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Abstract. A di�erent numerical approach for the two dimensional nonlinear Fredholm
integral equations of the second kind with the continuous kernel is considered. The main
idea is to convert the integral equation into an optimization problem. Then by using an
embedding method, the class of admissible trajectories is replaced by a class of positive
Borel measures. The optimization problem in measure space is then approximated by a
�nite dimensional Linear Programming (LP) problem. Some examples demonstrate the
e�ectiveness of the method.
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1. Introduction

In this paper, we are concerned with an optimization
method for two-dimensional nonlinear Fredholm inte-
gral equations of the second kind, i.e.:

u(x; y) =f(x; y) +
Z b

a

Z d

c
k(x; y; s; t; u(s; t))dtds;

(x; y) 2 D; (1)

where u(x; y) is an unknown function, f(x; y) and
k(x; y; s; t; u) are given continuous functions de�ni-
tions, respectively, on:

D = [a; b]� [c; d];

and:

E = D �D � (�1;1);

with k(x; y; s; t; u) nonlinear in u: We assume through-
out this paper that the integral equation (Eq. (1))
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has a unique solution. Integral equations are often
involved in the mathematical formulation of physical
phenomena, and can be encountered in various �elds
of science such as physics [1], biology [2] and engineer-
ing [3,4]. It can also be used in numerous applications,
such as biomechanics, control, economics, elasticity,
electrical engineering, electrodynamics, electrostatics,
�ltration theory, 
uid dynamics, game theory, heat and
mass transfer, medicine, oscillation theory, plasticity,
queuing theory, etc. [5]. Fredholm and Volterra integral
equations of the second kind were shown up in studies
that includes airfoil theory [6], elastic contact prob-
lems [7,8], fracture mechanics [9], combined infrared
radiation and molecular conduction [10] and so on.

There has been much work on developing and ana-
lyzing the numerical methods for solving integral equa-
tions (see, for example [11]-[25] and the references cited
therein). But among them, the analysis of computa-
tional methods for multi-dimensional Fredholm integral
equations seems to have been discussed in only a few
papers, especially in the nonlinear case. Using Gaus-
sian radial basis function, Alipanah and Esmaeili [11]
also, successfully, solved the two-dimensional Fredholm
integral equations using Gaussian radial basis function.
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Recently, Babolian et al. have considered the use of a
basis of rationalized Haar functions for the numerical
solution of nonlinear two-dimensional Volterra and
Fredholm integral equations [15]. In [18], Han and
Wang applied the iterated Galerkin method to the so-
lution of nonlinear two-dimensional Fredholm integral
equations of the second kind. Han and Jiong [19]
considered this problem by the Nystrm method. Xie
and Lin [25] also proposed a fast numerical solution
method for linear two-dimensional Fredholm integral
equations of the second kind.

Motivated by the above discussions, in this paper,
we intend to present a numerical optimization scheme
for extracting approximate solution for the nonlinear
Fredholm integral equation (Eq. (1)) by an extended
measure theory-based approach established in [26].
The advantages of the proposed method are in the fact
that the method is not iterative, it is self-starting and is
not restricted to di�erentiable cost functions. Because
of these features, this method has been extended to
solve a variety of control and optimization problems.
In this connection we may refer to the numerical
estimation of the distributed control of a di�usion
equation [27], an optimal shape design formulation
for inhomogeneous dam problems [28], determining
optimal shape of the pole of an electromagnet [29],
time optimal control problem of the heat [30,31] and
wave equations [32], the shape variation design problem
of the planar contraction nozzle [33], optimal shape
design for a thin airfoil [34], optimal designing for
a two dimensional nozzle [35], shape optimization of
cylindrical bar cross-sections [36] and the time optimal
control problem in the case of multiple targets [37].

2. Moment problem

Let �1 = fx0; x1; : : : ; xMg and �2 = fy0; y1; : : : ; yMg
be two equidistance partitions of I = [a; b] and J =
[c; d]; where:

h1 = xi+1 � xi; i = 0; 1; � � � ;M � 1;

and:

h2 = yj+1 � yj ; j = 0; 1; � � � ; N � 1;

are the discretization parameters of the partitions. For
the partitions:

�1 = fx0; x1; : : : ; xMg;
and:

�2 = fy0; y1; : : : ; yMg;
on I � J; the integral equation (Eq. (1)) can be

discretized in the following form:8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

R b
a

R d
c k(x0; y0; s; t; u(s; t))dtds� u(x0; y0)
= �f(x0; y0);R b

a

R d
c k(x0; y1; s; t; u(s; t))dtds� u(x0; y1)
= �f(x0; y1);

...R b
a

R d
c k(x0; yN ; s; t; u(s; t))dtds� u(x0; yN )
= �f(x0; yN );

...R b
a

R d
c k(xM ; y0; s; t; u(s; t))dtds� u(xM ; y0)
= �f(xM ; y0);R b

a

R d
c k(xM ; y1; s; t; u(s; t))dtds� u(xM ; y1)
= �f(xM ; y1);

...R b
a

R d
c k(xM ; yN ; s; t; u(s; t))dtds� u(xM ; yN )
= �f(xM ; yN ):

(2)

We de�ne an approximating optimization problem
corresponding to the integral equation (Eq. (1)) as
follows:

minimize
Z b

a

Z d

c
g(s; t; u(s; t)) dtds; (3)

subject to :Z b

a

Z d

c
k(xi; yj ; s; t; u(s; t))dtds� u(xi; yj)

= �f(xi; yj);

(i = 0; 1; � � � ;M); (j = 0; 1; � � � ; N); (4)

where g(s; t; u(s; t)) is a continuously di�erentiable
function. Without loos of generality, throughout this
paper we assume g(s; t; u(s; t)) = 0:

Proposition 1. Finding a solution for the ap-
proximated system (Eq. (2)) of the integral equation
(Eq. (1)) is equivalent to �nd a solution of the opti-
mization problem (Eqs. (3)-(4)).

Proof. The proof is clear, since the problem (Eq. (1))
has a unique solution.

De�nition 1. The trajectory function u(�; �) : [a; b] �
[c; d] ! IR is called admissible if it is absolutely
continuous and Constrains (4) are satis�ed. We denote
the set of all admissible trajectories by Uad which is
also nonempty.
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Now integral equation problem (Eq. (1)) is re-
duced to �nd a solution u 2 Uad satisfying:

minimize
Z b

a

Z d

c
g(s; t; u(s; t))dtds; (5)

subject to :Z b

a

Z d

c
kijdtds = aij ;

(i = 0; 1; � � � ;M); (j = 0; 1; � � � ; N); (6)

where for simplicity, we denote:

aij = u(xi; yj)� f(xi; yj)

kij = k(xi; yj ; s; t; u(s; t));

(i = 0; 1; � � � ;M); (j = 0; 1; � � � ; N):

In the next section, we proceed to enlarge the set Uad.

3. Metamorphosis

In general, it may be di�cult to characterize the
optimal trajectory in Uad; necessary conditions are not
always helpful because the information that they give
may be impossible to interpret [30]. It appears that
these situations may become more favorable if the set
Uad could somehow be made larger. In the following,
we use a transformation to enlarge the set Uad.

Let 
 = I � J � U; where U is a known compact
sets in R such that the trajectory u gets its values for
each (x; y) 2 I � J in this set, and C(
) is the space
of all real-valued continuously di�erentiable functions
on 
. For each admissible trajectory u 2 Uad, we
correspond the following linear continuous functional:

� : h �!
Z b

a

Z d

c
h(s; t; u(s; t))dtds; 8 h 2 C(
):

(7)

Some aspects of this mapping are useful; it is well
de�ned, and positive [31].

Proposition 2. Transformation u! � of an admiss-
ible trajectory in Uad into the linear mapping � de�ned
in Eq. (7) is an injection.

Proof. We must show that if ur 6= uq, then �r 6=
�q: Indeed, if ur and uq are di�erent admissible
trajectories, then there is a subinterval of I; say NL,
where ur(s; t) 6= uq(s; t) for (s; t) 2 NL. A continuous
positive function h can be constructed on I so that the
right-hand side of Eq. (7), corresponding to ur and uq,
are not equal. For instance, assume for all (s; t) 2 NL;
the function h is positive on the appropriate portion

of the graph of ur(�; �), and zero on uq(�; �). Then the
corresponding linear functionals are not equal.

Thus, solving Eqs. (5)-(6) is equivalent to �nd �
in functional space C�(
) (C� is the dual space), such
that:

minimize �(g); (8)

subject to :

�(kij) = aij ; (i = 0; 1; � � � ;M); (j = 0; 1; � � � ; N):
(9)

By Riesz representation theorem [38], there exists a
unique positive Radon representing the measure � on

, such that:

�(h) =
Z



hd� = �(h); h 2 C(
): (10)

These measures � are required to have certain prop-
erties which are abstracted from the de�nition of
admissible trajectories. First, from Eq. (10), we have:

j�(h)j � ST sup


jh(s; t; u(s; t))j;

where S = b � a and T = d � c. Hence �(1) � ST .
From Eqs. (9) and (10), we see that the measures �
satisfy:

�(kij) = aij ; (i = 0; 1; � � � ;M); (j = 0; 1; : : : ; N):

Next, suppose that � 2 C(
) does not depend on u,
that is:
�(s; t; u1) = �(s; t; u2);

for all s 2 [a; b], t 2 [c; d], and u1; u2 2 U; where
u1(�; �) 6= u2(�; �): Then the measures � must satisfy:Z



�d� =

Z b

a

Z d

c
�(s; t; u(s; t))dtds = ��;

where u is an arbitrary number in the set U , and �� is
the Lebesgue integral of �(�; �; u) over I.

Let M+(
) be the set of all positive Radon
measures on 
. We topologize the space M+(
) by
the weak*-topology and de�ne the set Q as a subset of
M+(
) as follows:

Q = S1 \ S2 \ S3;

where:

S1 = f� 2M+(
) : �(1) � STg;
S2 = f� 2M+(
) : �(kij) = aij ; (i = 0; 1; � � � ;M);

(j = 0; 1; � � � ; N)g;
S3 = f� 2M+(
) : �(�) = ��;

� 2 C(
) independent of ug:
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So one may change the problem (8)-(9) in functional
space, to the following optimization problem in mea-
sure space:

minimize I(�) =
Z



d� � �(g) (11)

subject to :

� 2 Q: (12)

Theorem 1. The set Q is compact in M+(
):

Proof. The set S1 is compact and the set S2 can be
written as:

S2 =
M\
i=1

N\
j=1

f� 2M+(
) : �(kij) = aijg=
M\
i=1

N\
j=1

Wij ;

where each Wij = f� 2 M+(
) : �(kij) = aijg is
closed, because it is the inverse image of a closed set
on the real line, the set faijg; under a continuous map.
By a similar argument, it is easy to show that S3 is
closed. Thus Q is a closed subset of the compact set,
S1; and then Q is compact.

Theorem 2. The measure-theoretical problem, which
consists of �nding the minimum of the functional (11)
over the set Q of M+(
), possesses a minimizing
solution ��; say, in Q:

Proof. The proof is clear, since � is a linear functional
on a compact set Q; therefor it attains its minimum.

In the next sections, we shall establish a method
for estimating numerically trajectories which approxi-
mate the action of the optimal measures.

4. Approximation of the optimal measure

In this section, we obtain an approximation to the
optimal measure �� satisfying Eqs. (11)-(12).

It is clear that the measure-theoretical problem
(11)-(12), can be written in the following form

minimize I(�) = �(g); (13)

subject to :8>>><>>>:
�(1) � ST;
�(kij) = aij ; (i = 0; 1; � � � ;M); (j = 0; 1; � � � ; N);

�(�) = ��; � 2 C(
) independent of u:
(14)

The minimizing problem of Eqs. (13)-(14) is an in�nite-
dimensional LP problem and we are mainly interested
in approximating it. It is possible to approximate the

nearly trajectory function of the problem (Eqs. (13)-
(14)) by the solution of a �nite dimensional LP of
su�ciently large dimension.

First we consider the minimization of Eq. (13) not
only over the set Q; but also over a subset of it de�ned
by requiring that only a �nite number of Constraints
(14) be satis�ed. This will be achieved by choosing
countable sets of functions whose linear combinations
are dense in the appropriate spaces, and then selecting
a �nite number of them.

Proposition 3. Let Q(MN;GH) be a subset of
M+(
) consisting of all measures which satisfy:8>>>>><>>>>>:

�(1) � ST;
�(kij) = aij ; (i = 0; 1; :::;M; j = 0; 1; :::; N);

�(�vw)=��vw ; (v = 1; 2; :::; G; w = 1; 2; :::;H):

As M; N; G and H tend to in�nity, %(MN;GH) =
infQ(MN;GH) �(g) tends to % = infQ �(g):

Proof. The proof is similar to Proposition 2 in [35].
This is the �rst stage of the approximation. As

the second stage, from Theorem (A.5) of [26], we can
characterize a measure, say ��, in the set Q(MN;GH)
at which the function � ! �(g) attains its minimum.
Proposition 4 follows a result of Rosenbloom [39].

Proposition 4. The measure �� in the set Q(MN;
GH), at which the function � ! �(g) attains its
minimum, has the following form:

�� =
MN+GHX
k=1

��k�(z�k); (15)

with z�k 2 
 and ��k � 0; k = 1; 2; � � � ;MN + GH:
Here �
(z�) is unitary atomic measure concentrated at
z� 2 
; characterized by �(z�)(F ) = F (z�); where F 2
C(
):

Based on Eq. (15), the measure theoretical opti-
mization problem (13)-(14) is equivalent to the follow-
ing nonlinear optimization problem:

minimize
MN+GHX
k=1

��kg(z�k); (16)

subject to :

MN+GHX
k=1

��kkij(z�k)� u(xi; yj) = �f(xi; yj);

(i = 0; 1; � � � ;M); (j = 0; 1; : : : ; N); (17)
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MN+GHX
k=1

��k�vw(z�k) = ��vw ;

(v = 1; � � � ; G); (w = 1; � � � ;H); (18)

MN+GHX
k=1

��k � ST; (19)

u(xi; yj) is free;

(i = 0; 1; : : : ;M); (j = 0; 1; : : : ; N); (20)

��k � 0; (k = 1; 2; : : : ;MN +GH); (21)

where the unknowns are the coe�cients ��k; supports
z�k (k = 1; 2; : : : ;MN + GH); and u(xi; yj) (i =
0; 1; : : : ;M) (j = 0; 1; : : : ; N):

It would be computationally convenient if we
could minimize the function �! �(g) only with respect
to the coe�cients ��k (k = 1; 2; : : : ;MN + GH); and
u(xi; yj) (i = 0; 1; : : : ;M) (j = 0; 1; : : : ; N); which
leads to a �nite-dimensional LP problem. However,
we do not know the supports of the optimal measure.
The answer lies in a meaningful approximation of this
support, by introducing a dense subset in 
:

Proposition 5. Let � be a countable dense subset of

: Given � > 0; a measure �� 2 M+(
) can be found
such that:

j(�� � ��)(g)j � �;
j(�� � ��)(kij)j � �; (i = 0; 1; : : : ;M) (j = 0; 1; : : : ; N);

j(�� � ��)(�vw)j � �; (v = 1; � � � ; G); (w = 1; � � � ;H);

the measure �� has the form:

�� =
MN+GHX
k=1

��k�(zk); (22)

where the coe�cients ��k are the same as in the optimal
measure (15) and zk 2 �:
Proof. See the proof of Proposition III.3 in [26].

Finally, the above results enable us to approx-
imate the problem via �nite dimensional LP prob-
lem:

minimize
LX
k=1

�kg(zk); (23)

subject to :

LX
k=1

�kkij(zk)� u(xi; yj) = �f(xi; yj);

(i = 0; 1; � � � ;M); (j = 0; 1; : : : ; N); (24)

LX
k=1

�k�vw(zk) = ��vw ;

(v = 1; � � � ; G); (w = 1; � � � ; H); (25)

L+1X
k=1

�k = ST; (26)

u(xi; yj) is free;

(i = 0; 1; : : : ;M); (j = 0; 1; : : : ; N); (27)

��k � 0 (k = 1; 2; : : : ;MN +GH); (28)

where L >> MN + GH and zk; k = 1; :::L are �xed
in �: It is to be noted that we added a slack variable
�L+1 for obtaining equality in Eq. (19).

In the problem (23)-(28), 
 is partitioned into
L subregions 
1;
2; :::;
L where 
 =

SL
k=1 
k and

zk is chosen in 
k: To this means, assume that I =
[a; b] is divided to m portions, J = [c; d] to n portions
and U to p portions, that is L = mnp: In application,
the functions �vw in Eq. (25) are chosen as piecewise
constant. Let us de�ne:

�vw(s; t; u) =

8<:1 if t 2 Jvw
0 otherwise

(29)

where:

Jvw =
�

(v � 1)S
m

;
vS
m

�
�
�

(w � 1)T
n

;
wT
n

�
;

(v = 1; 2; : : : ;m); (w = 1; 2; : : : ; n);

and we set G = m and H = n: In the right-hand side of
Eq. (25), ��vw is the integral of �vw(t; u) on [a; b]�[c; d],
so by Eq. (29) we have:

��vw =
Z
Jvw

�vw(s; t; u(s; t))dt =
ST
mn

;

(v = 1; 2; : : : ;m) (w = 1; 2; : : : ; n): (30)

From the above relations and expanding Eq. (25), we
have:

pX
k=1

�k =
ST
mn

;
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2pX
k=p+1

�k =
ST
mn

;

...

(mn�1)pX
k=(mn�2)p+1

�k =
ST
mn

;

mnpX
k=(mn�1)p+1

�k =
ST
mn

:

Adding the above equalities leads to:

LX
k=1

�k = ST: (31)

Comparing Eqs. (26) and (31) guarantees that �L+1 =
0:

From the above analysis, problem (23)-(28) can
be converted to the following LP problem:

minimize
LX
k=1

�kg(zk); (32)

subject to :8>>>>>>>>>>><>>>>>>>>>>>:

PL
k=1 �kkij(zk)� u(xi; yj) = �f(xi; yj);

(i = 0; 1; � � � ;M); (j = 0; 1; : : : ; N);PL
k=1 �k = ST;

u(xi; yj) is free; (i = 0; 1; : : : ;M);
(j = 0; 1; : : : ; N);

�k � 0; (k = 1; 2; : : : ; L):

(33)

5. Computer simulations

In this section, we propose our method to obtain
approximate solution of two dimensional Fredholm
integral equations. To compare the solutions, we de�ne
an extension of error function proposed in [14]:

e(xi; yj) = u(xi; yj)� u�(xi; yj);
i = 0; 1; :::;M; (34)

where we suppose u(x; y) be exact solution of nonlinear
Fredholm integral equation (1) and u�(xi; yj); i =
0; 1; :::;M; j = 1; :::; N be a solution obtained by
solving the �nal LP problem.

Example 1. Consider the following two-dimensional
nonlinear Fredholm integral equation with the exact

solution u(x; y) = 1
(1+x+y)2 [11]:

u(x; y)=f(x; y)+
Z 1

0

Z 1

0

x
1 + y

(1+s+t)u2(s; t)dtds;

where:

f(x; y) =
1

(1 + x+ y)2 � x
6(1 + y)

:

We choose M = N = 4; m = p = 10 and n = 5: Thus

 = [0; 1] � [0; 1] � [�1:5; 1:5] is divided to L = 250
equal subintervals. We select zk = (sk; tk; uk) and k =
1; 2; :::; 250, as:

k = e+ 5(f � 1) + 25(g � 1);

(e = 1; 2; :::; 10); (f; g = 1; 2; � � � ; 5);

zk =

8>>><>>>:
sk = 1

5f;

tk = 1
10e;

uk = �1:5 + 3
5g:

Thus the corresponding LP model is:8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

minimize 0t�

subject to

�P250
k=1 �k

xi
1+yj (1 + sk + tk)u2

k + u(xi; yj)
= 1

(1+xi+yj)2 � xi
6(1+yj) ; (i; j = 0; 1; 2; 3; 4);P250

k=1 �k = 1

�k � 0; k = 1; 2; � � � ; 250; 0t = (0; 0; ::::0| {z }
250

);

�t = (�1; �2; ::::�250):

One can compare the approximate and exact solutions
of the integral equation in Figures 1 and 2. The
error function (Eq. (34)) can be seen in Figure 3. The
numerical results are also compared in Table 1.

Example 2. As the second example, consider the
following integral equation with the exact solution
u(x; y) = � log

�
1 + xy

(1+y2)

�
[19]:

u(x; y) = f(x; y) +
Z 1

0

Z 1

0
k(x; y; s; t; u(s; t))dtds;

where:

f(x; y) =
x

16(1 + y)
� log

�
1 +

xy
(1 + y2)

�
;

k(x; y; s; t; u(s; t))=
�

x(1� t2)
(1 + y)(1 + s2)

�
(1� e�u(s;t)):
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Figure 1. The surface of the approximate solution
u�(x; y) in Example 1.

Figure 2. The surface of the exact solution u(x; y) in
Example 1.

Figure 3. The error function e(x; y) in Example 1.

Table 1. The results for Example 1 with
(xi; yj) = ( i4 ;

j
4 )(i; j = 0; 1; :::; 4):

(xi; yj) u�(xi; yj) u(xi; yj) e(xi; yj)
(0, 0) 1.0000 1.0000 0.0000
(0, 0.25) 0.6400 0.6400 0.0000
(0, 0.5) 0.4444 0.4444 0.0000
(0, 0.75) 0.3265 0.3265 0.0000
(0, 1) 0.2500 0.2500 0.0000
(0.25, 0) 0.6400 0.6400 0.0023
(0.25, 0.25) 0.4426 0.4444 0.0018
(0.25, 0.5) 0.3250 0.3265 0.0015
(0.25, 0.75) 0.24870 0.2500 0.0013
(0.25, 1) 0.1964 0.1975 0.0011
(0.5, 0) 0.4399 0.4444 0.0046
(0.5, 0.25) 0.3229 0.3265 0.0037
(0.5, 0.5) 0.2464 0.2500 0.0031
(0.5, 0.75) 0.1949 0.1975 0.0026
(0.5, 1) 0.1577 0.1600 0.0023
(0.75, 0) 0.3179 0.3265 0.0069
(0.75, 0.25) 0.2445 0.2500 0.0055
(0.75, 0.5) 0.1929 0.1975 0.0046
(0.75, 0.75) 0.1561 0.1600 0.0039
(0.75, 1) 0.1288 0.1322 0.0034
(1, 0) 0.2408 0.2500 0.0092
(1, 0.25) 0.1902 0.1975 0.0073
(1, 0.5) 0.1539 0.1600 0.0061
(1, 0.75) 0.1270 0.1322 0.0052
(1, 1) 0.1065 0.1111 0.0046

In this example, we choose M = N = 4 and m =
n = p = 10: We employe again the LP model (33) and
obtain Figures 4 and 5. The error function in Figure 6
also shows the precision of the approximate solution.
The numerical results are summarized in Table 2.

To end this section, we answer a natural ques-
tion: Are there advantages of our proposed method
compared to the existing ones? To answer this, we
summarize what we have observed from numerical
experiments and theoretical results as below:

� Comparison of the results of the above examples
with some other methods such as the proposed
schemes in [11,15,18,19,25], shows the e�ciency of
this algorithm more clearly. This result is intuitive,
since the results of this algorithm depend explicitly
on the slack variables of the �nal LP problem (32)
and (33).

� The proposed transformation method in this article
can also allow us to transform easily and e�ciently
the di�erent kinds of the integral equation problems
into an optimization problem.
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Table 2. The results for Example 2 with
(xi; yj) = ( i4 ;

j
4 )(i; j = 0; 1; :::; 4):

(xi; yj) u�(xi; yj) u(xi; yj) e(xi; yj)
(0, 0) 0.0000 0.0000 0.0000
(0, 0.25) 0.0000 0.0000 0.0000
(0, 0.5) 0.0000 0.0000 0.0000
(0, 0.75) 0.0000 0.0000 0.0000
(0, 1) 0.0000 0.0000 0.0000
(0.25, 0) 0.0156 0.0000 -0.0156
(0.25, 0.25) -0.0447 -0.0572 -0.0125
(0.25, 0.5) -0.0849 -0.0953 -0.0104
(0.25, 0.75) -0.1044 -0.1133 -0.0089
(0.25, 1) -0.1100 -0.1178 -0.0078
(0.5, 0) 0.0312 0.0000 -0.0312
(0.5, 0.25) -0.0862 -0.1112 -0.0250
(0.5, 0.5) -0.1615 -0.1823 -0.0280
(0.5, 0.75) -0.1973 -0.2151 -0.0178
(0.5, 1) -0.2075 -0.2231 -0.0156
(0.75, 0) 0.0469 0.0000 -0.0469
(0.75, 0.25) -0.1250 -0.1625 -0.0375
(0.75, 0.5) -0.2311 -0.2624 -0.0312
(0.75, 0.75) -0.2807 -0.3075 -0.0268
(0.75, 1) -0.2950 -0.3185 -0.0234
(1, 0) 0.0625 0.0000 -0.0625
(1, 0.25) -0.1613 -0.2113 -0.0500
(1, 0.5) -0.2948 -0.3365 -0.0416
(1, 0.75) -0.3563 -0.3920 -0.0357
(1, 1) -0.3742 -0.4055 -0.0312

Figure 4. The surface of the approximate solution
u�(x; y) in Example 2.

� Since the procedure of this algorithm is not iterative
and does not need any initial guess of the solution,
subsequently, appears that the applied method in
this paper is very easy to use and straightforward in
comparison with other numerical methods.

Figure 5. The surface of the exact solution u(x; y) in
Example 2.

Figure 6. The error function e(x; y) in Example 2.

6. Conclusion

In this paper, we investigated an optimization tech-
nique for solving two dimensional nonlinear Fredholm
integral equations of the second kind. The integral
equation problem was transformed into an approximat-
ing optimization problem, and the embedding method
based on some principles of measure theory, func-
tional analysis and linear programming was applied
for solving this integral equation. The method is
not iterative and it does not need any initial guess
of the solution. Furthermore, in this approach the
nonlinearity of the continuous kernels has not serious
e�ects on the solution.
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