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Abstract. This paper discusses the controllability condition for linear stochastic
fractional systems. The de�nition of fractional stochastic controllability is given. The
�-controllability matrix has been presented to derive the required theorems for necessary
and su�cient conditions of complete and approximate fractional stochastic controllability.
The equivalency of fractional stochastic controllability to fractional controllability is also
investigated. An example has been given to examine the e�ectiveness of the theory.
© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Fractional calculus is dealing with integration and
derivation of non-integer order [1,2]. It has been
used increasingly in variety of �elds of sciences and
engineering [3-8]. The history of fractional calculus
returns back to 18th century in the very basic works
of Euler and Lagrange and also systematic studies of
Liouville, Riemann and Holmgren in the 19th century.
Nowadays this tool is used to model so many systems
in variety of �elds, such as viscoelastic structures [9],
vibrations and suspensions [10], fractional conservation
of mass [11] and di�usion wave [12].

On the other hand, the concept of controllability
has the key role in control theory. This concept has
been fully investigated in deterministic systems [13,14]
as well as stochastic systems [15-18]. In the mentioned
works for linear and non-linear systems, necessary
and su�cient conditions have been presented for some
types of controllability. For fractional systems this
situation is not satisfactory at all. There are a few
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numbers of contributions in the deterministic case.
Some results on controllability of fractional systems
and the rank condition for these systems are discussed
in [19], while the controllability and observability of
linear discrete-time fractional-order systems are also
studied elsewhere [20]. In [21], the robust controlla-
bility for interval fractional order linear time invariant
systems has been investigated, whereas [22] shows the
controllability condition for some classes of linear and
nonlinear fractional systems.

There is no signi�cant works in the literature
concerning the controllability condition in stochastic
fractional systems. In the present paper, for the
�rst time, a systematic investigation on complete
and approximate controllability of linear stochastic
fractional systems is presented as a generalization
for deterministic case. First, some notations and
de�nitions have been generalized from stochastic non-
fractional systems via Mittag-Le�er matrix functions
and then the concepts of complete and approximate
controllability have been introduced. We then present
some theorems for necessary and su�cient conditions
in linear stochastic fractional systems. The mentioned
conditions then have been adapted to the results in
deterministic systems derived by [19] and [22] to �nd
the rank condition. An example is then presented to
illustrate the e�ectiveness of these theorems.
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2. Preliminaries

2.1. Notations
In this paper, the following notations have been used:

� (
; F; P ):= The probability space with probability
measure P on 
;

� fFt : 0 � t � Tg:= The �ltration generated by
fw(s) : 0 � s � tg and F = Ft;

� L2(
; FT ;Rn):= The Hilbert space of all Ft-
measurable square integrable variables with values
in Rn;

� LF2 ([0; T ];Rn):= The Hilbert space of all square
integrable and Ft-measurable process with values in
Rn;

� C ([0; T ]; L2(
; F; P;X)):= The Banach space of
continuous maps from [0; T ] into L2(
; F; P;X)
satisfying the condition sup

t2[0;T ]
Ejjx(t)jj2 <1;

� Xs:= The Banach space with norm topology given
by jjxjj2s = sup

t2[0;s]
Ejjx(t)jj2 < 1 which is a closed

subspace of C ([0; T ]; L2(
; F; P;X)) consisting of
measurable and Ft-adapted processes x(t);

� Us:= The Banach space with norm topology given
by jjujj2s = sup

t2[0;s]
Ejju(t)jj2 < 1 which is a closed

subspace of C ([0; T ]; L2(
; F; P;X)) consisting of
measurable and Ft-adapted processes u(t);

� L(X;Y ):= The space of all linear bounded operators
from a Banach space X to a Banach space Y .

2.2. Fractional stochastic de�nitions
We consider the following class of linear fractional
stochastic system in the interval [0; T ]:

C
0 D

�
t x(t) = Ax(t) +Bu(t) + �z(t); x(0) = x0; (1)

where A 2 L(Rn;Rn), B 2 L(Rm;Rn), � 2 L(Rd;Rn)
and z(t) is an n-dimensional Gaussian white noise.
C
0 D�

t is the Caputo derivative of fractional order de�ned
as below:

C
t0D

�
t f(t) =

8><>:
1

�(n��)

R t
t0

f(n)(�)
(t��)�+1�n d� n�1<�<n

Dnf(t) � = n (2)

One may rewrite the n-dimensional Gaussian white
noise z(t) as:

z(t) =
dw(t)
dt

; (3)

where w(t) is an n-dimensional Wiener process i.e. its
mean value is zero; E[w(t)] = 0. Thus Eq. (1) is

rewritten in fractional-Ito integral form as:

x(t) =x0 +
1

�(�)

Z t

0
(t� s)��1 (Ax(s) +Bu(s)) ds

+
1

�(�)

Z t

0
(t� s)��1�dw(s): (4)

The solution of the above system can be written as [1]:

x(t) =E�;1(At�)x0 +
Z t

0
(t� s)��1E�;� (A(t� s)�)

Bu(s)ds+
Z t

0
(t� s)��1E�;� (A(t� s)�)

�dw(s); (5)

where the Mittag-Le�er function with two parameters
is de�ned as [1]:

E�;�(z) =
1X
k=0

zk

�(k�+ �)
: (6)

2.3. Operators and sets de�nitions
The de�nitions here are appropriate extension of clas-
sical stochastic systems presented in [15]. Thus the
following operators and sets are introduced.

� The operator �LT0 2 L(LF2 ([0; T ]; Rm), L2(
; FT ;
Rn)) is de�ned by:

LT0 u =
Z T

0
(T � s)��1E�;� (A(T � s)�)Bu(s)ds:

(7)

� The operator (�LT0 )� : L2(
; FT ;Rn) ! LF2 ([0; T ],
Rm) as adjoint to operator LT0 is de�ned by:

(LT0 )�y = B�E��;� (A(T � t)�)E[yjFt]; (8)

where * is the transpose operator.
� The �-controllability operator ��T

s 2 L(L2(
; FT ,
Rn), L2(
; FT , Rn)) is de�ned by:

��T
s y =

Z T

s
(T � t)��1E�;� (A(T � t)�)

BB�E��;� (A(T � t)�)E[yjFt]dt: (9)

� The �-controllability matrix ��Ts 2 L(RnRn) is
de�ned by:

��Ts =
Z T

s
(T � t)��1E�;� (A(T � t)�)

BB�E��;� (A(T � t)�) dt: (10)

� The set of all states attainable from x0 in time t > 0
can be de�ned as:
Rt(x0) = fx(t;x0; u) : u(:) 2 L2(
; FT ;Rn)g ;(11)

where x(t;x0; u) is the solution of Eq. (4) corre-
sponding to x0 2 Rn and u(:) 2 L2(
; FT ;Rn).
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3. Fractional stochastic controllability

De�nition 1. The stochastic system represented in
Eq. (4) is approximately controllable on [0; T ] if:

RT (x0) = L2(
; FT ;Rn) 8x0; (12)

that is given an arbitrary " > 0. It is possible to move
from any point x0 to within a distance " of every point
in the state space L2(
; FT ;Rn) at time T .

De�nition 2. The stochastic system represented in
Eq. (4) is completely controllable on [0; T ] if:

RT (x0) = L2(
; FT ;Rn) 8x0: (13)

It means that all points in the state space L2(
; FT ;
Rn) can be reached from any point x0 at time T .

Lemma 1. For every y 2 L2(
; FT ;Rn) there exists a
process ' 2 LF2 �[0; T ]; L(Rd;Rn)

�
such that:

y = E[y] +
Z T

0
'(s)dw(s): (14)

Proof. The proof can be found in [23].�

Lemma 2. For every y 2 L2(
; FT ;Rn) there exists a
process ' 2 Lf2 �[0; T ]; L(Rd;Rn)

�
such that:

��T
s y = ��Ts E[y] +

Z T

0

��TT�s'(s)dw(s): (15)

Proof. The proof can be found in [23].�
Theorem 1. For arbitrary h 2 L2(
; FT ;Rn) the
control:

u� =B�E��;� (A(T � t)�) (�I + ��T0 )�1

(E[h]� E�;1(AT�)x0)�B�E��;� (A(T � t)�)Z t

0
(�I + ��Ts )�1[(T � s)��1E��� (A(T � s)�)

�� '(s)]dw(s); (16)

transfers the system of Eq. (4) from x0 to:

x�(T ) =h� �(�I + ��T0 )�1 (E[h]� E�;1(AT�)x0)

+ �
Z T

0
(�I + ��Ts )�1[(T � s)��1E��;�

(A(T � s)�)�� '(s)]dw(s); (17)

at time T where ' 2 LF2 �[0; T ]; L(Rd;Rn)
�
, and selects

in a way that Eq. (14) be satis�ed for h.

Proof. By substituting Eq. (16) in Eq. (5), one can
write:

x�(t) =E�;1(At�)x0 +
Z t

0
(t� s)��1E�;� (A(t� s)�)

BB�E��;� (A(T � s)�) (�I + ��T0 )�1(E[h]�

E�;1(AT�)x0)ds�
Z t

0
(t� s)��1E�;�

(A(t� s)�)BB�E��;� (A(T � s)�)Z s

0
(�I + ��Ts )�1[(T � r)��1E��;�

(A(T � r)�) �� '(r)]dw(r)ds

+
Z t

0
(t� s)��1E�;� (A(t� s)�) �dw(s)

= E�;1(AT�)x0 +
Z t

0
(t� s)��1

E�;� (A(t� s)�)BB�E��;� (A(T � s)�)

(�I + ��T0 )�1(E[h]� E�;1(AT�)x0)ds

�
Z t

0

Z t

r
(t� s)��1E�;� (A(t� s)�)

BB�E��;� (A(T � s)�) (�I + ��Tr )�1

[(T � r)��1E��;� (A(T � r)�) �� '(r)]

dsdw(r) +
Z t

0
(t� s)��1E�;� (A(t� s)�)

�dw(s): (18)

Evaluating at time t = T , one may readily �nd that:

x�(T ) =E�;1(AT�)x0 +
Z T

0
(T � s)��1E�;�

(A(T � s)�)BB�E��;�(A(T � s)�)

(�I + ��T0 )�1(E[h]�E�;1(AT�)x0)ds

�
Z T

0

Z T

r
(T � s)��1E�;�(A(T � s)�)

BB�E��;�(A(T � s)�)(�I + ��Tr )�1

[(T � r)��1E��;�(A(T � r)�)�� '(r)]
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dsdw(r) +
Z T

0
(T � s)��1E�;�(A(T � s)�)

�dw(s) = E�;1(AT�)x0 + ��T0 (�I + ��T0 )�1

(E[h]� E�;1(AT�)x0)�
Z T

0

��Tr (�I + ��Tr )�1

[(T � r)��1E��;�(A(T � r)�)�� '(r)]dw(r)

+
Z T

0
(T � s)��1E�;�(A(T � s)�)�dw(s)

= E�;1(AT�)x0 + (�I + ��T0 )(�I + ��T0 )�1

(E[h]� E�;1(AT�)x0)� �(�I + ��T0 )�1

(E[h]� E�;1(AT�)x0)�
Z T

0
(�I + ��Tr )

(�I + ��Tr )�1[(T � r)��1E��;�(A(T � r)�)

�� '(r)]dw(r) + �
Z T

0
(�I + ��Tr )�1

[(T � r)��1E��;�(A(T � r)�)�� '(r)]dw(r)

+
Z T

0
(T � s)��1E�;�(A(T � s)�)�dw(s)

= E[h] +
Z T

0
'(r)dw(r)� �(�I + ��T0 )�1

(E[h]� E�;1(AT�)x0) + �
Z T

0
(�I + ��Tr )�1

[(T � r)��1E��;�(A(T � r)�)�� '(r)]dw(r);
(19)

which via Lemma 1, it results in Eq. (17).�

Theorem 2. The system in Eq. (4) is completely
controllable if and only if there exists 
 > 0 which
��Ts � 
I for every s 2 [0; T ]; i.e. ��Ts is positive-
de�nite for every s 2 [0; T ].

Proof. First we will show that if there exists 
 > 0
which ��Ts � 
I for every s 2 [0; T ], the fractional
stochastic system is completely controllable. One may
write for arbitrary positive � and for every s 2 [0; T ]
that:

0 � �(�I + ��Ts )�1 � �
� + 


I: (20)

One may �nd that:

lim
�!0

�(�I + ��Ts )�1 � lim
�!0

�
� + 


I = 0: (21)

which results in:

lim
�!0

�(�I + ��Ts )�1 = 0: (22)

Thus considering Theorem 1, the following is obtained:

lim
�!0

x�(T ) = h: (23)

On the other hand, according to de�nition of Eq. (10),
��Ts is positive semi de�nite. If matrix ��Ts is not
positive de�nite, there should be a non-zero y such
that:

y���Ts y = 0; (24)

that is:Z T

s
y�(T � t)��1E�;�(A(T � t)�)

BB�E��;�(A(T � t)�)ydt = 0; (25)

thus:

y�E�;�(A(T � t)�)B = 0; 0 � t � T: (26)

Now assume that the initial condition is:

x0 = E�;1(At�)�1y: (27)

By assumption, there exists an input u such that it
moves x0 to any point. Here we choose:

x1 =
Z t

0
(t� s)��1E�;�(A(t� s)�)�dw(s); (28)

thus:

x1 =
Z t

0
(t� s)��1E�;�(A(t� s)�)�dw(s)

= E�;1(At�)x0 +
Z t

0
(t� s)��1E�;�(A(t� s)�)

Bu(s)ds+
Z t

0
(t� s)��1E�;�(A(t� s)�)�dw(s)

= y +
Z t

0
(t� s)��1E�;�(A(t� s)�)Bu(s)ds

+
Z t

0
(t� s)��1E�;�(A(t� s)�)�dw(s); (29)

which can be rewritten as:

0 = y +
Z t

0
(t� s)��1E�;�(A(t� s)�)Bu(s)ds: (30)
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Multiplying both sides of Eq. (30) by y�, one may �nd:

0 = y�y +
Z t

0
y�(t� s)��1E�;�(A(t� s)�)Bu(s)ds:

(31)

The second term is zero based on Eq. (26) and thus
y�y = 0. This is a contradiction to y 6= 0. Thus ��Ts is
positive de�nite.�

Theorem 3. The system in Eq. (4) is approximate
controllable by the controller of Eq. (16), if and only if
��Ts > 0 for every s 2 [0; T ].

Proof. The proof is the same as [15,16] and follows
the same pattern in Theorem 2 of this paper.�

Let us now de�ne the fractional deterministic
version of Eq. (1) as:

C
0 D

a
t x(t) = Ax(t) +Bu(t); x(0) = x0: (32)

The solution of Eq. (32) can be found as:

x(t)=E�;1(At�)x0+
Z t

0
���1E�;�(A��)Bu(t��)d�

= E�;1(At�)x0 +
Z t

0
(t� �)��1E�;�(A(t� �)�)

Bu(�)d�: (33)

The deterministic version can also be derived by apply-
ing the expectation to Eq. (5). To this end �rst, let us
�nd the Caputo fractional derivatives of an expectation
of a state as:

C
t0D

�
t (E[x(t)]) =

1
�(n� �)

Z t

t0

dn(
R+1
�1 x(�;!)p(!)d!)

d�n

(t� �)�+1�n d�

=
Z t

t0

R +1
�1 x(n)(�; !)p(!)d!

�(n� �)(t� �)�+1�n d�

=
Z t

t0

Z +1

�1
x(n)(�; !)p(!)

�(n� �)(t� �)�+1�n d!d�

=
Z +1

�1

Z t

t0

x(n)(�; !)
�(n� �)(t� �)�+1�n d�p(!)d!

=
Z +1

�1
C
t0D

�
t (x(t; !)) p(!)d!

= E
�C
t0D

�
t (x(t))

�
: (34)

The formula for expectation of state can be found
in [23]. Thus, by applying the expectation on Eq. (1),

the deterministic version of stochastic fractional di�er-
ential equation is obtained as:
E[C0 D

�
t x(t)] = C

0 D
�
t E[x(t)] = AE[x(t)] +BE[u(t)];

E[x(0)] = E[x0]: (35)

Theorem 4. The fractional deterministic system
in Eq. (32) is controllable if and only if the �-
controllability matrix ��T0 2 L(Rn;Rn) de�ned in
Eq. (10) is positive de�nite; i.e. there exist 
 > 0
which ��T0 � 
I.

Proof. The proof has been presented in [22].�

Theorem 5. The following conditions are equivalent:
(a) The �-controllability matrix ��Ts 2 L(Rn;Rn)

de�ned in Eq. (10) is positive de�nite for every
s 2 [0; T ];

(b) For every y 2 L2(
; FT ;Rn), there is a 
 > 0 where
Eh��T

s y; yi � 
jjyjj2;
(c) The fractional deterministic system (32) is control-

lable on every [s; T ]; 0 � s � T ;
(d) The fractional stochastic system (4) is completely

controllable;
(e) The fractional deterministic system (32) is control-

lable on every [0; r]; 0 � r � T ;
(f) The matrix [BjABjA2Bj:::jAn�1B] has rank equal

to n.

Proof. (a) , (b) is presented in the following equa-
tion using Lemma 2:

E

��T

s y; y
�

=E
�
��Ts E[y]

+
Z T

0

��TT�s'(s)dw(s); y
�

= E

��Ts E[y]; y

�
+ E

*Z T

0

��TT�s'(s)dw(s); y

+
= ��Ts E hy; yi = ��Ts jjyjj2: (36)

(a) , (c) is according to Theorem 4.
(a) , (d) is according to Theorem 2.
(c) , (e); one may rewrite �-controllability matrix
��Ts 2 L(Rn;Rn) de�ned in Eq. (10) via changing
variable of � = t� s and de�ning r = T � s as:Z r

0
(r � �)��1E�;�(A(r��)�)BB�E��;�(A(r��)�)d�;

(37)

then using Theorem 4, the objective is achieved.
(e) , (f) is according to [19].�
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4. Example

Consider the fractional harmonic oscillator equa-
tion [22,24]:
C
0 D

2a
t  (t) = � (t) + u(t): (38)

The stochastic version of above equation can be de�ned
as:
C
0 D

2a
t  (t) = � (t) + u(t) + z(t): (39)

To drive the controllability condition of the above
system one may use the following auxiliary variables:

x1(t) =  (t); x2(t) = C
0 D

a
t  (t); (40)

to obtain:
C
0 D

a
t x1(t) = x2(t);

C
0 D

a
t x2(t) = C

0 D
2a
t x1(t) = �x1(t) + u(t) + z(t): (41)

Thus, the above equation, has now the matrix form as
presented in Eq. (4) with:

A =
�

0 1
�1 0

�
; B =

�
1
0

�
; � =

�
0
1

�
: (42)

The corresponding two parameter Mittag-Le�er of the
above system is given by [22]:

E�;�(A(T � t)�) =
�
N1(T � t) N2(T � t)
N3(T � t) N4(T � t)

�
; (43)

where:

N1(T � t) =
1X
k=0

(�1)k(T � t)2k�

�(2k�+ �)
;

N2(T � t) =
1X
k=0

(�1)k(T � t)(2k+1)�

�((2k + 1)�+ �)
;

N3(T � t) =
1X
k=0

(�1)k+1(T � t)(2k+1)�

�((2k + 1)�+ �)
;

N4(T � t) =
1X
k=0

(�1)k(T � t)2k�

�(2k�+ �)
; (44)

so the �-controllability matrix ��Ts 2 L(Rn;Rn) can
be found as:

��Ts =
Z T

s
(T � t)��1E�;�(A(T � t)�)

BB�E��;�(A(T � t)�)dt =
Z T

s
(T � t)��1

�
N2

2 (T�t) N1(T�t)N2(T�t)
N1(T�t)N2(T�t) N2

1 (T�t)
�
dt
(45)

which is positive de�nite for every s 2 [0; T ], for every
T and for every 0 < � � 1. To this end, one may
rewrite Eq. (45) as:Z T�s

0
t��1E�;�(At�)BB�E��;�(At�)dt

=
Z r

0
t��1

�
N2

2 (t) N1(t)N2(t)
N1(t)N2(t) N2

1 (t)

�
dt:

(46)

The above matrix is positive-de�nite for every r. Thus
via Theorem 2, the stochastic fractional system is
completely controllable. One may also use Theorem 5
to �nd the controllability condition via rank condition.
Thus:

rank[BjAB] = rank
�
1 0
0 �1

�
= 2; (47)

which again shows the stochastic fractional system is
completely controllable.

5. Conclusion

In this paper, the problem of complete and approxi-
mate controllability in linear fractional stochastic sys-
tems has been investigated via some theorems. The
necessary and su�cient conditions have been investi-
gated for these systems and the equivalency to linear
fractional system controllability conditions has been
provided. An example shows the e�ectiveness of this
theory.
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