
Scientia Iranica B (2015) 22(2), 539{560

Sharif University of Technology
Scientia Iranica

Transactions B: Mechanical Engineering
www.scientiairanica.com

Research Note

Mathematical modeling and optimization of the
Electro-Discharge Machining (EDM) parameters on
tungsten carbide composite: Combining response
surface methodology and desirability function technique

S. Assarzadeh and M. Ghoreishi�

Department of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, P.O. Box 19395-1999, Iran.

Received 18 June 2013; received in revised form 29 January 2014; accepted 6 September 2014

KEYWORDS
Electro-Discharge
Machining (EDM);
Response Surface
Methodology (RSM);
Multi-objective
optimization;
Desirability Function
(DF);
Tungsten carbide
cobalt composite
(WC-Co);
Process modeling.

Abstract. This research proposes a uni�ed scheme to mathematically model and multi-
objectively optimize the EDM parameters on tungsten carbide cobalt alloy (WC-6%Co),
applying response surface methodology and a desirability function technique. Discharge
current, pulse on-time, duty cycle and average discharge voltage have been chosen to
be correlated with material removal rate, tool wear rate and surface roughness (Ra) as
performance measures. The required experimental data were obtained in accordance with
the face-centered central composite design. Signi�cant parameters in the form of main, two-
way interaction and pure quadratic e�ects were carefully identi�ed conducting a complete
analysis of variance at 1%, 5% and 7% signi�cance levels, and the adequacy of all �tted
second order regression models was con�rmed. Parametric analysis was undertaken through
direct and reciprocity e�ect plots to fully reveal the di�erent facets of ED-machinability
characteristics. Finally, the optimization issue has been formulated as multi-objective from
which the optimal parametric setting, yielding the most enviable conditions simultaneously,
was then obtained in a compromised manner employing the notion of a desirability concept.
The predicted optimal results were also interpreted and veri�ed experimentally. The values
of relative validation errors are all quite satisfactory (below 11%), which prove the e�cacy
and reliability of the suggested approach.
© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Electro-Discharge Machining (EDM) is an electro-
thermal erosion process, where material is removed by
a successive trend of controlled rapid and repetitive dis-
crete electrical discharges (sparks), produced by a DC
pulse generator, taking place between a pair of tool and
work piece electrodes submerged in a liquid dielectric
medium [1-3]. For decades, the process has achieved
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considerably popular applications in machining var-
ious engineering materials, especially High-Strength,
Temperature-Resistant (HSTR) alloys (Inconel, Tita-
nium, Beryllium alloys) [4-6], hard composites (metal
matrix composites, nano-composites) [7,8], conductive
ceramics [9], etc., and in miscellaneous industries,
mostly, aeronautic, die, mould, and automobile in-
dustries, with its additional versatility being a very
promising approach towards micro- as well as nano-
machining technologies [10].

The literature reveals that a large amount of
research work has mainly been focused on studying
the EDM characteristics in di�erent types of steel,
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using either di�erent combinations of tool materials or
process modi�cation, with some conventional routines,
known as hybrid machining techniques, to enhance
process productivity and accuracy [1,2,11]. In this
context, researchers have mainly applied statistically
designed or soft-computing-based techniques to model
and optimize process parameters and responses. How-
ever, unlike steel often chosen as a general option
for work piece material in EDM applications, it has
been postulated that the behavior of ceramic compos-
ites, such as tungsten carbide-cobalt composite, can
be rather di�erent in response to various parameters
under the EDM process [9]. Tungsten carbide-cobalt
composite, amongst the most widely used di�cult-
to-cut materials, is one of the most important engi-
neering materials with extreme applications commonly
employed in manufacturing carbide dies and molds,
cutting tools, forestry tools, and components resisting
continual wear in production lines. Its acutely high
hardness and strength, superior wear and corrosion
resistance over a wide range of temperatures has
frustrated conventional machining processes in being
utilized e�ciently in shaping such a material. Although
the EDM process has now been recognized and justi�ed
as the best and perhaps the only pro�cient machining
candidate for cutting and shaping tungsten carbides,
the process is not an easy going task [3,12]. The main
di�culty in EDMing WC-Co originates from its non-
homogeneous structure, the di�erences between the
melting and evaporation points of the two constituent
phases present in its micro-structure, i.e. WC and
Co grains, which may cause non-uniformity in erosion
as well as process instability, producing short circuits
and arcing pulses more frequently [12]. The melting
and vaporization points of WC are about 2800�C
and 6000�C, respectively, and those for Co are about
1320�C and 2700�C, both at normal atmospheric pres-
sure [13,14]. Hence, during the EDM, the cobalt matrix
�rst starts being removed from the surface by melting
and evaporation mechanisms due to sparking. This
early selective decomposition of the WC-Co structure
will lead to dislodging coarse WC grains into the
gap space, increasing the risk of process instability
as a result of high debris accumulation and pollution
inside the gap region. Moreover, there is a noticeable
di�erence in the thermal expansion coe�cient of WC
and Co, the latter possessing a much higher one
(14 � 10�61=�C for Co as compared to 5 � 10�61=�C
for WC) [14]. The discrepancy is responsible for
developing high thermal tension stresses during re-
solidi�cation and quenching, exceeding the fracture
strength of the material in the crater, and thus, causing
an abundance of cracks on the surface layer. For these
reasons, the electro discharge machining of WC-Co
composite is regarded as a challenging task imposing
more di�culties compared to EDMing di�erent kinds

of hardened steels commonly studied in research arti-
cles.

1.1. Literature review
Lee and Li [15] studied the e�ects of EDM parameters
on the surface characteristics of a kind of tungsten
carbide. They concluded that the MRR and surface
roughness of the work piece are directly proportional to
the discharge current intensity. In further research [16],
they undertook a comprehensive qualitative analysis of
the surface integrity of ISO standard P -grade tungsten
carbide under EDM conditions with peak current and
pulse on-time variations. Miscellaneous aspects of
surface integrity, like micro-cracks, recast layer for-
mation and surface roughness, were studied. It was
pointed out that the quality of the work surface is a
function of two main parameters, peak current and
pulse duration, both of which are settings of the power
supply. In a more quantitative manner, Puertas et
al. [17] applied a 23 full factorial design with four
center points to provide protection against curvature
in the model building of EDMing 94WC-6Co ceramic
composite solely under �nishing stages. Although dif-
ferent signi�cant main and interaction e�ects between
input parameters were identi�ed using ANOVA, and
their variations over selected responses were studied,
neither de�nite input settings nor a numerical value of
machining factors were obtained as optimum values,
since no suitable optimization strategy was then tried.
Once more, the same previous authors [18] conducted
a comparative study of the die sinking EDM of three
di�erent conductive ceramics, viz. WC-Co, B4C, and
SiSiC in terms of MRR, Ra, and TWR as response
technological variables, using the same aforementioned
DOE plan under only a �nishing regime, using low
discharge energy levels. They indicated that the inves-
tigated ceramic materials showed di�erent behaviors in
response to the alterations of input factors, except for
the MRR function, which manifested the same trend
for all the work piece materials. In another study, Lin
et al. [19] investigated the e�ects of electrical discharge
energy on the machining characteristics of two kinds
of cemented tungsten carbide, grades K10 and P10.
They pointed out that there exists a particular range
of machining parameters within which the process is
stable, and exceedingly long or short pulse duration
causes instability. As a soft computing based opti-
mization strategy, Kanagarajan et al. [20] employed
non-dominated sorting genetic algorithm (NSGA-II) to
obtain a Pareto optimal series of input variables in a
tradeo� manner. However, neither the role of pulse o�-
time as an independent variable nor the inclusion of
tool wear phenomenon as an important response was
taken into account, as both can de�nitely a�ect the
process productivity, cost, and dimensional accuracy
of machined parts. Once more, Kanagarajan et al. [21]
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applied RSM, along with multiple linear regression
analysis, to obtain second order response equations
for MRR and Ra in EDMing WC/30%Co composite.
Though the most inuential parameters aiming at
maximizing MRR and minimizing Ra were identi�ed
by carefully examining the surface and contour plots of
the responses, again, their suggested approach su�ers
from the same aforementioned drawbacks. Banerjee
et al. [22] applied a Face-Centered Central (FCC)
composite design to collect experimental data and
RSM to model and analyze the processing parameters
involved in EDMing WC-TiC-TaC/NbC-Co cemented
carbide. They found that su�cient superheating of
work piece material and subsurface boiling are essential
for e�cient material removal, and that the formation of
pock marks due to the bursting of blisters and associ-
ated crack formations may be controlled by choosing a
proper combination of dielectric and interfering inuen-
tial parameters. Finally and most recently, Puertas and
Luis [23] studied the behavior of two highly practical
conductive ceramics in industry, B4C and WC-Co
under di�erent die sinking EDM conditions. Though
practical recommendations on how to adjust process
settings to acquire low surface roughness, low electrode
wear, and high MRR were suggested independently,
neither a precise optimization strategy nor a de�nite
numerical parametric setting was then proposed to
tradeo� between those conicting objective responses,
as they were treated autonomously from each other
without considering their mutual interdependencies.

1.2. Structure and contributions of the current
research

Based on the previously stated information in opening
the basic subject and reviewing related past research,
the major motivation of the present study is to fully
understand and characterize the machinability mea-
sures of WC-6%Co in a more quantitatively systematic
way in order to identify the correct e�ects of various
interfering parameters inuencing process responses.
In this regard, the face-centered Central Composite
Design (CCD) of experiments has been adopted to plan
the experiments. Adequately su�cient second order
response equations, i.e. MRR, TWR, and Ra, are de-
veloped based on RSM, using multiple linear regression
analysis, along with ANOVA, in which both signi�cant
main and two-factor interactive e�ects are presently
pre-documented by student t-tests. Subsequently, the
mathematical forms of process responses are optimized
to yield the best operating parameter combinations,
satisfying the highest possible MRR, lowest TWR and
Ra, simultaneously, in a compromised manner, using
an aggregated desirability function idea. The foremost
merits of the current research can be mentioned as
follows:

a) By far, to the best of the authors' knowledge

acquired through extensive review of related lit-
erature, the simultaneous numerical optimization
of MRR, Ra, and TWR in the EDM of tungsten
carbide has not yet been implemented. In the
bibliography consulted, there is still a lack of
practical knowledge on EDMing WC-Co, as few
technological tables useful for both EDM practi-
tioners and academicians can be found compared
to those widely available for miscellaneous kinds of
hardened steel.

b) Despite the fact that several experimental works
have been directed towards studying EDMing WC-
Co from di�erent aspects [12], in their best cases,
they have either ended at the point of merely
developing respective responses without any at-
tempt to highlight exact numerical optimal condi-
tions [19], or obtaining optimal conditions without
bearing in mind the possible interdependencies of
all three main outputs (MRR, TWR, and Ra) at
the same time, as one of which has often been
neglected [20,21,23]. In addition, no e�ort has yet
been put into applying the desirability function
method, aiming to optimize the EDM parameters
of WC-6%Co composite.

2. Experimental details

2.1. Machine tool, tool electrode, work piece
and dielectric materials

An Azarakhsh ZNC spark erosion machine, model
number 204, has been used to run the experiments.
Equipped with an iso-frequency pulse generator, it
can produce pulse-on times in the range 2�s-1000�s
and provide maximum discharge current up to 75 A.
Tungsten carbide cobalt composite, type WMG10,
manufactured by the Wolframcarb Company, Italy,
available in cylindrical form with 12 mm diameter, has
been selected as the work piece material for all tests.
The selected WC-Co composite, produced via powder
metallurgy, having about 94%wt WC and 6%wt Co
as its nominal chemical composition, is of a �ne grain
type and mainly used in fabricating drawing dies and
woodworking tools, as well as cutting tools for non-
ferrous metals. Table 1 lists the relevant work piece
material properties.

Electrolytic copper rods with the same diameter
as the work piece were used for the tool electrode
material. The physical and mechanical properties are a
density of 8.9 g/cm3, thermal conductivity 226 W/mK,
electrical resistivity 9 �
cm, melting point 1083�C, and
hardness of about 100 HB. Copper has the additional
advantage of being easily available, stable in quality
and cheap compared to other applicable metals. The
EDM experiments were all conducted in a planing
mode in which both the tool and work piece bottom
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Table 1. Work piece thermo-physical and mechanical
properties.

Material composition WC-6%wtCo
(Iso grade: K10)

Hardness (HRA) 92.5
Melting point (�C) 2870
Boiling point (�C) 6000
Density (g/cm3) 14.3

Transverse strength (MPa) 1700
Compressive strength (MPa) 6200
Modulus of Elasticity (GPa) 620

Thermal conductivity (Wm�1K�1) 79.6
Thermal expansion coe�cient (1/�C) 5:5� 10�6

Electrical resistivity (n
m) 200

Figure 1. (a) Picture of Azarakhsh ZNC 204 EDM
machine, and (b) work/tool electrode samples.

surfaces were ground, prior to experimentation, to
remove any possible machining marks or irregularities,
and assuring consistent initial gap width and ushing
action. Moreover, commercial grade kerosene ejected
as impulse side ushing through a nozzle was used as
the dielectric liquid carrying out machining debris from
the gap zone. Also, the tool and work piece electrode
polarity were assigned as positive and negative, respec-
tively, as this status can make tool wear minimum,
along with having stable sparking [9]. Figure 1(a)
and (b) show a photograph of the EDM machine and
work piece/tool samples used in experiments.

2.2. Machining parameters, design of
experiments, and measurements

Four controllable input variables, namely, discharge
current (A: Amp), pulse-on time (B: �s), duty cycle
(C: %), and average gap (reference) voltage (D: Volt)
have been selected as predominant factors, based on
the EDM machine operating characteristics and by con-
sulting the respective bibliography [1,2], being the most
e�ective parameters governing discharge energy, which
directly a�ects process performance and e�ciency.

The face-centered central composite design [24-
26], a popular variant of the Central Composite Design
(CCD) of experiments, has been employed to plan
the experiments. It is a kind of second order design
class, which uses three levels for each parameter and
can e�ciently handle linear, quadratic, as well as
interaction terms, in process modeling. Generally, to
collect enough data to establish a suitable second order
regression response equation for a process involving k
variables, the following three sets of design points are
needed:

(a) nf = 2k factorial design or corner points;

(b) na = 2k axial or star points; and

(c) nc center points, which are usually repeated sev-
eral times to obtain a good estimation of experi-
mental pure error.

The factorial points contribute in a major way
to the estimation of linear and two-factor interaction
terms, while axial points contribute in a large way to
the estimation of quadratic terms. The center runs will
also provide an internal estimate of error (pure error)
and contribute to the prediction of quadratic terms [24-
26].

To obtain a proper second order response surface
equation, these are the minimum as well as optimum
number of experimental runs. Though other ap-
proaches, such as the Taguchi design technique, which
may need a smaller number of trails, can be applied,
it su�ers from serious drawbacks, the most important
of which is its inability to obtain all the possible
interaction e�ects [24-26]. Identifying and obtaining all
interaction terms can be of vital importance in process
modeling and optimization, and CCD assures such a
trend [24-26].

Therefore, the total number of experiments would
be:

N = nf + na + nc = 2k + 2k + nc: (1)

The location of axial points in a response surface
central composite design, with respect to the center
point (origin), is determined by alpha (�) value. The
choice of � depends, to a great extent, on the domain
of operation and interest [25]. In face-centered central
composite design, � = 1, meaning a three-level design
space, coded as -1, 0, and 1, corresponds to low,
medium, and high parameter levels, respectively. To
specify the actual levels of each input variable, at �rst,
a number of preliminary tests were conducted as a One-
Factor-At-a-Time (OFAT) approach to determine the
most stable combination of parameter settings over the
operability region of the EDM machine [27]. Table 2
summarizes the relevant machining conditions and
�xed parameters, whereas Table 3 lists the preferred
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Table 2. The EDM conditions.

Working condition Description

Workpiece material WC-6%Co
Tool material Commercial electrolytic copper

Polarity Workpiece (-), tool (+)
Tool and workpiece dimensions Cylindrical, � 12 mm

Peak current 2-8 A
Pulse-on time 50-150 �s

Duty cycle 40-80%
Gap voltage 40-80 V

Dielectric uid Commercial kerosene
Dielectric ow rate 5 L/min

Flushing pressure/type 1 MPa/side ushing
ED-machining time 60-90 min

Table 3. Independent input factors and levels for the face-centered CCD.

Parameter Notation Unit Coded/Actual level

-1 0 +1

Discharge current (I) A Ampere 2 5 8

Pulse on-time (Ton) B �s 50 100 150

Duty Cycle (DC) C - 40 60 80

Gap voltage (V) D Volt 40 60 80

input controllable parameters, along with their ranges
in both coded and actual format.

The response variables were then chosen as ma-
terial removal rate (MRR: g/h), tool wear rate (TWR:
g/h), and average surface roughness (Ra: �m). Both
the stock removal rate and tool wear rate were mea-
sured directly by the weight loss method, weighing
the work piece and tool electrode samples before
and after each test and dividing the corresponding
weight di�erence by the elapsed time allocated for each
experimental run. A GX-200 digital single pan balance,
manufactured by the A&D Company, Japan, with a
precision of 0.001 g and maximum capacity of 210 g,
has been used for the evaluation. During the running
of the �rst round of experiments, it was revealed that
much longer times were needed to get a reasonable
idea about the MRR [27]. So, the time allocated to
each trial was at least an hour, and much longer times
were considered for runs with lower discharge currents.
Characterization of each work piece surface condition
was conducted in terms of arithmetic mean deviations
of the roughness pro�le from the central line along the
measurement path. A Mahr-PS1 unit, a portable stylus
type pro�lometer made-up by the Mahr Company,
Germany, was used for roughness assessments. Before
measuring surface roughness, each machined sample
was cleaned in acetone liquid and dried with a cold
air blower. To achieve validity and accuracy, each Ra

measurement was repeated twice along two di�erent
directions, as there is no speci�c pattern for spark
distribution over the work area. The average of the two
replications was then assigned as the roughness value
for each treatment combination. In all cases, a cuto�
length of 0.8 mm and an evaluation length of 4 mm
(5 � 0:8 mm) were adjusted on the unit, according to
ISO 4287/1.

By repeating seven center points, the total num-
ber of conducted experiments for k = 4 was 24 +2(4)+
7 = 31, and are shown in Table 4, along with the cor-
responding process responses. The linear relationship
between coded and actual values, in Tables 3 and 4, is
as follows:

Discharge current:

A = [I � (Imax + Imin)=2] =(Imax � Imin)=2:

Pulse on-time:

B=[Ton�(Tonmax+Tonmin)=2] =(Tonmax�Tonmin)=2:

Duty cycle:

C=[DC�(DCmax+DCmin)=2] =(DCmax�DCmin)=2:

Gap voltage:

D = [V � (Vmax + Vmin)=2] =(Vmax � Vmin)=2;
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Table 4. Design layout and experimental results.

Exp.
no.

Run
no.

Input process parameters Response variables

Coded Actual

A B C D I
(A)

Ton

(�s)
D.C.
(%)

V
(v)

MRR
(g/h)

TWR
(g/h)

Ra1

(�m)
Ra2

(�m)
Ave. Ra

(�m)

1 4 -1 -1 -1 -1 2 50 40 40 0.067 0.013 4.203 4.182 4.193

2 24 1 -1 -1 -1 8 50 40 40 0.54 0.09 3.533 3.689 3.611

3 10 -1 1 -1 -1 2 150 40 40 0.04 0.007 5.280 5.169 5.225

4 30 1 1 -1 -1 8 150 40 40 0.26 0.05 5.395 5.988 5.692

5 7 -1 -1 1 -1 2 50 80 40 0.153 0.027 3.673 3.508 3.591

6 28 1 -1 1 -1 8 50 80 40 0.86 0.15 4.292 4.606 4.048

7 15 -1 1 1 -1 2 150 80 40 0.097 0.014 5.149 5.449 5.299

8 1 1 1 1 -1 8 150 80 40 0.62 0.1 5.670 5.935 5.803

9 20 -1 -1 -1 1 2 50 40 80 0.02 0.013 3.712 3.769 3.741

10 11 1 -1 -1 1 8 50 40 80 0.12 0.04 4.203 4.286 4.245

11 27 -1 1 -1 1 2 150 40 80 0.04 0.007 4.488 4.404 4.446

12 8 1 1 -1 1 8 150 40 80 0.2 0.04 6.159 6.563 6.361

13 23 -1 -1 1 1 2 50 80 80 0.147 0.027 3.642 3.649 3.646

14 12 1 -1 1 1 8 50 80 80 0.672 0.132 4.424 4.633 4.529

15 6 -1 1 1 1 2 150 80 80 0.067 0.007 4.777 4.790 4.784

16 26 1 1 1 1 8 150 80 80 0.44 0.09 6.907 6.271 6.589

17 18 -1 0 0 0 2 100 60 60 0.080 0.02 5.154 5.362 5.258

18 2 1 0 0 0 8 100 60 60 0.48 0.09 4.713 4.766 4.740

19 22 0 -1 0 0 5 50 60 60 0.368 0.064 3.329 3.461 3.395

20 14 0 1 0 0 5 150 60 60 0.216 0.032 5.902 6.014 5.958

21 5 0 0 -1 0 5 100 40 60 0.152 0.024 5.630 5.368 5.499

22 29 0 0 1 0 5 100 80 60 0.36 0.048 4.254 4.817 4.536

23 17 0 0 0 -1 5 100 60 40 0.344 0.056 4.632 4.726 4.679

24 25 0 0 0 1 5 100 60 80 0.232 0.04 5.056 5.278 5.167

25 9 0 0 0 0 5 100 60 60 0.272 0.04 5.645 5.448 5.547

26 21 0 0 0 0 5 100 60 60 0.280 0.048 4.658 4.519 4.589

27 13 0 0 0 0 5 100 60 60 0.296 0.048 4.675 4.632 4.654

28 31 0 0 0 0 5 100 60 60 0.288 0.04 5.177 5.283 5.230

29 16 0 0 0 0 5 100 60 60 0.272 0.04 4.840 4.557 4.699

30 19 0 0 0 0 5 100 60 60 0.264 0.048 4.821 5.153 4.987

31 3 0 0 0 0 5 100 60 60 0.272 0.048 5.632 5.495 5.564

where A, B, C and D are the coded values of variables
I, Ton, DC, and V , respectively, Imax, Tonmax, DCmax,
and Vmax represent the maximum values of I, Ton, DC,
and V , respectively, and, Imin, Tonmin, DCmin, and
Vmin are the corresponding minimum values of process
parameters in each interval. Finally, it is to be noted
that the order of experimentation was randomized,
according to the second column of Table 4, to avoid the
creeping e�ect of any possible extraneous or nuisance
factors into the results [24].

3. Response surface modeling of process
outputs

The practical optimization of EDM parameters on WC-
Co composite necessitates the accurate model build-
ing of the process responses describing its behavior
and characteristics under di�erent operating condi-
tions. Response Surface Methodology (RSM) [24-26],
a collection of mathematical and statistical techniques
aimed at developing suitable second order polynomial
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models, relating a number of input variables to selected
responses by multiple linear regression analysis, has
been employed here. The model, in terms of the
observations, in matrix notation, is:

y = X� + "; (2)

where y is a (n � 1) vector of observations (n is the
number of observations), X is an (n � p) matrix of
the levels of the independent variables (p = k + 1, k
is the number of process variables or regressors), �
is a (p � 1) vector of the regression coe�cients and
" is an (n� 1) vector of random errors. The vector of
�tted values, ŷi, corresponding to the observed values,
yi (�tted regression model), is then [25]:

ŷ = X�̂; (3)

where �̂ is the least squares estimator of regression co-
e�cients (�) [�0; �1; �2; :::; �k]T , and can be calculated
based on the following equation:

�̂ = (X0X)�1X0y: (4)

In the above equation, X0 is the transpose of matrix
X, X0X is a (p � p) symmetric matrix, and X0y is a
(p� 1) column vector. Therefore:

ŷ = X�̂ = X(X0X)�1X0y = Hy: (5)

The n � n matrix H = X(X0X)�1X0 is usually called
the hat matrix, which plays a central role in regression
analysis and in mapping the vector of observed values
into a vector of �tted values. The di�erence between
the actual observed value, yi and the corresponding
�tted value, ŷi, is the residual, ei = yi � ŷi, a (n � 1)
vector. The n residuals may be conveniently written in
matrix notation as:

e = y � ŷ = y �X�̂ = y �Hy = (I�H)y; (6)

where I is an (n�n) identity matrix. In scalar notation,
the general form of a �tted response surface quadratic
model can be written as:

ŷ = �0 +
kX
i=1

�ixi +
kX
i=1

�iix2
i +

k�1X
i=1

kX
j=i+1

�ijxixj :
(7)

The intercept coe�cient, �0, represents the response at
the center of the experiments, where all the variables
are zero (in coded form); �i, �ii, and �ij also show
the linear, quadratic, and linear-by-linear interaction
e�ects of the parameters, respectively. This second-
order polynomial is the most commonly used form and
works quite well for a relatively small region of the
variable space. By applying the Least Squares Method
(LSM) [24-26], all these coe�cients in a multiple
regression model can be estimated.

In this study, the quantitative form of the rela-
tionship between desired responses and independent
input variables can be represented by the following
form:

y = f(I; Ton;DC; V ); (8)

where y is the desired response and f is the response
function or surface. The steps consisting of applying
regression analysis, performing pooled ANOVA on
each obtained regression coe�cients to �nd statistically
signi�cant terms, and �nally, conducting ANOVA and
some routine statistics to check modeling adequacy
and goodness of �t, are the necessary actions needed
to be carefully executed to �nd the suitable reduced
quadratic forms of response functions, MRR, TWR,
and Ra for the highly stochastic process of EDM. The
next sections focus on these procedures.

3.1. Mathematical modeling of MRR, TWR,
and Ra

Based on the model described by Eq. (8) and by apply-
ing the LSM, all the regression coe�cients pertaining to
the three responses have been obtained and are shown
in Table 5, along with their corresponding Student
T - and P -values as a pooled ANOVA format. As is
clear from this table, all the main e�ects of four input
parameters (A: discharge current, B: pulse on-time, C:
duty cycle, and D: gap voltage) are found to be highly
signi�cant, at least at a � = 0:01 signi�cance level or
99% con�dence interval, having almost zero P -values,
in a�ecting both the MRR and TWR. However, for the
third response, Ra, just the �rst two factors, discharge
current (A) and pulse-on time (B) are regarded as the
highly signi�cant main factors. In the terminology of
statistical modeling, the lower the P -value, the more
inuential is the e�ect [24-26]. On the other hand,
the pure quadratic e�ect of duty cycle (C2), the two-
way interactions of discharge current with pulse-on
time (A � B), with duty cycle (A � C), and with gap
voltage (A�D), as well as the interaction amongst the
pulse on-time with duty cycle (B�C), were also found
to be extremely important terms inuencing MRR.
For the TWR measure, the dual interactive e�ects
amid current with pulse-on time (A � B), with duty
cycle (A � C), and with gap voltage (A � D), plus
pulse on-time and duty cycle (B � C), along with
the second order e�ects of discharge current (A2) and
duty cycle (C2), were made known to have inuencing
outcomes. Finally, for the Ra quality measure, the
only considerable interactive terms are the discharge
current with pulse-on time (A � B) and with gap
voltage (A�D). As a whole, the inclusion of any term
with a P -value less than 0.07 designated as an upper
bound for statistical signi�cance, i.e. being signi�cant
within 93% of con�dence interval, has been guaranteed
in this research, so as to increase each model's accuracy
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Table 5. Regression coe�cients and T -test results for the individual MRR, TWR and Ra model parameters.

Predictor MRR model TWR model Ra model
Coe�cient T -value P -value Coe�cient T -value P -value Coe�cient T -value P -value

Constant 0.2790 80.939 0.0001a 0.0449 22.803 0.0001a 5.0082 38.649 0.0001a

A 0.2003 34.796 0.0001a 0.0359 22.957 0.0001a 0.3019 2.933 0.010a

B -0.0631 -17.705 0.0001a -0.0116 -7.416 0.0001a 0.8421 8.179 0.0001a

C 0.1029 17.869 0.0001a 0.01728 11.035 0.0001a -0.0104 -0.101 0.920
D -0.0527 -14.787 0.0001a -0.0062 -3.939 0.001 a 0.0759 0.738 0.471
A2 -0.0004 -0.058 0.954 0.0096 2.337 0.033b 0.0263 0.097 0.924
B2 0.0116 1.602 0.137 0.0026 0.640 0.531 -0.2962 -1.092 0.291
C2 -0.0244 -3.379 0.006a -0.0094 -2.270 0.037b 0.0448 0.165 0.871
D2 0.0076 1.048 0.317 0.0026 0.640 0.531 -0.0497 -0.183 0.857
AB -0.0375 -7.249 0.0001a -0.0054 -3.274 0.005a 0.2143 1.962 0.067c

AC 0.0718 10.074 0.0001a 0.0136 8.167 0.0001a 0.0841 0.770 0.453
AD -0.0481 -9.306 0.0001a -0.0051 -3.048 0.008a 0.2663 2.439 0.027b

BC -0.0207 -4.002 0.002a -0.0046 -2.747 0.014b 0.0454 0.416 0.683
BD 0.0067 1.687 0.120 0.0026 1.543 0.142 -0.0348 -0.319 0.754
CD 0.0080 1.539 0.152 0.0016 0.941 0.361 0.0459 0.421 0.680

a: Signi�cant at � = 1% signi�cance level; b: Signi�cant at � = 5% signi�cance level; c: Signi�cant at � = 7% signi�cance level.

and adequacy as highly as possible. All the other
terms not meeting such a criterion are supposed to
be insigni�cant. Generally, the term \interaction"
means that the e�ect of a factor over a known response
depends on the level of another factor. Identifying
signi�cant interaction terms in the RSM model building
procedure and their inclusions in the structure of a
second order model are of vital importance, as they
can reveal very crucial phenomena of the combinatorial
joint e�ects of di�erent process parameters on every
process characteristic and behavior [24-26].

Removing insigni�cant terms is a common prac-
tice amongst empirical model builders which, in most
cases, can result in improved model �tting capabilities,
aside from yielding a simpler model form. Thus, the
insigni�cant terms have been excluded from the model
structures through a backward elimination method [24-
26], and the ANOVA has been repeated for every
obtained reduced quadratic model containing only
those signi�cant terms contributing to model building.
Table 6 illustrates the ANOVA results for the three
response functions. As desired, all the quadratic
regression models are signi�cant, while their lacks of
�ts turned out to be insigni�cant relative to pure error.
Hence, the model adequacy checking is completely
assured for each output measure. Other statistical
diagnostic indices mainly used to evaluate the mod-
eling goodness of �t are the ordinary R-squared (R2),
adjusted R-squared (R2

Adj), and predicted R-squared
(R2

Pred) [26], shown in Table 6, for every response
model. The values are 99.74%, 99.59%, and 98.51%
for MRR; 97.58%, 96.38%, and 91.13% for TWR; and

80.93%, 77.12%, and 74.1% for Ra, respectively. As
a general rule, the more the R2s approach unity, the
better the model �ts the experimental data [24-26].
The usual statistic, R2, also called the coe�cient of
multiple determination, indicates how many percent of
the total variations can be explained by the model,
while the R2

Adj, a statistic adjusted for the size (the
number of factors) of the model, means how many
percent of the total variability can be explained by
the model after considering the signi�cant terms (re-
duced model). The amount of R2 increases as each
additional variable or regressor, whether signi�cant or
insigni�cant, is added to the model. On the contrary,
the adjusted R2 does not automatically increase when
new predictor variables are added to the model. In
fact, the value of adjusted R2 will often decrease when
unnecessary terms are included. Accordingly, when R2

and R2
Adj di�er dramatically, there is a good chance

that non-signi�cant terms have been incorporated in
the model [24-26]. Therefore, it is a suitable criterion
in evaluating a model's goodness of �t when only
signi�cant terms are involved, compared to the case
when all the terms are caught up. The statistic PRESS
(prediction error sum of squares) is a measure of how
well the model will predict new data. A model with
a small value of PRESS is desired, as it indicates
that the model is likely to be a good predictor [25].
In connection with this, the predicted R2 (R2

Pred)
is de�ned, which is an indication of the predictive
capability of the regression model in response to new
observations.

The R2s coe�cients and PRESS statistic are
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Table 6. ANOVA table for the trimmed MRR, TWR and Ra second order models.

Source DF Seq SS Adj MS F value P value Remarks
(a) For MRR
Regression 9 1.05761 0.11751 676.09 0.000 Signi�cant
Linear 4 0.98063 0.22721 1307.20 0.000
Square 1 0.00825 0.00066 3.79 0.069
Interaction 4 0.06874 0.01718 98.86 0.000
Residual error 16 0.00278 0.00017 - -
Lack-of-�t 10 0.00250 0.00021 1.68 0.271 Insigni�cant
Pure error 6 0.00073 0.00012 - -
Correlation total 25 1.06039 - - -

R2 = 99:74% R2
Adj = 99:59% R2

Pred = 98:51% PRESS = 0:01577
(b) For TWR
Regression 10 0.03641 0.00364 8 0.76 0.000 Signi�cant
Linear 4 0.03174 0.00794 176.02 0.000
Square 2 0.00051 0.00025 5.64 0.011
Interaction 4 0.00415 0.00104 23.07 0.000
Residual error 20 0.00090 0.00005 - -
Lack-of-�t 14 0.00079 0.00006 3.09 0.086 Insigni�cant
Pure error 6 0.00011 0.00002 - -
Correlation total 30 0.03731 - - - -

R2 = 97:58% R2
Adj = 96:38% R2

Pred = 91:13% PRESS = 0:00331
(c) For Ra
Regression 5 16.379 3.2758 21.22 0.000 Signi�cant
Linear 3 14.510 4.8365 31.33 0.000
Interaction 2 1.870 0.9348 6.06 0.007
Residual error 25 3.859 0.1544 - -
Lack-of-�t 9 1.942 0.2158 1.80 0.146 Insigni�cant
Pure error 16 1.917 0.1198 - -
Correlation total 30 20.239 - - -

R2 = 80:93% R2
Adj = 77:12% R2

Pred = 74:10% PRESS = 5:24248

calculated as [25]:

R2 =
SSR
SST

= 1� SSRes

SST
; (9)

R2
Adj = 1� SSRes=(n� p)

SST =(n� 1)
= 1� MSRes

MST

= 1�
�
n� 1
n� p

�
(1�R2); (10)

R2
Pred = 1� PRESS

SST
; (11)

PRESS =
nX
i=1

e2
(i) =

nX
i=1

�
yi � ŷ(i)

�2 ; (12)

where SSR is the regression sum of squares, SST is
the total sum of squares, SSRes is the residual sum of

squares, MSRes is the residual mean square, MST is
the total mean square, and ŷ(i) is the predicted value
of the ith observed response based on a model �t to
the remaining (n� 1) sample points.

A broad overview of these indices con�rms the
suitability and completeness of all the obtained mod-
els, as neither inconsistency nor poor adequacy can
be observed. A complete residual analysis has also
been undertaken for every developed response and
the graphs are shown in Figure 2(a)-(c). A normal
probability plot of residuals reveals that experimental
data are spread approximately along a straight line,
con�rming a good correlation between experimental
and predicted values for the response (Figure 2, a(A),
b(A), and c(A)). In the graph of residuals versus �tted
values (Figure 2, a(B), b(B), and c(B)), only small
variations can be seen. The histogram of residuals
(Figure 2, a(C), b(C), and c(C)) also shows a Gaussian
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Figure 2. Plot of residuals: (a) MRR; (b) TWR; and (c) Ra. (A) normal probability plot of residuals; (B) residuals
versus the �tted values; (C) histogram of the residuals; and (D) residuals against the order of data.

distribution, which is desirable. Finally, in residuals
against the order of experimentations in Figure 2, a(D),
b(D), and c(D), both negative and positive residuals
are apparent, indicating no special trend, which is
worthy from a statistical point of view. As a whole,
all the yielded models show no inadequacy.

Table 7 details all the numerical values of �nalized
individual regression coe�cients for every response.
Based on these, the mathematical equations are con-
formed for each performance characteristics to be
suitable coe�cients and can be expressed in terms of
coded factors as:

MRR =0:282 + 0:194A� 0:063B + 0:11C � 0:051D

� 0:014C2 � 0:041A�B + 0:076A� C
� 0:042A�D � 0:017B � C; (13)

TWR =0:045 + 0:036A� 0:012B + 0:017C

� 0:006D + 0:012A2 � 0:007C2

� 0:005A�B + 0:014A� C � 0:005A�D
� 0:005B � C; (14)

Ra =4:849 + 0:302A+ 0:842B + 0:076D

+ 0:214A�B + 0:266A�D: (15)

The above developed models can be used as reliable
tools navigating the design space within the process
parameters domain to get an in-depth understanding of
process characteristics, and can also be utilized in the
optimization stage to �nd optimum EDMing conditions
on WC-6%Co.
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Table 7. Finalized regression coe�cients of the response
models.

Coe�cient MRR
(g/h)

TWR
(g/h)

Ra
(�m)

�0 (intercept) 0.2819 0.0454 4.8486
�A 0.1937 0.0359 0.3019
�B -0.0631 -0.0116 0.8421
�C 0.1096 0.0173 Insigni�cant
�D -0.0510 -0.0062 0.0759*
�A2 Insigni�cant 0.0119 Insigni�cant
�C2 -0.0139 -0.0071 Insigni�cant
�AB -0.0413 -0.0054 0.2143
�AC 0.0755 0.0136 Insigni�cant
�AD -0.0423 -0.0051 0.2663
�BC -0.0168 -0.0046 Insigni�cant

� The e�ect of gap voltage (D) on surface
roughness is insigni�cant (see Table 5) and its coe�cient
has just been kept to comply with the hierarchy principle.

The EDM is an inherently stochastic and complex
process, and it would be of interest to check the
variability of output responses, i.e., MRR, TWR, and
Ra, when an experiment is repeated using the same
set of input parameter settings. It is also of great
importance to test the generalization capabilities of de-
veloped models in response to some input data settings
not used in the DOE plan but lying within the limits
of input parameter domains. These investigations
can helpfully provide fair justice to how robust the
response surface models are in points of the reliability
of gathered data used for model building, as well as
models' predictive capabilities. Table 8 lists a set of �ve
repetitive experimental runs selected randomly from
Table 4, which account for checking the variability of
output responses, while Table 9 presents a set of �ve
additional tests, carefully designed to be di�erent from
those used for model building, to check the predictive
accuracy of the developed models.

It is to be noted that the number shown in
parenthesis in the �rst column of Table 8 corresponds
to the experimental number in Table 4, for which the
experimental setting has been repeated.

It can be inferred from Table 8 that there exists an
acceptable level of variability when some experiments
are repeated. The amounts of each two repetitive
output responses are in close proximity to each other,
assuring that the data base obtained from the adopted
FCC design could reliably represent the EDM behavior
of WC/6%Co under di�erent conditions and could
con�dently be used for model development The average
percentage deviations are 1.84%, 0.42%, and 15.3%
for MRR, TWR, and Ra over these �ve repetitions,
respectively. The values are obviously acceptable in
view of engineering applications.

Table 9 illustrates the results of several con�r-
mation experiments conducted to check the accuracy
of each response model. The values of mean relative
prediction errors are 8.75%, 10.30%, and 4.96% for
MRR, TWR, and Ra, respectively. Therefore, it can
be concluded that the obtained second-order response
equations are quite adequate, possessing reasonable
accuracy, to capture the highly nonlinear trends of
EDM measures, and can satisfactorily be used for
further analysis and optimization purposes.

4. Results and discussion

To genuinely describe the quality of variation trends of
each process response with respect to inputs, it is of
great importance to be aware that spark energy is the
dominant factor most responsible for the mechanism
of material removal in EDM. The amount of discharge
energy (q) delivered per single discharge, assuming a
normal pulse (i.e. spark), can be expressed as [28]:

q=
Z Ton

Td
VdisIdisdt�Vdis:Idis:(Ton�Td)�Vdis:Idis:Ton;

(16)

Table 8. Experimental checking of the repeatability of output response data.

Exp.
no

Input process
parameters

Response variables Percentage variation�

(%)
I

(A)
Ton

(�s)
DC
(%)

V
(v)

MRR1

(g/h)
MRR2

(g/h)
TWR1

(g/h)
TWR2

(g/h)
Ra1

(�m)
Ra2

(�m)
MRR TWR Ra

1 (4) 8 150 40 40 0.260 0.230 0.050 0.057 5.692 5.511 3 0.7 18.1
2 (9) 2 50 40 80 0.020 0.023 0.013 0.011 3.741 3.904 0.3 0.2 16.3
3 (17) 2 100 60 60 0.080 0.073 0.020 0.023 5.258 5.424 0.7 0.3 16.6
4 (20) 5 150 60 60 0.216 0.244 0.032 0.036 5.958 5.837 2.8 0.4 12.1
5 (24) 5 100 60 80 0.232 0.256 0.040 0.035 5.167 5.301 2.4 0.5 13.4

Mean percentage variation (%) 1.84 0.42 15.3
� Percentage variation (%) = jR1 �R2j � 100, where R1 and R2 stand for the �rst and second repetition of each response,
respectively.
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Table 9. Experimental veri�cation of response surface models.

Exp.
no

Input process
parameters

MRR (g/h) TWR (g/h) Ra (�m)
Relative�

prediction
error (%)

I
(A)

Ton

(�s)
DC
(%)

V
(v)

Experimental Model Experimental Model Experimental Model MRR TWR Ra

1 4 100 70 50 0.311 0.274 0.043 0.041 4.786 4.41 5 11.90 4.65 7.75
2 5 75 60 60 0.698 0.782 0.045 0.051 4.551 4.428 12.03 13.33 2.70
3 3 125 60 60 0.238 0.259 0.025 0.022 5.443 4.9 97 8.82 12 8.19
4 6 150 50 70 0.183 0.175 0.035 0.031 5.803 5.94 5 4.37 11.43 2.45
5 7 50 80 70 0.587 0.626 0.099 0.109 4.353 4.192 6.64 10.10 3.70

Mean relative prediction error (%) 8.75 10.30 4.96
� Relative prediction error (%) =

���Experimental result�Predicted result
Experimental result

���� 100.

where Td, Ton, Vdis, and Idis represent the ignition delay
time, pulse on-time, discharge voltage and current,
respectively. The magnitude of ignition delay time
in normal pulses is so small compared to pulse on-
time [29], so its e�ects have been neglected for the
sake of simplicity. Under real EDM conditions, for a
sequence of electrical discharges occurring between the
two electrodes within the total machining time (T ), the
total discharge duration (TD) is given by:

TD = T �DC; (17)

where DC is the duty cycle. On the other hand, the
whole number of discharge pulses (N) during total
machining time can be calculated as:

N =
T

Ton + To�
= T � Ton

Ton + To�
� 1
Ton

=
T �DC
Ton

=
TD
Ton

: (18)

Therefore, the total discharge energy (Q) during overall
machining time is given by:

Q =q �N = Vdis:Idis:Ton � TD
Ton

= Vdis:Idis:TD

= Vdis :Idis:T:DC: (19)

This is the total electrical discharge energy delivered
into the gap zone, which is then shared between the
tool and work piece electrodes, as well as the dielectric
liquid. All the following discussions are based on this
simple relation describing the whole generated electro-
thermal energy during sparking, expressed in terms of
the selected input EDM parameters. In what follows,
a comprehensive parametric analysis of the inuence
of input variables on output features is undertaken as
main (direct) and interaction e�ect plots. In the �rst,
one factor is varied from the minimum to maximum
level, while other parameters are kept constant at their

Figure 3. The main e�ects plot of input parameters over
the MRR.

middle level. For the latter, the e�ect of a factor on
the respective response is studied at di�erent levels
of another factor, while keeping all other variables
unchanged.

4.1. Main e�ect analysis of MRR
In this section, the direct e�ects of four selected input
factors, namely, A: discharge current, B: pulse on-
time, C: duty cycle, and D: gap voltage on Material
Removal Rate (MRR) are studied independently. The
plots obtained in this manner are called main e�ects
plots, which are discussed in the following.

Figure 3 shows the main e�ect plot of each
variable on the MRR. As is clear, the MRR increases
steadily with the increase of discharge current. Higher
levels of discharge currents result in stronger electrical
discharges capable of removing a chunk of material
from the work piece, hence, boosting the rate of
erosion [30]. The MRR tends to decrease with the
increase of pulse on-time. Despite the usual belief
that longer pulse on-times provide much more time
for electrical discharging compared to shorter ones, in
reality, longer pulse durations cause the plasma channel
to expand excessively, thus, lowering the plasma ush-
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ing e�ciency and electrical discharge density within
the gap space, with more molten material resolidifying
instead of being e�ectively removed [31,32]. On the
contrary, the main e�ect of the duty cycle displays
a reverse tendency. At a constant level of pulse on-
time (B = 0), increasing duty cycle means lower-
ing the pulse o�-time, thereby, decreasing the idle
time between successive sparks, which produces higher
discharging frequency, leading to a higher removal
rate. Finally, it can be inferred from the main e�ect
plot of gap voltage that higher MRR is attainable
at lower levels of gap voltage. Higher gap voltage
provides wider gap distance, which, in turn, results
in diminished electrical discharge density and larger
gap electrical resistivity, hindering the proper trans-
missivity of sparks [32]. So, the MRR decreases with
the increase of gap voltage alone. It should be noted
that these results have been acquired, considering the
e�ect of each factor independently (keeping the other
parameters unchanged). Nevertheless, more practically
bene�cial outcomes are revealed when their mutual
joint e�ects are investigated simultaneously. This can
be obtained by studying interaction e�ect plots drawn
for each signi�cant two-way interactive parameter over
the relevant response.

4.2. Interaction e�ect analysis of MRR
Figure 4(a) depicts the combined e�ects of pulse on-
time at di�erent levels of discharge current over the

MRR. It can be inferred that the maximum MRR is
attainable at the lowest level of pulse on-time, along
with the highest level of discharge current. This
phenomenon can be best attributed to the increased
energy density of discharge channel (J) relative to I
and Ton, given by [33]:

J = k
Ia

T bon
; (20)

where a, b and k are constant coe�cients. Although
the discharge energy itself is small with a short pulse
on-time (Eq. 16), a higher discharge density is expected
due to a very small discharge channel diameter. Hence,
the higher the discharge current and the lower the
pulse on-time, the larger is the electrical discharge
density. Higher discharge density causes most of the
material in the discharge area to be removed in the
form of evaporation, with a thinner recast layer left
on the work surface, increasing the plasma ushing
e�ciency [34], hence, MRR. Figure 4(b) illustrates the
interactive e�ect duty cycle and current on MRR. It
is understood that while keeping pulse on-time and
gap voltage constant, higher amounts of MRR are
achievable at the point of both larger discharge current
and duty cycle. At a steady pulse on-time, an increased
duty cycle implies lower pulse o�-time and, when
combined with elevated discharge current, a higher
rate of electrical discharge energy is assured, making
the MRR as large as possible. Figure 4(c) shows the

Figure 4. Interaction e�ect plots of MRR: (a) Pulse on-time (B) and discharge current (A); (b): duty cycle (C) and
discharge current (A); (c) gap voltage (D) and discharge current (A); and (d) duty cycle (C) and pulse on-time (B).
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Figure 5. The main e�ects plot of input parameters over
the TWR.

e�ect of gap voltage and current, whereas Figure 4(d)
portrays the combined e�ect of duty cycle and pulse on-
time over the MRR. It becomes clear that higher values
of current, along with lower gap voltage, will de�nitely
provide a suitable medium for higher rates of material
melting and evaporation during sparking, thanks to
enhanced electrical discharge density in a narrower gap
region [31]. The lowest pulse on-time and highest duty
cycle convey the greatest discharge frequency within
the process input domain in which more material can
be removed from the work piece in a unit time [35].
This event is clearly visible in Figure 4(d).

4.3. Main e�ect analysis of TWR
Figure 5 shows the main e�ect of each of four input
parameters drawn, keeping the other factors constant
at their middle level. A similar trend is observed
compared to the main e�ects of MRR. The TWR
tends to increase by increasing the discharge current
and can reach up to about 0.09 g/h alone. This is
the highest amount of TWR in these plots, which, in
turn, con�rms that the discharge current is paramount
amongst other parameters in a�ecting the TWR. It
is clear from the main e�ect plot of pulse on-time
that setting longer pulse on-times can favor the TWR,
as shorter pulse durations will deteriorate the tool
wear. To better justify this fact, Figure 6 illustrates a
schematic view of a single electrical discharge occurring
between the two electrodes and the formed plasma
channel. While keeping constant polarity, during every
discharge, accelerated electrons bombard the surface of
the anode (positive pole: tool), whereas ions aiming to
move toward the cathode (negative pole: work piece)
collide with the work surface. With small values of
pulse duration, a higher number of negatively charged
particles, being thousands of times lighter than ions,
get the chance of being energized; stroking the positive
(anode) tool electrode, and, thereby, increasing the
rate of electrode material erosion [36,37]. On the same

Figure 6. Schematic drawing of a single electrical
discharge.

basis, the rising tendency of TWR with regard to duty
cycle can be rationalized. A higher level of duty cycle
is equivalent to lower pulse o�-time and, hence, higher
pulse frequency, which implies greater TWR due to the
privileged rate of electron collisions with the anode tool
surface [30]. On the other hand, selecting lower gap
voltage results in larger amounts of tool wear. The
same reason as mentioned for the MRR can surely be
applied here, since a larger gap distance, while keeping
other variables unchanged, will give rise to reduced
electrical discharge density, which can less a�ect the
tool electrode against wear.

4.4. Interaction e�ect analysis of TWR
The interaction e�ect plot of TWR, with regard to
current and pulse on-time, has been depicted in Fig-
ure 7(a). As always smaller TWRs are demanded, they
can be reached at lower discharge currents, followed
by longer pulse on-times. A small discharge current
provides lower discharge intensity (Eq. (16)), while
prolonged pulse duration will give more chance for
much heavier positive ions to reach the target cathode
work piece, thus, occupying most of the plasma channel
path and letting less excited electrons attack the anode
tool [36].

Figure 7(b) shows the mutual e�ect of duty cycle
and discharge current on TWR. It is noticeably re-
vealed that smaller TWRs can, especially, be obtained
by a combination of both low discharge current and
duty cycle, and that much smaller TWRs are accom-
plished moving towards the minimum current. This
fact, however, cannot be elicited solely by checking the
main e�ect plots of the duty cycle and current, as both
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Figure 7. Interaction e�ect plots of TWR: (a) Pulse on-time (B) and discharge current (A); (b) duty cycle (C) and
discharge current (A); (c) gap voltage (D) and discharge current (A); and (d) duty cycle (C) and pulse on-time (B).

present the same inuence on the TWR; increasing
each of which makes the TWR increase progressively.
This is undoubtedly due to the strong interactive
nature of these two parameters suitably found by the
ANOVA of TWR response (see Table 5). Moreover, the
tool electrode su�ers more from wear, where both the
current and duty cycle are chosen at their high levels;
a point located at the upper right part of Figure 7(b).
Increasing duty cycle at a steady level of pulse on-
time (the case where Figure 7(b) has been drawn)
means lowering the pulse o�-time, thus, increasing the
frequency of electrical discharge assuring higher rates
of electron attack on the anode tool electrode in a unit
time [36,37].

Figure 7(c) displays the interactive e�ect of gap
voltage and current on the TWR. As can be inferred,
low TWRs (less than 0.02 g/h) may be accessible with
the smallest level of current (A = �1) accompanied
by every adjustable level of gap voltage. In other
words, the coincident e�ects of these two factors on
TWR counteract the e�ect of gap voltage alone (shown
in Figure 5), as now the whole range of it can be
selected to yield small TWRs provided that the current
is kept low enough (A = �1). Figure 7(d) shows the
concurrent e�ect of duty cycle and pulse on-time. It
is obviously visible that small TWRs (below 0.03 g/h)
can be obtained choosing the lowest level of duty cycle
(C = �1) with a range of medium to high levels of
pulse on-time (0 < B < 1). This combination con�rms

Figure 8. The main e�ects plot of input parameters over
the Ra.

relatively decreased sparking frequency, meaning lower
amounts of electron attack in a unit time to cause tool
wear [36,37].

4.5. Main e�ect analysis of Ra
Figure 8 depicts the main e�ects plot of the four
controllable parameters on the Ra. It is understandable
that the �rst two variables, current and pulse on-
time, have more inuential impacts on the Ra than
those of duty cycle and gap voltage. More speci�cally,
increasing pulse on-time alone, while keeping the other
factors constant at their middle levels, can increase the



554 S. Assarzadeh and M. Ghoreishi/Scientia Iranica, Transactions B: Mechanical Engineering 22 (2015) 539{560

Ra from 4 �m up to about 5.7 �m; a higher di�erence
interval than that created by other parameters. As is
also clear, altering both duty cycle and gap voltage,
within their designated intervals considered in this
research, causes little change of the Ra. This fact
was also veri�ed before (see Table 5), as not being
signi�cant parameters within 95% of con�dence inter-
val, and their main e�ects have just been shown here
for comparative purposes. In general, the work surface
quality in EDM depends primarily on the magnitude of
electrical discharge energy governed mainly by current
intensity and pulse on-time [31,32]. A prolonged pulse
on-time makes the discharging action continue for a
longer duration, so that broader craters are formed
over the work surface, overwhelmed with an abundance
of resolidi�ed molten material not ejected e�ectively.
This, in turn, leads to worsened and coarser surface
quality [13].

4.6. Interaction e�ect analysis of Ra
Figure 9(a) illustrates the joint e�ects of pulse on-time
and discharge current over the Ra. It is apparent
that smoother surfaces can be obtained by assigning
the lowest level of pulse on-time (B = �1), while
providing a fair amount of discharge current. For
example, if it is desired to produce a surface having
a Ra roughness less than about 4 �m, then, it is
feasible to choose any arbitrary value for the discharge
current, within its investigated domain, provided that
the pulse on-time is kept at its lowest level (B = �1).
More noticeably, the combination of B = �1 and
A = 0 gives the lowest Ra. Enough discharge current
is needed to remove material from the high melting
point WC-Co composite more e�ectively, with less
remaining recast layer over the work piece, worsening
the surface quality [31,32]. Figure 9(b) portrays the
two-way interaction e�ects of gap voltage and discharge
current. Under the circumstances in which this graph
has been drawn, it can be concluded that the lowest
value of Ra (about 4.2 �m) is achieved setting the
highest level of gap voltage (D = 1), along with

the minimum level of discharge current (A = �1).
Higher gap voltage, while making the gap distance
wider, facilitates debris removal from the gap space
and can also help reduce electrical discharge density.
Altogether, with low current intensity, they collaborate
in attaining a superior surface quality [31,32].

5. Optimum selection of EDM parameters on
WC/6%Co using desirability function
technique

Metal removal rate is an indicator for productivity,
while tool wear rate and surface �nish account for
process economics, precision, and work quality. In
particular, tool wear is of paramount concern, espe-
cially when close tolerances in intricate geometries are
needed. The EDM, as a complex and stochastic pro-
cess, exhibits much di�culty in determining optimal
machining parameters for best machining performance.
The performance indicators, viz. MRR, TWR and
Ra, are conicting in nature, as it is always desirable
to have higher MRR, with a lower value of surface
roughness and tool wear rate, at the same time. Due to
the presence of a large number of process variables and
mutual interactions, the selection of optimum machin-
ing parameter combinations, to obtain higher MRR
and smaller SR and TWR, is a challenging task [38].
Here, an attempt is made to develop a strategy based
on the concept of desirability function for predicting
the optimum machining parameter settings, generating
maximum MRR, with minimum SR and TWR, all at
once.

5.1. Optimization formulation
The mathematical formulation of the present optimiza-
tion problem can be stated as follows:

Max : F1(x) = MRR;

Min : F2(x) = TWR;

Min : F3(x) = Ra:

Figure 9. Interaction e�ect plots of Ra: (a) Pulse on-time (B) and discharge current (A); and (b) gap voltage (D) and
discharge current (A).
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Subject to :

2 � x1 � 8

50 � x2 � 150

40 � x3 � 80

40 � x4 � 80; (21)

where x1, x2, x3 and x4 represent the input process
parameters, I, Ton, DC and V , respectively. It is a four-
variable-three-objective optimization statement, each
of which has been de�ned by its respective second order
regression equation (Eqs. (13)-(15)).

5.2. Optimization through desirability function
Popularized by Derringer and Suich [39], the Desir-
ability Function Approach (DFA) is a kind of search-
based optimization method capable of handling several
response functions simultaneously to �nd optimal input
settings, globally. The overall approach is to �rst
convert each response, yi into an individual desirability
function, di, that varies over the range:

0 � di � 1: (22)

If the response yi is at its goal or target, then di = 1
(the most desirable case), and if the response is outside
an acceptable region, then, di = 0 (the least desirable
case). There is also a positive number, weight factor
(r), associated with the desirability function of each
response de�ning its shape. If the weight is chosen to
be less than 1, then the sensitivity of the desirability
function is low with respect to the optimal or target
value sought for. In other words, if the search algorithm
�nds a point which is somehow far from the desired
optimum or target value, then the decrease in desir-
ability function value will be small in comparison to its
maximum amount (unity). Choosing a weight factor
higher than one has the reverse e�ect, and setting it
to one provides a balanced or medium sensitivity with
the shape of desirability being linear [24,25,40]. The
individual desirability functions are de�ned according
to the goal of optimization, i.e. maximization or
minimization.

If the objective or target, Ti for the response, yi,
is a maximum value, then:

di =

8>>><>>>:
0 yi � Li�
yi�Li
Ti�Li

�r
Li � yi � Ti

1 yi � Ti
(23)

and if the target for the response is a minimum value,
then:

di =

8>>><>>>:
1 yi � Ti�
Ui�yi
Ui�Ti

�r
Ti � yi � Ui

1 yi � Ui
(24)

where Li and Ui represent the lower and upper limit
values of the response, yi, respectively.

The individual desirabilities are then combined to
form the overall (composite or aggregated) desirability
(D), another parameter varying between 0 and 1, as the
weighted geometric mean of all the previously de�ned
desirability functions, given by:

D = (dw1
1 � dw2

2 � dw3
3 � :::� dwnn )

1
(w1+w2+w3+:::+wn)

= (�n
i=1d

wi
i )

1Pn
i=1 wi ; (25)

where wi is of relative importance, a comparative scale
for weighing each of the resulting di assigned to the
ith response, and n is the number of responses (n =
3, in our case). The optimal settings are determined,
so as to maximize overall desirability (D), usually by
applying a reduced gradient algorithm with multiple
starting points [40].

5.3. Parametric optimization of the EDM
process on WC-6%Co

Based on the developed quadratic mathematical re-
sponses (Eqs. (13)-(15)), d1, d2, and d3 are selected
as the independent desirability functions for the MRR,
TWR, and Ra, respectively. Moreover, the targets
are placed on the MRR to become maximized, while
TWR and Ra to be minimized. Unit weight factor
(r = 1) and importance (wi = 1) were also assigned
for each response. The Response Optimizer option
within the DOE module of the Minitab statistical
software package, release 15, has been used here to
search for the best set of optimum input parametric
combinations, resulting in the most desirable compro-
mise between di�erent responses. Table 10 summarizes
the key parameters set to �nd global optimum settings,
including constraints of input variables and that of

Table 10. Constraints and criteria of input parameters
and responses.

Parameter/Response Goal Lower
limit

Upper
limit

Discharge current In range 2 8
Pulse on-time In range 50 150

Duty cycle In range 40 80
Gap voltage In range 40 80

Material removal rate Maximize 0.02 0.86
Tool wear rate Minimize 0.007 0.15

Surface roughness Minimize 3.395 6.589
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Table 11. Iterative determination of optimum conditions (inputs in coded form).

Solution Current
(A)

Pulse
on-time

(B)

Duty
cycle
(C)

Gap
voltage

(D)

MRR
(g/h)

TWR
(g/h)

Ra
(�m)

d1 d2 d3

Composite
desirability

(D)
1 0.232323 -0.989478 -1 -1 0.30187 0.04241 3.89837 1 1 1 1
2 0.434343 -0.959596 -1 -0.959596 0.33782 0.05002 3.89841 1 0.999604 1 0.999868
3 -0.397059 -1 1 1 0.3 0.04763 3.94184 1 1 0.961959 0.987155
4 -0.501927 -0.942816 1 -1 0.32798 0.05 4.06218 1 1 0.852562 0.948219
5 0 -1 0 0.881845 0.3 0.05158 4.07341 1 0.96846 0.842356 0.934385
6 0.643528 -1 0.930431 0.419331 0.28849 0.05 4.16654 0.88494 0.999984 0.75769 0.875251
7 0.43614 -1 -0.599353 0.970432 0.27956 0.05 4.23107 0.79558 9 0.999998 0.699026 0.822357
8 -0.157129 -0.476585 1 1 0.32588 0.05 4.44991 1 1 0.500078 0.793742
9 0.997587 -1 -1 1 0.27054 0.0564 4.43547 0.705421 0.8719 67 0.513207 0.680895
10 0.344275 -0.15463 -0.946309 -1 0.28279 0.04136 4.64325 0.827884 1 0.324322 0.645132

Note: The �rst row in italic is selected as the best compromise solution.

response requirements, while Table 11 sorts the �rst
ten optimum settings obtained in descending order of
composite desirability (D). The closer D is to 1, the
more favorable are the EDM conditions satisfying prob-
lem requirements. It can be seen from Table 11 that
the most desirable operating conditions correspond to
the �rst row and are discharge current A = 0:2323,
pulse on-time B = �0:9895, duty cycle C = �1
and gap voltage D = �1 in coded form, equivalent
to 5:70A, 50.53 �s, 40% and 40 V as real values,
respectively. Accordingly, the optimized responses are
0.302 g/h, 0.042 g/h, and 3.898 �m for MRR, TWR,
and Ra, respectively. A closer examination of the whole
listed settings in Table 11 reveals that although higher
MRRs can be obtained by other settings, those cases
are subject to sacri�cing both TWR and Ra, as they
obtained higher values than those pertinent to the �rst
solution. Figure 10 illustrates a visual representation

Figure 10. Final optimization results.

of the optimization result. The optimization plot
shows the e�ect of each factor (columns) on the re-
sponse or composite desirability (rows). Furthermore,
each cell presents how the process output varies as a
function of one of the process factors, while keeping
the other parameters unchanged. Also, the vertical
lines inside the cells show current optimal parametric
settings, whereas the dotted horizontal lines represent
the current response values. High and low settings
of each process design variable can also be observed
in this plot, denoted by 1 and -1, respectively. The
most useful part is the optimal parameter settings
required to achieve the process set target criteria,
located in the middle row between the high and low
rows, symbolized by \cur" and expressed in coded form.
Finally, the �rst left column shows the composite, as
well as all individual desirability, all being unity, along
with optimum response values.

Conducting the con�rmation experiment is the
crucial, �nal, and indispensable part of every optimiza-
tion attempt. A veri�cation experiment was performed
at the obtained optimal input parametric setting to
compare the actual MRR, TWR, and Ra with those
of optimal responses obtained through a desirability
approach. Table 12 summarizes the optimization
results, along with experimentally obtained responses,
and their relative percentage veri�cation errors.

As is clear, the amounts of error are all found to be
satisfactory, from the point of engineering applications
(10.64% as the worst case) in predicting the TWR,
assuring the feasibility, predictability, and e�ectiveness
of the adopted approach.

Moreover, these error values are also in good
agreement with those represented in Table 9, all be-
ing in a comparable error margin for each response,
proving that a consistent and reliable strategy has been
employed in this research.
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Table 12. Multi-response optimal points and experimental validation.

Optimum
input

setting

MRR
(g/hr)

TWR
(g/hr)

Ra
(�m)

Relative
prediction
error (%)

I
(A)

Ton

(�s)
DC
(%)

V
(V)

Predicted Exp.a Predicted Exp.a Predicted Exp.a MRR TWR Ra

5.70 50.53 40 40 0.302 0.331 0.042 0.047 3.898 4.141 8.76 10.64 5.87
a: Experimental.

5.4. The interpretation of optimal settings
Making a thorough analysis of the optimum input
values can provide a fair basis to justify their estimated
amounts from the point of physical aspects involved
in the EDM process. In the course of optimization
through the desirability function approach, a measure
of how well the solution has satis�ed the combined
goals for all responses must be assured. That is,
D = 1, and the optimum setting providing this could
have been able to make a tradeo� between di�erent
objective functions. The amount of optimal discharge
current has been found to be near its middle value,
providing fair electro-thermal energy, so that neither a
very low MRR nor an extremely high one is obtained.
Along with almost the shortest possible pulse on-
time (50.53 �s), the existence of adequate electrical
discharge density is assured to help maintain enough
impulsive force to expel much of the molten material
from the crater [38,11]. Moreover, as was discussed in
subsection 4.5, shorter pulse on-times are in favor of
smoother surfaces, as the resulted craters' dimensions
(depth and diameter) are smaller compared with those
created with long pulse durations. Hence, better sur-
face quality is guaranteed. Finally, the optimal values
of duty cycle and gap voltage are equivalent to their
lowest possible levels considered in the experimental
plan, as increasing either of them may cause the process
performance to deviate from its optimum condition by
sacri�cing any of the three responses. This e�ect can
be seen in Table 11. Especially, the lowest gap voltage
(40 V) provides a narrower gap distance, increasing the
electrical discharge density inside the gap zone, which,
in turn, helps improve the MRR.

6. Conclusions

Conventional machining of the hard metal WC/6%Co
composite is extremely laborious, burdensome, and
time consuming, due to its elevated hardness and brit-
tleness over a wide range of temperatures and working
conditions. The e�ective and economic utilization of
the EDM process on such a material, with optimum
selection of input parameters, needs a thorough under-
standing of its machinability behavior, which, in turn,
can substantially alleviate the di�culties encountered.
In short, based on in-depth and comprehensive analysis

and optimization of WC-6%Co ED-machinability in-
dices, the following principal conclusions can be drawn:

1. All the main e�ects of input parameters, i.e. dis-
charge current, pulse on-time, duty cycle and gap
voltage, have been found to be highly signi�cant,
a�ecting both the MRR and TWR. However, for
the third response, Ra, just the main e�ects of the
�rst two were revealed to be statistically important.

2. Regarding the main e�ects analysis, both the MRR
and TWR behave in the same way. However,
the TWR behaves more nonlinearly. Increasing
either discharge current or duty cycle results in
higher values of stock removal rate and tool wear,
whereas increasing pulse on-time or gap voltage
causes the reverse e�ect. On the other hand, the
work roughness value, Ra, is directly proportional
to both the discharge current and pulse on-time,
while the main e�ects of the other parameters were
found to be negligible.

3. The two way interaction e�ects of discharge current
with pulse on-time (A � B), duty cycle (A � C),
and gap voltage (A�D), as well as the interaction
between the pulse on-time with duty cycle (B�C)
and pure quadratic e�ect of duty cycle (C2), have
all been found to signi�cantly inuence the MRR.

4. On measuring TWR, the same dual interaction ef-
fects inuencing the MRR, plus the pure quadratic
e�ect of discharge current (A2), were understood to
be statistically signi�cant.

5. For the Ra response, the interactions between
discharge current with pulse on-time (A � B) and
discharge current with gap voltage (A�D) possess
signi�cant e�ects.

6. Higher MRRs are always accessible through either
enhancing electrical discharge density or rising
sparking frequency. These conditions are feasible
by lowering the pulse on-time and gap voltage or
increasing duty cycle, while considering larger dis-
charge currents to con�rm greater released electro-
thermal energy as a result of sparking.

7. Low amounts of TWR can mainly be obtained
by a combination of lower current levels with
prolonged pulse on-times or longer pulse on-times
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with smaller duty cycles. Decreased discharging
frequency resulted from longer pulse durations can
help protect the anode tool from serious wear, as
a smaller number of discharges take place within
a unit of time. In other words, positive ions get
enough time with a longer pulse on-time to reach
the cathode workpiece, while occupying much of the
path within the discharge channel, and not allowing
high volumes of electrons to easily bombard the
anode tool.

8. Smoother surfaces can be produced via a combi-
nation of either low current intensity with shorter
pulse on-time or low current level with higher gap
voltage. While keeping the discharge current low
enough, the �rst case produces shallower craters
with smaller diameters, while the latter gives rise
to wider gap size. This helps facilitate better debris
evacuation and less deposition of molten products
on the work surface, hence, improving the surface
quality in either case.

9. The superior optimum operating conditions that
can simultaneously bring out maximum MRR and
minimum TWR and Ra are 5.70 A, 50.53 �s,
40%, and 40 V as current, pulse on-time, duty
cycle and gap voltage, respectively. By verifying
these optimized points, the worst relative error is
revealed as 10.640% between the predicted optimal
and experimentally obtained values of TWR.

10. Though the EDM process parameters on WC-6%Co
are highly interconnected, due to its inherently
complex and stochastic nature, the approach of
RSM coupled with DF can bene�cially help identify
process behavior and determine appropriate EDM
conditions meeting all performance criteria in a
compromised manner.

Nomenclature

A Discharge current I (amperes)
Adj MS Adjusted Mean Square
Adj SS Adjusted Sum of Squares
B Pulse on-time Ton (microsecond)
C Average gap voltage V (volts)
D Duty cycle (%), composite desirability
di Desirability for ith response
DC Duty Cycle
DF Degree of Freedom
ei ith residual
Idis Discharge current
J Electrical discharge density of plasma

channel
k Number of independent process

variables

Li Lower value of the ith response
MRR Material Removal Rate (grams per

hour: g/h)
MSRes Residual mean square
MST Total mean square
N Total number of experiments, total

number of discharge pulses
na Number of axial (star) points
nc Number of center points
nf Number of factorial points
PRESS Prediction error sum of squares
q Discharge energy per pulse
Q Total discharge energy
Ra Average surface roughness

(micrometer)

R2 Coe�cient of determination (R-
squared)

R2
Adj Adjusted R-squared

R2
Pred Predicted R-squared

Seq SS Sequential sum of squares
SSRes Residual sum of squares
SST Total sum of squares
T Total machining time
Td Ignition delay time
TD Total discharge duration
Ti Target for the ith response
To� Pulse o�-time
TWR Tool Wear Rate (grams per hour: g/h)
Vdis Discharge voltage
Ui Upper value of the ith response
yi ith response parameter
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