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Abstract. Nonlinear free vibration of symmetric circular Fiber Metal Laminated (FML)
hybrid plates is investigated. Considering the Von Karman geometric nonlinearity, the
First order Shear Deformation Theory (FSDT) is used to obtain the equations of motion.
For the �rst time, �ve equations of motion of circular FML plates are derived in terms of
plate displacements. The obtained equations are simpli�ed for analyzing the �rst mode
of symmetric circular plates. Using the Galerkin method, �ve coupled nonlinear Partial
Di�erential Equations (PDEs) of motion are transformed to a single nonlinear Ordinary
Di�erential Equation (ODE), which is solved analytically by the multiple time scales
method, and an analytical relation is found for the nonlinear frequency of these plates.
The obtained results are compared with the published results and good agreement is found.
Moreover, the e�ects of several parameters on linear and nonlinear frequencies and the free
vibration response are investigated.
© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

FMLs are laminated composites in which isotropic
and orthotropic layers are combined in alternate form,
where isotropic layers are the outer layers protecting
the inner layers from impact and environmental condi-
tions, such as humidity and erosion. Because of their
low weight, high strength and sti�ness and long life,
they are good alternatives for traditional metals in
aerospace and military applications.

Many parts of military, aerospace, naval, and
nuclear machinery can be modeled as plates, which
is why the buckling and vibration of plates have
been investigated extensively. The theories of plates
can be divided into two main groups: the Classical
Plate Theory (CPT) in which the shear stress is
ignored, and shear deformation theories. The simplest
shear deformation theory is the FSDT [1]. Although
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Higher order Shear Deformation Theories (HSDT),
like Reddy's Third order Shear Deformation Theory
(TSDT) [1], give more accurate results, they result in
much more complicated equations of motion.

There are many studies dealing with the lin-
ear vibration of circular plates using di�erent pate
theories [2-20]. On the other hand, nonlinear vi-
bration studies are relatively few. Sarma and co-
workers [21] studied the nonlinear free vibration of
two layered hybrid plates. Nageswara and Pillai [22]
analyzed a simply-supported rectangular plate using
CPT theory and Von Karman nonlinear strains. The
obtained three coupled nonlinear PDEs were solved
numerically. Experimental and CPT-based theoretical
nonlinear vibration analysis of a Glare 3 hybrid plate
was done by Harras and co-workers [23]. Using
the Galerkin method [24] and performing two-mode
analysis [25], inclusion of in-plane displacements and
rotary inertia e�ects in equations of motion [26], anal-
ysis of orthotropic circular plate with an embedded
isotopic core layer [27] and the study of transition
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from periodic to chaotic vibrations [28] were also
considered. Peng and co-workers [29] performed a
semi-analytical analysis of nonlinear vibration of cir-
cular isotropic plates using the Di�erential Quadra-
ture Method (DQM). The nonlinear free vibration of
simply-supported rectangular FML plates, based on
FSDT, and using the method of multiple time scales,
was investigated by Shooshtari and Razavi [30]. He
and co-workers [31] presented a general perturbation
solution for large-de
ection analysis of circular plates
having di�erent moduli in tension and compression.
Liu and Chen [32] reviewed the axi-symmetric vi-
bration of polar orthotropic circular plates using the
axisymmetric �nite element method. Civalek [33-34]
studied the nonlinear static and dynamic response
of thin plates using HDQ and FD methods and, in
another work, introduced a coupled methodology for
numerical solution of the same problem. Ducceschi
et al. [35] investigated the interaction of modes of
thin rectangular plates in nonlinear free and forced
vibrations. Zheng et al. [36] investigated nonlinear free
vibrations of axisymmetric polar orthotropic circular
membranes using large de
ection theories. Shooshtari
and Razavi [37] studied the nonlinear free and forced
vibration of anti-symmetric hybrid laminated rectan-
gular plates based on FSDT and the multiple scales
method. Nonlinear vibration of laminated rectangular
plates under several boundary conditions was studied
by Amabili and Karazis [38] using three di�erent plate
theories. Large amplitude vibration of thin rubber
rectangular plates was studied by Breslavsky et al. [39]
in which both geometric and physical nonlinear e�ects
were considered. Rahimi et al. [40], using DQM,
investigated the linear free vibration of FML annular
plates. To the best knowledge of the authors of
this article, there is no investigation dealing with
the nonlinear vibration of circular FML plates. So,
this study is performed to �ll the gap in the litera-
ture.

In this work, nonlinear free vibration of symmetric
circular FML plates is investigated analytically, con-
sidering the Von Karman geometric nonlinearity, and
based on the FSDT. For the �rst time, �ve equations
of motion of circular FML plates are derived in terms
of plate displacements. The obtained equations are
simpli�ed for analyzing the �rst mode of symmetric
circular plates. Using the Galerkin method, �ve
coupled nonlinear PDEs of motion are transformed to
a single nonlinear ODE, which is solved analytically
by the multiple time scales method, and an analytical
relation is found for the nonlinear frequency of these
plates. The obtained results are compared with the
published results and good agreement is found. The
e�ects of several parameters on linear and nonlinear
frequencies and the free vibration response are investi-
gated, too.

2. Formulation of the plate motion

The displacements �eld of the FSDT in polar coordi-
nates is:

ur(r; �; z; t) = u(r; �; t) + z'r(r; �; t);

u�(r; �; z; t) = v(r; �; t) + z'�(r; �; t);

uz(r; �; z; t) = w(r; �; t); (1)

where u, v and w are the displacements of the mid-
plane along r, �, and z axes, respectively; ur, u�, and
uz are the displacements of any point of the plate along
r, �, and z axes, respectively. 'r = @u

@z and '� = @v
@z are

rotations of mid-plane about � and r axes, respectively
(Figure 1). Using the above displacements �eld in Von
Karman nonlinear strains [41], the following strains
�eld is obtained:266664
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where subscript (,) denotes the di�erential with respect
to the following parameter.

The equations of motion of plate are derived by
the Hamilton principal, i.e.:

�W =
Z t

0
(��� �T ) dt = 0; (3)

Figure 1. Undeformed and deformed geometries of an
edge of a circular plate in the FSDT.
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where �T and �� are the virtual kinetic energy and the
virtual strain energy, respectively. So, the following �ve
equations of motion are obtained [41]:
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where Nrr, N��, and Nr� are stress resultants; Mrr,
M��, and Mr� are torque resultants; I0, I1, and I2
are moments of inertia; and Qr and Q� are shear
stress resultants. These parameters are obtained by
the following relations:8>>>>>><>>>>>>:
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where K is the shear correction factor.
To obtain the equations of motion in terms of

displacement, Hooke's law is used, which gives:
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= I1u;tt + I2'r;tt; (13)
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in which Aij are extensional sti�nesses; Bij are
bending-extension coupling sti�nesses; and Dij are
bending sti�nesses [1].

Eqs. (10) - (14) are the equations of a motion of
an arbitrary circular laminated plate. We can ignore
derivatives with respect to �, due to the existence
of axi-symmetry in the �rst mode of motion. For a
symmetric (Bij = 0) cross-ply (D26 = D16 = A26 =
A16 = A45 = 0) lay-up, by neglecting the in-plane
inertia terms (u;tt = v;tt = 0) [41], and assuming �
as an even function of thickness, z (i.e., I1 = 0), the
equations of motions are reduced to:
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Eq. (17) can be solved individually by separation of
variables. Substitution of '� = p(t)W (r) into this
equation gives:
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where � is the frequency parameter and obtained
by using the boundary condition; J1() is the Bessel
function of order one; and an and  are found by using
the initial conditions. Since the di�erential equation of
Eq. (17) is decoupled from the two coupled equations of
motion (i.e., Eqs. (15) and (16)), the natural frequency
of �=

p
I2 is not related to the natural frequency of the

�rst mode of the plate. That is, rotation of the plate
about the r-axis ('�) oscillates on its surface as an
independent degree of freedom.

The Galerkin method (
RR
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used to convert the PDEs of motion to a single ODE,
where L(r;t) is the di�erential equation that is to be
solved, and g(r) is an unknown spatial function, which
should be assumed in a way that satis�es the boundary
conditions (w;r(R; t) = 0; w(R; t) = 0) and the mode
shape of the plate.
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in which R is used for de�nite integration. The only
unknown parameter in Eq. (19) is w. Mbakogu and
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Pavlovic [14] used the following value for w to obtain
the natural frequency of the �rst mode, which is also
used in this study. However, the rotation is proposed
for the �rst time:
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m is an unknown parameter. Performing the Galerkin
method, the following nonlinear ODE is obtained:
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functions of material and geometric properties of the
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In order to �nd the unknown parameter of m in
Eq. (20), m is found for di�erent values of K and
h=R in such a way that the best approximation
for the natural frequency is obtained. Then, the
regression between these optimum points gives the
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3. Implementation of the multiple time scales
method

To solve Eq. (22) by the method of multiple time scales,
the nonlinear terms of this equation are multiplied by
a positive dimensionless parameter denoted by " which
will be equated to unity after obtaining the nonlinear
frequency [42]. So:
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The solution of Eq. (26) is f0 = A1(T1; T2)exp(i!T0) +
cc, where A1 is an unknown complex function of T1 and
T2, which is to be found, and cc denotes the complex
conjugate of the preceding terms. By substituting f0
into Eq. (27) and noting that 
2 = 2�2, the following
is obtained:

D2
0f1 + !2f1 =

��2i!D1A1 � 3A2
1A1�2

+!2A2
1A1�2� exp(i!T0)

+
�
3!2�2 � �2�A3

1exp(3i!T0) + cc; (29)

in which A1 is the complex conjugate of A1. To have
a periodic solution for f1, the coe�cient of exp(i!T0)
must be equated to zero, which gives:

�2i!D1A1 � 3A2
1A1�2 + !2A2

1A1�2 = 0: (30)

So, Eq. (29) gives f1 = Xexp(3i!T0) + cc, where X =
1

8!2 (�2 � 3!2�2)A3
1. Substitution of f0 and f1 into

Eq. (28) gives:

D0
2f2 + !2f2 =

�
(!2�2 � 3�2)XA1

2 �D2
1A1
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+i!(�2D2A1�4�2A1A1D1A1�2�2A1
2D1A1)

�
exp(i!T0)�

�
6�2A1A1X � 6i!D1X

+ �2(�18!2XA1A1 + 6i!A1
2D1A1

� 2i!A1
2D1A1)

�
exp(3i!T0) +

�
�3�2A1

2X

+ 25�2!2XA1
2
�

exp(5i!T0) + cc: (31)

To have a periodic solution for Eq. (31), again, the
coe�cient of (i!T0) is equated to zero, i.e.:n

(!2�2 � 3�2)(�2 � 3!2�2)A3
1A

2
1=(8!

2)
o

�D2
1A1 + i!

�
�2D2A1 � 4�2A1A1D1A1

�2�2A2
1D1A1

�
= 0: (32)

Assuming A1(T1; T2) = 1
2p(T1; T2)exp (iq(T1; T2)),

where p and q are real functions of T1 and T2, and
substituting it into Eqs. (30) and (32), gives the
following di�erential equations:

!
@p
@T1

= 0; !
@p
@T2

= 0;

p!
@q
@T1

+
1

8!2 (!2�2 � 3�2)p3 = 0;

!p
@q
@T2

=�
�

(!2�2 � 3�2)(�2 � 3!2�2)
256!2

+
(!2�2 � 3�2)2

128!2 +
(!2�2 � 3�2)�2

16

�
p5:
(33)

Solving these equations gives:

p = p0;

q =
p0

2

16!

n
2q1�+

�q2

2
+
q3

8
+ q4

�
p2

0�
2
o
� + q0; (34)

in which:

q1 = 3�2 � !2�2; q2 = q1(�2 � 3!2�2)
�

(8!2);

q3 = �q1
2=!2; q4 = ��2q1:

By solving Eq. (31), it is found that:

f2 =
Y1

8!2 p0
2A1

3exp(3i!T0)

+
Y2

24!2A1
5exp(5i!T0) + cc;

where:

Y1 =
3

32!2 (9!4�4 � �4)� 3
4
�2q1;

Y2 =
1

8!2 (�2 � 3!2�2)(3�2 � 256!2�2):

So, substitution of f0, f1, and f2 into the assumed
f(�; �) =

P2
n=0 "

nfn(T0; T1; T2) gives:

f=p0 cos cos(!nl�+q0) + p0
3Y3 cos cos(3!nl� + 3q0)

+ p0
5
�
Y4 cos cos(3!nl� + 3q0)

+ Y5 cos cos(5!nl� + 5q0)
�
; (35)

where Y3 = �2�3!2�2

32!2 , Y4 = Y1
32!2 and Y5 = Y2

384!2 .
In this equation, !nl is the nonlinear frequency and is
a function of the initial dimensionless amplitude (i.e.,
p0 �Wmax=h), which is obtained to be:

!nl = ! +
p0

2

16!

n
2q1 +

�q2

2
+
q3

8
+ q4

�
p0

2
o
; (36)

and the nonlinear frequency ratio can be written in the
following form:

!nl
!

=

s�
1+

q1p02

4!2 +
1

8!2 (
q12

8!2 +
q2

2
+
q3

8
+q4)p04

�
:
(37)

4. Results and discussion

4.1. Linear vibration
Determination of the shear correction factor (K) for
laminated structures is still an unresolved issue. The
e�ect of the shear correction factor is to decrease the
frequencies. That is, the smaller K is, the smaller are
the frequencies [1]. In most situations, in particular
moderately thick (a=h � 10) laminated plates, the
classical shear correction factor, K = 5=6, provides
results that are rather accurate [43]. So, in the present
work, the shear correction factor is taken to be 5=6.

Table 1 gives the material properties of the stud-
ied plates. The dimensionless natural frequency of a
clamped isotropic plate is shown in Table 2. It is seen
that there is good agreement between the results of the
present study and the results of highly accurate HSDT.
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Table 1. Material properties used in this study [30].

Property Aluminum
alloy

Steel

Glass Fiber
Reinforced
Composite
(GFRC)

E1 (GPa) 72.4 200 55.8979
E2 (GPa) 72.4 200 13.7293
G12 (GPa) 28 79 5.5898
G13 (GPa) 28 79 5.5898
G23 (GPa) 28 79 4.9033
� (kg/m3) 2700 7860 2550

v 0.3333 0.2666 0.2777

The e�ect of degree of orthotropy (K) on the
dimensionless natural frequency of circular plates is in-
vestigated, and the results are shown for a one-layered
orthotropic plate in Table 3, which shows that higher
degrees of orthotropy occur at higher dimensionless
frequencies.

The dimensionless natural frequency of a �ve-
layered Glare 3 hybrid plate is compared with isotropic
and laminated plates and shown in Table 4. The lay-
up of a �ve-layered Glare 3 is Al(2024 - T3)/[0�/90�]
GFRC/Al(2024-T3) /[90�/0�] GFRC/ Al(2024-T3).
The total thicknesses of all layers are the same. In
Glare 3, each aluminum sheet has 3 mm of thick-
ness, and the thickness of each �ber reinforced layer
is 2.25 mm (Figure 2). It is observed that the
dimensionless frequency of Glare 3 and four-layered
laminated composite plate is almost identical to that
of the isotropic plates. This occurs, because in two
laminated plates, the degree of orthotropy is unity,
i.e., K = 1. In three-layered laminated plate, K <
1, the dimensionless frequency is smaller than the
corresponding value of the isotropic plate, while, for
the �ve-layered laminated plate, K > 1. Consequently,
the dimensionless frequency is bigger than the isotropic
plate frequency. It is also noticed that the thicker
the plate is, the lower is the dimensionless frequency.
Moreover, increasing the number of layers increases the
dimensionless frequency.

The e�ect of composite layers thickness to total
thickness ratio (hc=h) of a �ve-layered FML plate on
the dimensionless frequency is also investigated, and
the results are shown for di�erent thickness-to-radius
ratios (h=R) in Table 5. It is seen that for thin plates,

Table 3. E�ect of degree of orthotropy on the
dimensionless frequency of a clamped orthotropic plate.

K Method
Series

solution�
Rayleigh [14] Present

study
0.2 7.7721 7.8622 7.700
0.4 8.3847 8.4785 8.3448
0.6 8.9975 9.0948 8.888
0.8 9.6107 9.7113 9.604
1 10.2244 10.328 10.225

1.2 10.8385 10.9449 10.842
1.4 11.4532 11.5622 11.4566
1.6 12.0684 12.1799 12.069
1.8 12.6842 12.798 12.68
2 13.3005 13.4146 13.289

2.2 13.9174 14.0352 13.899
2.4 14.5348 14.6545 14.508
2.6 15.1527 15.2741 15.11
2.8 15.7712 15.8941 15.72
� From reference [14].

Figure 2. A circular symmetric �ber metal laminated
composite plates and it's related number of lamina.

hc=h ratio has, in fact, no e�ect on the dimensionless
frequency, and its e�ect on thick plates is negligible,
too. In fact, for a speci�ed plate, the natural frequency
is a function of its geometrical and material properties.
As shown in Figures 3 and 4, change in orthotropic

Table 2. Dimensionless natural frequency of a clamped aluminum plate.

Method h=R
0.001 0.01 0.05 0.1 0.15 0.2 0.25

HSDT [9] 10.2157 10.213 10.1459 9.9461 9.6419 9.2650 8.8463
Present 10.225 10.2142 10.1200 9.9315 9.6572 9.2926 8.8266
Error % 0.136 0.029 0.213 0.112 0.181 0.297 0.265
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Table 4. E�ect of thickness-to-radius ratio and number of layers on the dimensionless frequency of several plates.

Plate h=R
0.001 0.01 0.02 0.04 0.06 0.08 0.1

One-layered steel 10.225 10.2115 10.1936 10.1486 10.0911 10.183 9.9374
One-layered aluminum 10.225 10.2142 10.1934 10.1476 10.089 10.016 9.9315
Five-layered Glare 3 10.225 10.2127 10.1984 10.1676 10.1338 10.0964 10.055

Three-layered [0�/90�/0�]GFRC 9.6506 9.6384 9.6376 9.5911 9.5538 9.5116 9.46417
Four-layered [0�/90�/90�/0�]GFRC 10.2250 10.2126 10.1978 10.1664 10.1289 10.0876 10.0413

Five-layered [90�/0�/90�/0�/90�] GFRC 10.6248 10.6123 10.6013 10.566 10.5291 10.4886 10.4428

Table 5. E�ects of h=R and hc=h ratios on the
dimensionless frequency of a �ve-layered FML plate.

hc=h
h=R

0.001 0.01 0.05 0.1 0.15 0.2

0.25 10.229 10.217 10.154 10.055 9.925 9.749
0.5 10.229 10.217 10.155 10.058 9.932 9.762
0.75 10.229 10.217 10.155 10.056 9.927 9.752

Figure 3. E�ects of degree of orthotropy and
thickness-to-radius ratio on the dimensionless natural
frequency.

Figure 4. E�ects of degree of orthotropy and
thickness-to-radius ratio on the circular natural frequency.

ratio, K, results in the changing of natural frequency.
However, in a symmetric FML plate, the variation of
total orthotropic ratio (

p
D22=D11) is approximately

negligible, while the hc=h ratio changes. Hence, natural
frequency is a weak function of this ratio.

Figures 3 and 4 show the e�ects of degree of
orthotropy and ratio on the dimensionless and circular
frequencies, respectively. It should be noticed that
the inclusion of a non-dimensionalizing parameter, i.e.,

# = R2
p
I0=D11, in the dimensionless frequency makes

the slope of the curves negative, whereas the slopes of
circular frequency curves are positive.

4.2. Nonlinear vibration
In the present study, nonlinearity is because of large
amplitudes of vibration and the system is of a hard-
ening type. On the other hand, natural frequency
can be introduced as the ratio of inner driving forces
to restoring forces. For example, for a one Degree
Of Freedom (DOF) linear mass-spring system, the
natural frequency is

p
k=m, where the spring sti�ness

(k) represents the driving force, and the mass of the
system (m) represents the inertia forces, which resist
motion. The natural frequency of a

p
k=m one DOF

linear mass-spring system is always
p
k=m, because

the driving and restoring forces do not change during
the vibration of the system. However, this not true
for nonlinear systems. Considering Figure 5, it is seen
that increasing the transverse displacement (w) results
in vertical components of normal stress, �x. So, in
the nonlinear case, the driving force is the sum of
vertical stresses and the vertical components of in-plane
stresses, whereas the restoring force, which results from
the mass of the system, does not change. That is why
the nonlinear frequency is a function of the amplitude
of motion, and increasing the amplitude of vibration
increases the nonlinear frequency of the plate. This
can be seen in Table 6, which gives the nonlinear
frequency ratios of an isotropic plate. On the other
hand, the e�ect of both h=R and w=h ratios on the
nonlinear frequency of the Glare 3 plate is investigated
in Table 7. It can be seen that nonlinear frequency is
approximately constant for a speci�ed w=h.

Figure 5. The normal stress (�x) has a vertical
component because of the bending of the plate.
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Table 6. Nonlinear frequency ratios of a circular
aluminum plate (h=R = 0:02).

w=h Method
Haterbouch and

Benamar [25]
Yamaki� Present

study
0.2 1.0072 1.0070 1.00813
0.4 1.0284 1.0278 1.03218
0.5 1.0439 1.0431 1.04990
0.6 1.0623 1.0614 1.07175
0.8 1.1073 1.1065 1.12342
1 1.1615 1.1617 1.18661

1.5 1.3255 1.3343 1.37114
2 1.5147 1.5423 1.53849

� From reference [25].

Figure 6. Back-bone curves of several grades of Glare
hybrid laminated plate (h=R = 0:05).

Back-bone curves of several grades of Glare hybrid
plate [44] are also obtained and shown in Figure 6.
It is seen that Glare 4A and Glare 2B, respectively,
exhibit the most and the least nonlinear behaviour
compared with the other grades. The reason is that,
regarding the type of layering in these plates [44], for
cases where �bers lie in a radial direction (with the
angle of [0]), the sti�ness of the plate is increased.
Figure 7 shows the back-bone curves of �ve-layered
circular Glare 3 plates for di�erent h=R ratios. This
�gure implicitly represents the e�ect of w=R ratio on
the nonlinear frequency. The further the thickness

Figure 7. Back-bone curves of �ve-layered Glare 3 for
di�erent thickness-to-radius ratio.

of the plate is increased, for a speci�ed radius, the
ratio of w=R increases, too. Thus, greater ratios of
h=R correspond to bigger values of amplitude, w. On
the other hand, as depicted in Figure 5, the e�ects
of nonlinear terms increase with an increase in plate
slope curve (w=R). Consequently, as the plate becomes
thicker, the nonlinear e�ects increase and the back-
bone curve bends away more from w=h axis. In fact,
the dimensional form of this �gure shows that for bigger
values of w=R, nonlinear terms are more e�ective.

5. Conclusion

In this paper, the nonlinear free vibration of Fiber
Metal Laminated (FML) plates is investigated. The
nonlinear equations of motion for FML circular plates
are based on the First order Shear Deformation Theory
(FSDT). Using the Galerkin method, along with the
method of multiple time scales, analytical solution for
nonlinear free vibration of these plates is obtained.
A comparison of results with those published reveal
that the present procedure can approximate linear
and nonlinear frequencies of isotropic and composite
circular plates with high precision. So, the presented
procedure is extended to study FML plates.

It is observed that in the circular plates, material
properties and, especially, the orthotropic ratio, have
a signi�cant e�ect on the mode shape of the plate. It
is shown that the nonlinear terms are proportional to

Table 7. E�ects of h=R and w=h ratios on the nonlinear frequency of a Glare 3 plate.

w=h
h=R

0.001 0.01 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2

0.5 1.0413 1.0415 1.0418 1.0425 1.0433 1.0441 1.0449 1.0458 1.0470 1.0477

1 1.1579 1.1587 1.1600 1.1625 1.1652 1.1682 1.1713 1.1746 1.1787 1.1814

1.5 1.3341 1.3357 1.3385 1.3435 1.3489 1.3548 1.3611 1.3678 1.3760 1.3813

2 1.5554 1.5580 1.5625 1.5704 1.5791 1.5814 1.5985 1.6090 1.6221 1.6305
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the slope curve of the plate and become more e�ective
while the w=R ratio grows. Since in a FML plate
and for symmetric cases, with respect to thickness, the
orthotropic ratio approaches one, it is observed that
plates with several types of FML and several ratios of
hc=h have almost similar behavior to each other.
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