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Abstract. In this paper, the pre- and post-buckling behavior of beams made of
Functionally Graded Materials (FGMs), a mixture of ceramic and metal, under separate
mechanical and thermal loading, is studied. To this end, the �nite element formulation
is established, based on the Euler-Bernoulli beam theory. The e�ects of geometrical
nonlinearity and imperfection are taken into account. The arc-length algorithm is employed
to obtain the secondary path beyond the bifurcation point. The in
uences of material
index, imperfection, geometrical parameters and di�erent boundary conditions of simply-
supported, clamped-simply and clamped-clamped, on the post-buckling characteristics
of FGM beams, are thoroughly investigated. The results generated are compared with
the existing data in the literature and good agreements are achieved. The investigation
undertaken here proves the necessity of performing post-buckling analysis on FGM beams,
especially with simply-supported end conditions.
© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Over the last three decades, the development of
conventional materials towards composite materials
and then Functionally Graded Materials (FGMs) has
played an important role in the production of more
e�cient engineering equipment and structures. The
mechanical behavior of FGM structures has been ex-
tensively studied in the literature [1-28]. Murin et
al. [1] carried out an exact solution of the bending
vibration problem of FGM beams. Aminbaghai et
al. [2] modeled a free vibration of two-dimensional
FGM beams with continuous spatial variation of ma-
terial properties. They homogenized the varying
material properties and the calculated other related
parameters using the multilayered beam and direct
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integration methods. Kapuria et al. [3] presented
a theoretical model for the bending and free vibra-
tion response of layered FGM beams. Sankar [4]
obtained an elasticity solution for a functionally graded
beam subjected to transverse loads. A simple Euler-
Bernoulli type beam theory was also developed on
the basis of the assumption that plane sections re-
mained plane and normal to the beam axis. Sankar
further found that beam theory results agree quite
well with the elasticity solution for beams with large
length-to-thickness ratio under uniform loading with
a longer sinusoidal wavelength. Sankarand Tzeng [5]
solved thermoelastic equilibrium equations for a func-
tionally graded beam in a closed form to obtain
the axial stress distribution. The study of Lu et
al. [6] concerned elasticity solutions of FGM beams
by the di�erential quadrature method. Chakraborty
et al. [7] performed analysis on static, free vibration
and wave propagation of functionally graded beams
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by means of the FE method. Li [8] developed a
uni�ed approach to analyze static and dynamic be-
haviors of the Timoshenko and Euler-Bernoulli FGM
beams. Li et al. [9] further discussed the thermal post-
buckling of FGM Timoshenko beams by the shooting
method. They expressed the e�ects of material gra-
dient properties on buckling deformation at critical
temperatures. Kiani and Eslami [10] investigated the
thermal buckling analysis of FGM beams, based on the
Euler-Bernoulli method, and discussed how in
uential
geometry and materials are on the critical buckling
temperature.

Shariat et al. [11-13] reviewed buckling phe-
nomena in perfect and imperfect functionally graded
plates subjected to both mechanical and thermal loads.
Zhao et al. [14] described the mechanical and ther-
mal buckling behavior of functionally graded plates
with arbitrary geometry, including plates that contain
square and circular holes at the centre. A �nite strip
method was applied to analyze the buckling behavior of
rectangular Functionally Graded Plates (FGPs) under
thermal load [15].

Most previous studies [1-15] have been centered
on the linear buckling of FGM beams. The necessity of
post-buckling analysis of such structures has not been
clearly discussed in the literature. The primary aim of
this paper is to highlight the signi�cance of performing
post-buckling analysis of FGM beams under di�erent
mechanical and thermal loading conditions and to
reveal the importance of boundary conditions. The
present study aims to pursue an earlier developed pre-
buckling analysis of FGM beams [10], by the authors, to
assess the post-buckling stage, non-linearly, by means
of the �nite element method.

2. Finite element formulation

Figure 1 illustrates an FGM beam with length L, width
b, and thickness h. The x axis is assumed to be along
the beam axis, and the material gradient is considered
to be along the z axis.

The balance of virtual work in static analysis
between the vector of external force, P, and internal

Figure 1. Coordinate system, geometric characteristics
and displacement details of beam.

stress, �, gives:Z
d"T�dv � d�TP = 0; (1)

in which d" and � are the variation of strain and
displacement vector, respectively. The strain used in
Eq. (1) is written in the presence of thermal strain,
based on the Euler-Bernoulli kinematic equation by the
following relation:
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where, �0T is the change of temperature relative to
the reference temperature. By employing the �nite
element method, displacements of each element, ue, we,
are discretized using the linear interpolation and cubic
Hermite functions, respectively, as [29-33]:
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Therefore, each element with length le consists of two
nodes, and the deformation of each node is represented
by three components (u;w;w0)I . The kinematic Eq. (2)
can be also divided into linear strain, "0, non-linear
strain, "NL, and thermal strain, "th, i.e.:

" = "0 + "NL + "th; (5)

in which:
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"th = ���0T; (5b)
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Considering � = G� and BNL = AG, where � is the
beam displacement vector, the kinematic equation is
re-written as follows [34]:

" = B0� +
1
2
BNL� � ��0T: (6)
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The increment of the above equation yields:

d" = (B0 +BNL) d�: (7)

For the elastic deformation, the constitutive equation
is expressed by � = E" in which E is the elasticity
modulus.

Substituting Eqs. (6) and (7) into Eq. (1), the
virtual work equation in the presence of mechanical
and thermal loadings is written as:

d�T
�
K0 +

1
2
N1 +

1
3
N2

�
� � d�T

Z
(BT0

+BTNL)E��0TdV � d�TP = 0; (8)

where:

K0 =
Z
BT0 EB0dV; (8a)

N1 =
Z �

BT0 EBNL +BTNLEB0 +GTS0G
�
dV; (8b)

N2 =
Z �

BTNLEBNL +GTSNLG
�
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By neglecting the thermal load in Eq. (8), the equilib-
rium equation reduces as:

Ks� = P; Ks = K0 +
1
2
N1 +

1
3
N2; (9)

whose incremental equation takes the form:

KT�� = �P; KT = K0 +N1 +N2; (10)

in which Ks and KT are the secant sti�ness matrix
and tangent sti�ness matrix, respectively. If the
mechanical load in Eq. (8) vanishes, Eq. (11) presents
an equilibrium equation for thermal loading as:

Ks� = Fth; Fth =
Z �

BT0 +BTNL
�
E��0TdV: (11)

The increment of the above equation gives:

KT�� = � �Fth; KT = K0 �Kth +N1 +N2: (12)

Here:

� �Fth =
Z �

BT0 +BTNL
�
E��(�0T )dV; (12a)

Kth =
Z
GTSthGdV; (12b)

where Fth and Kth are the thermal force vector and
geometric sti�ness matrix due to thermal stress, re-
spectively.

3. Post-buckling of perfect beams

The nonlinear response of the post-buckling stage
and its stability condition are of prime interest to
researchers. Determination of the buckling mode, the
secondary state of the structure after deformation, the
critical buckling load as the post-buckling initial point,
and following the right path beyond the bifurcation
point are among signi�cant achievements in buckling
phenomena [35-43].

In order to analyze the instability problem, iden-
ti�cation of the singular buckling point and switching
from the pre-buckling to the post-buckling path are of
signi�cant importance. One method for indentifying
the buckling point is the analysis of the sign change of
diagonal elements in the tangent sti�ness matrix [35]:

KT = LTDL; (13)

where D is a diagonal matrix. The pre-buckling
path is traced through the linear solution of the
equilibrium problem. On this path, at each step,
the criterion of reaching the buckling point is checked
by determining the tangent sti�ness matrix at the
converged geometrical situation. After reaching the
buckling point, the primary path will be continued by
following the analysis in the same way. Therefore, an
algorithm is needed to be employed for switching to
the secondary path. In this algorithm, the bifurcation
point, as the last point of the pre-buckling path, is
perturbed to the neighboring point. To analyze the
non-linear geometric, along with the stability problem,
the iterative incremental strategy of the cylindrical
arc-length is employed [44-47]. This perturbation is
applied through a scaled eigenvector to the converged
deformation as [48]:

�p = �c + �
�
jj�jj ; (14)

where �p, in Eq. (14), corresponds to the displacement
at the neighboring point, �c is the converged displace-
ment at the bifurcation point, and � is an eigenvector of
the tangent sti�ness matrix. Term � scales the distance
between perturbation and bifurcation points.

After perturbation to �p, the next step is to
determine a point on the secondary path resulting in
equilibrium equations to converge. Then, the post-
buckling path is traced as an iterative incremental
algorithm, non-linearly.

In thermal loading, an eigenvalue analysis for
calculating the critical buckling temperature would
support the results of non-linear thermal buckling:

jK0 �Kthj = 0: (15)

The process through which the secondary path is
determined in thermal loading would be fairly di�erent



M. Darvizeh et al./Scientia Iranica, Transactions B: Mechanical Engineering 22 (2015) 778{791 781

from mechanical loading. Consider a beam with
immovable supports under thermal loading. Before
critical buckling temperature, if the temperature rises,
no deformation will be observed at the nodes. In
other words, under thermal loading, the pre-buckling
path may not be observed, as seen in mechanical
loading. Under such conditions, it is suggested that,
in order to leave the primary path, perturbation to the
neighboring points should be performed at the �rst load
step, and, afterwards, the equilibrium points on the
secondary path could be identi�ed using the iterative
incremental arc-length algorithm.

4. Post-buckling of imperfect beams

The presence of initial deformation, known as imper-
fection, in structures, and studying their e�ects on
the mechanical behavior of the structures, are very
important. The e�ect of �ctitious initial displacement
on kinematic equations and that of imperfection on the
strength of structures have been investigated in [49-52].

Due to a number of reasons, including manu-
facturing technique, plastic deformation, etc., it is
possible to deform the beam with a displacement along
its lateral axis to have an initially imperfect beam.
The following two methods present the modeling of
imperfect beams. In this way, there is no need to
perturb the beam to the neighboring point to identify
the post-buckling path.

4.1. Kinematic formulation
The strain-displacement relation for the Euler-
Bernoulli imperfect beam in the absence of thermal
loading would be written in the following form [49]:
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where w0 is the initial transverse displacement �eld due
to the beam imperfection. Using Eqs. (4a) and (4c),
Eq. (16a) can be written as:
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@x
G
�
� +

1
2
BNL�: (16b)

4.2. Transverse force
It is possible to model the initial deformation using a
transverse force that remains constant, while the axial
load increases, as shown in Figure 2. To do so, it
is desirable that the transverse force has no e�ect on
the internal forces of the loaded beam. However, the
displacements resulted from the transverse force can be
used in the equations as imperfection.

The magnitude of imperfection and its shape can
be controlled by changing the value of P0 and its
location, respectively.

Figure 2. Imperfection modeling by lateral force.

5. Functional graded beams

The used FGM material is comprised of ceramic and
metal, whose properties are distributed from metal to
ceramic smoothly by a power-law function. The volume
fractions of metal and ceramic, which are represented
by Vm and Vc, respectively, show the distribution of two
phases of material from fully metal to fully ceramic as
a function of thickness direction, z:

Vm = 1� Vc; Vc =
�

1
2

+
z
h

�k
; (17)

where k is the power-law material index [1]. If
the FGM beam is axially loaded at the centroid, it
creates a moment due to the non-homogeneity of the
material along the thickness. In order to obtain a pure
compressive axial load, the axial force must be located
at the neutral center. Figure 3 depicts the neutral
center position (h0) relative to the centroid. In other
words, the uniformly distributed axial force on the
cross-section can be considered a resultant force, P , on
the centroid. If the resultant force acts on the neutral
center, this will result in a non-uniform distribution on
the cross-section:
Ph0 = M; (18a)

where:

Figure 3. Centroid and neutral center positions of FGM
beams.
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P =
Z
�xdA; M =

Z
z�xdA: (18b)

Substituting Eq. (18b) into Eq. (18a) gives the neutral
center position:

h0 =
B̂�"x � D̂�

Â�"x � B̂� : (18c)

Here, �"x is the strain term independent of z, and �
is the curvature. Other parameters in Eq. (18c) are
de�ned as:

� =
@2w
@x2 ; Â =

Z h
2

�h2
D(z)dz;

B̂ =
Z h

2

�h2
zD(z)dz; D̂ =

Z h
2

�h2
z2D(z)dz: (18d)

In the Euler-Bernoulli formulation for an FGM beam,
the nonlinear term of �"x and the curvature can be
neglected in the pre-buckling state, as the beam axes
do not deform. Therefore, before the buckling point,
Eq. (18c) can be expressed as:

h0 =
B̂
Â
: (18e)

In thermal loading analysis, temperature, T0, is con-
sidered the reference temperature, and the changes in
temperature relative to the reference temperature are
de�ned as �0T = T�T0. Here, thermal loads for FGM
beams are considered to vary uniformly, linearly and
non-linearly, according to Table 1. The temperatures
in rich-ceramic and rich-metal sides are considered Tc
and Tm, respectively, as shown in Figure 4.

6. Results and discussion

Consider a metal-ceramic FGM beam consisting of
Aluminum and Alumina whose mechanical properties
are listed in Table 2 [10].

Figure 4. Temperature distribution of FGM beams from
ceramic to metal in the thickness direction.

Figure 5. Types of boundary conditions for a)
mechanical loading on movable beams, and b) thermal
loading on immovable beams.

6.1. FGM beam under mechanical load
In mechanical loading, one side of the support is
immovable, while the other side is movable. But,
in thermal loading, both sides of the supports are
considered immovable in the analyses, as shown in
Figure 5. In mechanical loading, the geometrical

Table 1. Types of thermal loads.

Type of thermal loading T (Temperature)
Uniform temperature rise T = Tc = Tm

Linear temperature
distribution

T = Tm + (Tc � Tm)
� 1

2 + z
h

�
Nonlinear temperature

distribution

T = Tm + (Tc�Tm)
D

�P5
i=0

(�1)i

ik+1

�
Kc�Km
Km

�i � 1
2 + z

h

�ik+1
�

D =
P5
i=0

(�1)i

ik+1

�
Kc�Km
Km

�i
Table 2. Material properties of FGM beams.

Materials
Properties Aluminum Alumina
Young's modulus (GPa) Em = 70 Ec = 380
Thermal expansion (/�C) �m = 23� 10�6 �c = 7:4� 10�6

Thermal conductivity (W/m�K) Km = 204 Kc = 10:4
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parameters of the beam, including width, thickness
and length, are considered b, h and L, respectively,
in which, h = b = 0:01 m and L=h = 100.

The convergence rate of the �nite element
method, when the number of elements increases, is
illustrated in Figure 6. The boundary conditions of
the beam are considered Clamped-Simply (C-S), and

Figure 6. Convergence study for an FGM beam with C-S
supports, k = 1 and L=h = 100.

the power-law index is assumed to be k = 1. For the
beam presented in the �gure, 50 elements are enough
for lateral de
ection of wmax=h < 16, while 20 elements
can give accurate results for wmax=h < 2.

Figures 7 and 8 show the pre- and post-buckling
paths, critical buckling load, end shortening and second
con�guration of the ceramic-rich perfect beam with
Clamped-Clamped (C-C) and Simply Supported (S-S)
boundary conditions, respectively.

From Eq. (13), the post-buckling path is detected
for the �rst axial mode by changing the sign of an
element in diagonal matrix D. Note that if it is desired
to follow the post-buckling path for the Nth axial
mode, it is necessary to change the sign of N elements
of the diagonal matrix D. Then, perturbation to the
neighboring point is performed in order to switch to
the secondary path. To obtain the third axial mode,
the signs of three elements of diagonal matrix D should
change before perturbation. The critical buckling load
obtained from the present work can be compared to
the buckling equations for simply supported condition
(Pcr = n2�2EI

L2 ) and clamped boundary condition
(Pcr = n2�2EI

(0:5L)2 ).
Figure 9 illustrates the post-buckling path for

various indices of FGM material and di�erent boundary

Figure 7. Buckling characteristics of isotropic beams with C-C supports, L=h = 100 and elasticity modulus of 270 GPa:
a) E�ect of buckling mode on the force-displacement curve; b) e�ect of buckling mode on the end shortening-displacement
curve; c) lateral displacement of beam at mode 1; and d) lateral displacement of beam at mode 3.
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Figure 8. Buckling characteristics of isotropic beams with S-S supports, L=h = 100, and elasticity modulus of 270 GPa:
a) E�ect of buckling mode on the force-displacement curve; b) e�ect of buckling mode on the end shortening-displacement
curve; c) lateral displacement of beam at mode 1; and d) lateral displacement of beam at mode 3.

Figure 9. Post-buckling behavior of FGM beams with di�erent boundary conditions, various indices and L=h = 100
subjected to mechanical loading: a) C-C supports; b) C-S supports; and c) S-S supports.
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Figure 10. Imperfection e�ect on post-buckling behavior of FGM beams with C-C B.Cs, L=h = 100 and two di�erent
material indices: a) E�ect of imperfection factor on the force-displacement curve at k = 0:2; b) e�ect of imperfection factor
on the force-displacement curve at k = 2; c) e�ect of imperfection factor on the end shortening-displacement curve at
k = 0:2; and d) e�ect of imperfection factor on the end shortening-Displacement curve at k = 2.

conditions. According to this �gure, the buckling point
and the secondary path of the FGM beam for all bound-
ary conditions and all material indices are between
those of ceramic-rich and metal-rich. The highest
strength against the buckling phenomenon corresponds
to the ceramic-rich for C-C boundary conditions.

Figure 10 depicts the behavior of perfect and
imperfect FGM beams for two material indices, k =
0:2 and k = 2. By increasing the initial transverse
displacement, w0 in Eq. (16), or the lateral force,
P0, the initial con�guration of an imperfect beam is
more deviated from that of a perfect beam, and the
e�ect of imperfection diminishes at higher values of
wmax=h.

Both methods of imposing imperfection, i.e.
Kinematic Formulation and Transverse Force, agree
well with each other. In the �rst method, the initial
transverse displacement �eld is inserted in kinematic
Eq. (16), as the �rst axial mode, and, in the second
method, the lateral force, P0, is applied in the middle
of the beam. These methods are almost equivalent
because of the linear relationship of P0 = K0w0.

Figure 11 demonstrates a comparison between
positions of compressive axial force applied at the
centroid and the neutral center. As seen, the force po-
sition does not a�ect the results for clamped-clamped

boundary conditions. In homogeneous materials, like
fully ceramic, the positions of the centroid and the
neutral center are the same, as the results show. How-
ever, in C-S and S-S boundary conditions, according
to the �gure, for inhomogeneous materials, the force
position will yield di�erent results at the centroid
and the neutral center. The reason is that when
the material is not homogenous and the axial load
is applied at the centroid, a relatively small bending
moment is combined with the axial compressive force.
This bending moment deviates the beam state from
its initial situation. Therefore, there is no need for
perturbation to the neighboring point in obtaining the
post-buckling path. The post-buckling curves, when
the axial load is applied to the centroid and neutral
axis, are converged at large values of wmax=h. Note
that if the axial load is applied at the neutral center,
the post-buckling path will be traced via perturbing
the buckling point.

6.2. FGM beam under thermal load
In the case of non-uniform thermal distribution, the
di�erence between the metal-rich FGM temperature
and the reference temperature is 5 degrees centigrade.
Table 3 presents a comparison between critical buckling
temperatures obtained using two di�erent methods,
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Figure 11. E�ect of location of the applied compressive
force on FGM beams with di�erent boundary conditions,
various material indices and L=h = 100: a) S-S supports;
b) C-S supports; and c) C-C supports.

including eigenvalue (linear) analysis and non-linear
analysis for three types of thermal load. This table
has been drawn for a beam with clamped-clamped
boundary conditions and for three L=h ratios (a; b; c),
which are 20, 50 and 75, respectively.

Figure 12 presents a comparison between the

Figure 12. E�ects of material index on the critical
buckling temperature for a C-S FGM beam.

Figure 13. In
uence of geometrical parameters on the
critical buckling temperature for a fully metallic beam
under uniformly thermal loading.

results of the present work and those of Ref. [10].
The e�ect of ceramic and metal distribution of the
FGM material index (k) on buckling temperature has
been illustrated for a uniform temperature rise and
boundary conditions of C-S.

Figure 13 also illustrates the e�ect of L=h ratio
on the critical buckling temperature of fully metallic
beams with di�erent boundary conditions for a uniform
temperature increase.

Figures 14-16 show the post-buckling paths for
uniform, linear, and non-linear distributions, respec-
tively, for FGM beams with various material indices
and boundary conditions at L=H = 25. For all
material indexes in C-C boundary conditions, a pertur-
bation to the neighboring point should be performed
at the �rst load step as the arc-length algorithm
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Table 3. Comparison of eigenvalue and nonlinear analyses for the critical buckling temperature of the beam with C-C
boundary conditions.

k Eigen value analysis Post-buckling analysis

Critical temperature (�C)
Nonlinear temperature

distribution

0 2218a - 350.7b - 153.1c 2218a - 350.7b - 153.1c

0.2 1967a - 308.5b - 133.1c 1967a - 308.5b - 133.1c

1 1337a - 207.1b - 87.6c 1337a - 207.1b - 87.6c

2 1099a - 169.8b - 71.6c 1099a - 169.8b - 71.6c

200 747a - 115.2b - 48.4c 747a - 115.2b - 48.4c

Critical temperature (�C)
Linear temperature

distribution

0 2218a - 350.7b - 153.1c 2218a - 350.7b - 153.1c

0.2 1664a - 261.8b - 113.4c 1664a - 261.8b - 113.4c

1 964a - 150.6b - 64.5c 964a - 150.6b - 64.5c

2 802a - 125.2b - 53.5c 802a - 125.2b - 53.5c

200 739a - 114.2b - 48c 739a - 114.2b - 48c

Critical temperature (�C)
Uniform temperature

distribution

0 1111a - 177.8b - 79c 1111a - 177.8b - 79c

0.2 803a - 128.6b - 57.2c 803a - 128.6b - 57.2c

1 517a - 82.6b - 36.7c 517a - 82.6b - 36.7c

2 458a - 73.3b - 32.6c 458a - 73.3b - 32.6c

200 376a - 60.17b - 26.7c 376a - 60.17b - 26.7c

which can identify the secondary path; for example in
uniform temperature distribution (Figure 14(a)) and
k = 0. There is no deformation at nodes up to
711�C before the secondary path. In this case, the
post-buckling path is followed without following the
pre-buckling path. Such perturbation is no longer
needed for C-S and S-S boundary conditions, except
for fully ceramic. The reason is that, for C-S and
S-S supports at k 6= 0, a bending moment due to
a di�erence in the thermal expansion coe�cient of
two phases combined with the thermal axial load,
makes a deviation from the initial situation and the
secondary path follows. In other words, when the
compound beam consisting of two materials is ex-
posed to thermal loading, a moment is produced at
two ends due to the di�erence in thermal expansion
coe�cients. This moment intends to bend the beam.
In this situation, the buckling problem is converted
to a nonlinear bending problem, except for clamped-
clamped boundary conditions where the created mo-
ment is inactive. The di�erence of thermal expansion
coe�cients in metal-ceramic material and the behavior
of these two phases under thermal load, conceptually,
illustrates the impression of a temperature distribution
type on the nonlinear buckling or bending behavior of
the beam.

Unlike Figure 14, in Figures 15 and 16, the
temperatures are distributed linearly and nonlinearly
from ceramic towards metal, respectively. In both
non-uniform distributions, the di�erence between the

metal-rich temperature and the reference temperature
has been considered 5�C. However, in uniform dis-
tribution, the temperature simultaneously increases
in both sides of metal-rich and ceramic-rich. So,
by considering the thermal expansion coe�cient dif-
ference between metal and ceramic, and the higher
sensitivity of metal to temperature, uniform temper-
ature distribution generates more deviation than the
other two non-uniform temperature distributions for
C-S and S-S boundary conditions. In other words,
uniform temperature distribution causes more ther-
mal strain on the metal side than the other two
distributions, as these strains make more coupling
axial-bending load. Also, in Figures 15 and 16,
in which the thermal distribution is non-uniform, it
can be seen that even for fully ceramic, which has
constant thermal properties, a bending moment is
produced due to the di�erence in temperature on two
sides, which deviates the beam from the initial situa-
tion. This shows an appropriate conformity between
the physical behavior and buckling analysis of the
beam.

7. Conclusion

The present article describes the pre- and post-buckling
behavior of beams made of Functionally Graded Ma-
terials (FGMs) under separate mechanical and ther-
mal loading. Based on the Euler beam theory, a
geometrically non-linear analysis in conjunction with
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Figure 14. Material index e�ect on thermal
post-buckling under uniform temperature loading: a) C-C
supports; b) C-S supports; and c) S-S supports.

a stability analysis was employed, using the �nite
element method. The e�ects of the beam geometry
and material properties of FGM on the critical buckling
load, post-buckling path and current con�guration
after deformation are fully investigated. An algorithm
of arc-length for tracing pre-buckling and post-buckling
paths was utilized.

Performing a post-buckling analysis of FGM
beams is quite essential, especially for simply-support-

Figure 15. Material index e�ect on thermal
post-buckling for linear temperature distribution: a) C-C
supports; b) C-S supports; and c) S-S supports.

ted end conditions, due to the moments induced at
supports by the material inhomogeneity.

In determination of the thermal post-buckling of
FGM beams, unlike uniform temperature rise, linear
temperature distribution can be an appropriate esti-
mation for nonlinear temperature distribution.

The post-buckling curve of an FGM beam that is
sensitive to the material index lies between that of the
pure ceramic and pure metal.

Clamped boundary conditions can provide the
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Figure 16. Material index e�ect on thermal
post-buckling for nonlinear temperature distribution: a)
C-C supports; b) C-S supports; and c) S-S supports.

highest load carrying capacity when an FGM beam is
exposed to mechanical or thermal loading.
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Nomenclature

b Width
D Eigenvalues of tangent sti�ness matrix
E Elasticity modulus
Fth Thermal force vector
h Thickness
h0 Neutral center position
H Hermitian shape function
k Power law index
Kth Geometric sti�ness matrix due to

thermal stress
KS Secant sti�ness matrix
KT Tangent sti�ness matrix
le Length of element
L Length of beam
N Lagrangian shape function
P Mechanical force vector
T0 Reference temperature
u Axial displacement of middle surface
V Volume
Vm Metal volume fraction
Vc Ceramic volume fraction
w Transverse de
ection of middle surface
w0 Initial transverse de
ection
� Stress
" Strain
"0 Linear strain
"NL Nonlinear strain
"th Thermal strain
� Thermal expansion coe�cient
� Curvature
� Eigenvector of tangent sti�ness matrix
�0T Change of temperature
� Displacement vector
�p Displacement of perturbed point
�c Converged displacement at bifurcation

point
� Shape function parameter
� Perturbation parameter
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