function candidate has to be
negative. To provide these circumstances, the control
signal has to be limited by a speci�ed function. This
function is a subject to the robot velocity constraints
and the amplitude of the estimation noise. The
following inequality can be speci�ed from Eq. (8).
Function '(t) will satisfy the following inequality [23]: �e� �vdes

�

1 � '(t): (11)

Based on the upper bound of the control signal, the
derivative of the Lyapunov function candidate, _S, is



M. Parsapour et al./Scientia Iranica, Transactions B: Mechanical Engineering 22 (2015) 844{853 849

determined by:

_V = S _S = S (�e� �vdes) + S�v1
e�e; (12)

_V � �jSj'(t) + �Sv1
e�e: (13)

By folding the �rst control signal Eq. (8) into Eq. (12)
the following inequality can be obtained for the derivate
of Lyapunov function candidate:

_V � �jSj'(t) + �S(��(t) sgn(S)): (14)

With the consideration of �(t) � '(t) + �0, the
derivative of the Lyapunov function will be semi-
negative de�nite (obviously, _V = 0 when S = 0).

_V � ���0jSj: (15)

Therefore, the trajectory reaches the manifold S = 0
in the �nite time and, once on the manifold, it cannot
leave it, as forced by the condition (Eq. (15)).

The same procedure can be done for the second
controller design. Combining Eqs. (9) and (12), we
have:

_V =S(�e��vdes)+S�
����1�e+vdes� k sgn(S)

�
; (16)

_V = �k�jSj:
In this approach, asymptotic stability is veri�ed by
Eq. (16) because the derivate of the Lyapunov function
candidate is negative de�nite.

There are some factors to select one of the con-
trollers designs in our practical implementation. The
second control design has a linearizing term in contrast
to the �rst control design. The analysis of the second
design can be failed owing to the accuracy estimations
in observations, in the presence of uncertainties. On
the other hand, the �rst design permits to presume un-
certainties in more suitable condition for VS problem.
In the �rst design, �(t) is directly determined by the
control signal limitations, while in the second design
the estimated values from UKO+KF a�ected such a
limitation. Moreover, the command of the robot might
be greater than the legal bound of the control signal.
Therefore, the �rst control design is selected for the
practical implementation.

3.3. Modi�ed controller design
SMC has encountered some limitations in practice,
especially the chattering [23]. The most conventional
modi�cation used to limit the chattering is the bound-
ary layer approach [23,24]. To attenuate chattering,
the signum function can be replaced by a high-slope
saturation function. The control law is altered as:

v1
e�e = ��(t)sat(s="); (17)

Table 1. The controller parameters.

Type of
switching
function

' �0 � "

Signum 0.1 0.05 1 |

Saturation 0.1 0.13 1 "x = "y = "z = 0:5
"A = "B = 0:38

where sat(:) is the saturation function and " is a
positive constant. A suitable approximation requires
the use of small ". For the stability analysis, a
similar analysis can be performed when jSj � ", and
the derivatives of the Lyapunov function satis�es the
inequality _V � ���0jSj. Therefore, whenever jSj � ",
jS(t)j will be decreasing, until it reaches the set fjSj �
"g in a �nite time and remains inside thereafter. Inside
the boundary layer where jSj � ", we cannot have
asymptotic stability and only Uniformly Ultimately
Bounded (UUB) stability with an ultimate bound can
be obtained. The ultimate bound can be reduced by
decreasing the depth of the boundary layer [23].

3.4. Controller parameters selection
According to the constraints of our experimental VS
system, the controller parameters are tuned to the
selections shown in Table 1. First, based on the tradeo�
between _e and e from Eq. (7), the rate of convergence
(�) is selected. Then from Eq. (11), with respect to the
maximum acceleration of the robot, and the maximum
velocity of the goal object, function '(t) is chosen.
According to the accuracy of the tracking error, �0 is
selected. The width of the boundary layer (") is tuned
in order to reduce the oscillations of the control signal.

4. Experimental results

In this section, the performance of the proposed al-
gorithm is veri�ed through a few experiments. In the
�rst experiment, e�ciency of visual regulation with two
di�erent types of switching functions in SMC technique
is performed. Second experiment veri�es the overall
performance of the servoing system.

4.1. Experiment I
Visual regulation is performed in this experiment. The
pose of the end e�ector should be regulated accordingly
for any arbitrary �xed pose of the object. The desired
sliding mode manifold is produced based on the error
between the estimated pose of the target with respect
to the pose of the end e�ector. The main behavior of
the control signal depends on the type of the switching
function. Two di�erent types of functions, signum and
saturation, are employed. To analyze the behavior of
these regulations, the initial pose of robot is reset to
the same pose for each round of the experiment.

The results of the sliding surface, the control sig-
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Figure 5. Sliding surface with sign function in (a) X
direction, and (b) A orientation.

Figure 6. Control signal with sign function in (a) X
direction, and (b) A orientation.

Figure 7. Derivative of Lyapunov function with sign
function in (a) X direction, and (b) A orientation.

nal (velocity signal) and the derivative of the Lyapunov
function in theX direction and A orientation are shown
in Figures 5-7 for signum function, respectively. The
X direction and A orientation are selected as the rep-
resentatives of translation and orientation respectively,
to keep the number of illustrated �gures at a managing
level. As can be seen in Figure 5(a), the trajectory lies
on the sliding surface in the X direction, and converges
toward zero (in 0.2 second). The trajectories and the
resulting sliding variables reach zero, which indicates
that the error of the relative pose tends to zero in
0.8 second and lies on it after the object has been
tracked. This issue can be seen in Figure 6, too. The
velocity in the X direction is produced as -0.15 cm
per second during the �rst 0.2 second and after the
tracking error tends to zero. The oscillations are due to
the chattering; however, the variations remain around
zero. This indicates that the controllers have suitably
commanded the robot to stay on the sliding surface.
As the object has no rotational motion, the control
signal and the sliding surface in the A orientation are
dithering around zero as shown in Figures 5 and 6(b).
Figure 7 shows that the derivative of the Lyapunov

Figure 8. Sliding surface with sat function in (a) X
direction, and (b) A orientation.

Figure 9. Control signal with sat function in (a) X
direction, and (b) A orientation.

Figure 10. Derivative of Lyapunov function with sat
function in (a) X direction, and (b) A orientation.

function is always negative which veri�es the stability
of this algorithm in practice.

In our case, the oscillations cannot signi�cantly
harm the mechanical parts of robot, since they are
attenuated through the implemented �lters in the inner
structure of the robot. In practice, the chattering
phenomenon is not desirable. To have a better per-
formance in controlling the robot, we have replaced
the signum function by the saturation function. The
results of this case for the sliding surface, the control
signal and the derivative of the Lyapunov function
in the X direction and A orientation are shown in
Figures 8-10, respectively. The trajectories and the
resulting sliding variable reach the desired condition
about 0.2 second; however, between 0.2 and 0.5 seconds
the tracking errors are not exactly zero, and they are
restricted in a bounded region. This is in complete
agreement of the stability analysis that guarantees only
UUB condition on the tracking errors. In Figure 9,
the same behavior can be seen in the control signal,
too. The signal is produced in the X direction as
�0:22 cm per second and after that, this signal reaches
zero in 0.15 second. This signal is not smooth, but
the oscillations are signi�cantly reduced. Since the
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Table 2. The obtained relative position from UKO
estimator.

Position/
orientation

Initial
real

value

Initial
estimated

value

Final
estimated

value
X (cm) 9 9.03 0.25
Y (cm) 6.5 -6.59 -0.24
Z (cm) 28 27.78 18.10
A (deg) -25 -23.91 1.00
B (deg) 0 2.02 0.81

object has no rotational motion, the control signal and
the sliding surface are reached zero in 0.15 second.
Figure 10 illustrates the derivative of the Lyapunov
function which is negative during the end e�ector
movement. This veri�es the overall stability of this
algorithm.

The results of regulating the robot pose from
an initial relative pose to the desired position is
numerically summarized in Table 2. The estimated
values which are shown in Table 2 are from UKO+KF
estimator. The \Initial Estimated Value" refers to
the relative pose before the end e�ector movement.
The \Final Estimated Value" denotes the relative pose
after movement. Before performing Experiment I, the
\Initial Real Value" is set manually. By comparing
the estimated and the real pose of the target object
from this experiment and Experiment II in [12], the
nonlinear controller increases the performance of the
VS system (i.e. the \Final Estimated Value" for the
pose of the object is close to the desired pose). The
desired pose di�erence between the end e�ector and
the target object is zero in the X, Y directions and
A, B orientations, but the distance is 18 cm in the Z

direction (for safety). By assuming stop condition in
our algorithm, we prevent the small movement of robot
because of the measurement noise around the desired
pose. Thus, for the \Final Estimated Value", we will
not have exactly zero. The numerical results signify
the e�ectiveness of the suitable applied estimator in
the visual regulation methodology.

4.2. Experiment II
The evaluation of the overall performance of the
proposed visual servoing technique is the aim of Ex-
periment II, which is done through designing a few
independent motions of the object. For this purpose,
the object is moved in the X, Y , Z, A and B
directions. According to the previous experiment, a
saturation type SMC with the width of " is considered
for Experiment II.

In order to comprehend the experiment better,
the estimated relative pose of the target object with
respect to the camera frame has been shown in the Fig-
ure 11 for all directions, during the object movement.
To show the tracking errors performance, Figure 12
depicts the sliding mode surface only in the Y direction
and B orientation as samples. Figure 11 shows that
when the object moves in any directions, the errors

Figure 12. Sliding surface in (a) Y direction, and (b) B
orientation.

Figure 11. UKO+KF estimation of motion in (a) X direction, (b) Y direction, (c) Z direction, (d) A orientation, and (e)
B orientation.
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with respect to this motion will rapidly grow, and
therefore, the corresponding sliding surface will grow.
Then, the proposed controller algorithm commands the
end e�ector to move toward the target. For example,
focus on Figure 11(a). After 6 seconds, the object
is approximately moved -6 cm in the X direction.
Proportional to this movement, the sliding surface
in the X direction is generated, and the controller
compensates these errors. After approximately 4
seconds, the estimated relative pose in the X direction
decreases to zero. Similar analysis can be observed for
B orientation, as well. Figure 11(e) and 12 show that
after 25 seconds, the object starts to rotate around Y
axis by about 22 degrees; the estimator detects this
rotation. Consequently, the controller rotates the end
e�ector and the errors decrease down to zero. The dash
line shows the desired relative pose in each direction,
so the robot manipulator is able to keep the desired
relative distance. Table 3, shows the performance of
the end e�ector movement, numerically.

To analyze the stability of visual servoing for
the moving object, consider Figure 13 that depicts
the derivatives of the Lyapunov function which
is a suitable measure for the proposed controller
strategy. The sliding surfaces in Figure 12 and the
derivative of the Lyapunov functions in Figure 13
show non-smooth movement. At the �rst glance,
the jitters in the plots seem to be non-smooth
movement, but if the plot is suitably magni�ed
at the vicinity of jitters, it can be seen that the
signal is really smooth. This fact was shown in
Experiment I, and the performance is smooth and

Figure 13. Derivative of Lyapunov function in (a) Y
direction, and (b) B orientation.

Table 3. Performance of tracking in visual servoing
experiment.

Position/
orientation

Initial
time of

movement
(sec)

Time of
tracking

(sec)

Compensated
relative
distance

(cm)
X (cm) 6 10 -6.0
Y (cm) 10 14 +6.0
Z (cm) 16 19 -5.0
A (deg) 19 24 +16.89 & -27.75
B (deg) 25 30 22

proper. Note that, as the target is moved by human,
the recorded trajectory includes minute oscillations
and vibrations which stems from the human hand
motions. For the detail examination of the overall
performance of the VS system a video clip is given
in: http://saba.kntu.ac.ir/eecd/aras/movies/SMC-
Vservo.mpg.

5. Conclusions

In this paper, we present a sliding mode controller in
PBVS approach to control and path-plan an industrial
robot manipulator. By combining the two mentioned
tasks through SMC technique, we can have a uni�ed
approach to tune the whole control system in all DOF
of robot manipulator. In the proposed approach, the
position, velocity and acceleration of the target object
are estimated through a robust estimator (UKO+KF).
The estimated values are applied to de�ne a PD-type
sliding mode surface. Then a stable and robust SMC is
employed to produce a suitable control signal to move
the robot toward the desired target. In order to select
the controller parameters, we have considered some
practical limitations and error bounds, which assume
minimization of the relative pose in each DOF of the
robot manipulator in hand. In experiments, we have
observed that the proposed structure is performing well
in noisy backgrounds. It may be concluded, that, this
technique can be used for the industrial implementa-
tion of a visual servoing system. The idea of using
SMC can be extended for IBVS approach. The stability
analysis of this algorithm can be investigated under
uncertainties, and as a result, controller parameters can
be tuned with speci�c objectives in future work.
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