Structural, electrical and magnetic characterization of nickel-doped tin oxide film by a sol-gel method

M.H. Abdia, N.B. Ibrahimb,*, H. Baqiahb and S.A. Halimc

a Department of Physics, Qayenat Branch, Islamic Azad University, Qayenat, Iran.b School of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.c Superconductors and Thin Film Laboratory, Department of Physics, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.

Received 28 October 2013; received in revised form 4 May 2014; accepted 15 November 2014

KEYWORDS
Crystal growth; Ni-doped SnO\textsubscript{2}; Sol-Gel; Room temperature ferromagnetism; Bound magneton polaron.

Abstract. Nickel (Ni) doped tin oxide (Sn\textsubscript{1-x}Ni\textsubscript{x}O\textsubscript{2} x = 0.00, 0.02, 0.04, 0.06, 0.10, 0.20) thin films were deposited on glass substrates by a sol-gel method using an ethanol solution containing tin and nickel chloride. The structural and optical properties of Ni-doped SnO\textsubscript{2} transparent semiconducting thin films were investigated. X-ray diffraction patterns showed that all samples have tetragonal phases. The morphology of the films shows that they have a good surface and are very dense. The grain size was calculated between 4.4 and 5.3 nm by a transmission electron microscope. The electrical measurement showed that the resistivity increases as the Ni concentration increases. The optical properties of the films measured by UV-Vis showed that the films have transparency between 90\% and 98\%. The extinction coefficient is very small, and the refractive index is saturated at a wavelength > 400 nm. The VSM results showed that all the samples are ferromagnetic, except for the lowest Ni dopant. Moreover, the original ferromagnetism can be explained by the Bound Magneton Polaron (BMP) mechanism.

\textcopyright 2014 Sharif University of Technology. All rights reserved.

1. Introduction

Transparent Conducting Oxide (TCO) materials, such as indium oxide (In\textsubscript{2}O\textsubscript{3}), zinc oxide (ZnO), tin oxide (SnO\textsubscript{2}), and cadmium oxide (CdO), exhibit high optical transparency and electrical conductivity, simultaneously. These materials have a wide range of scientific applications, including optoelectronic devices, solar cells, electro-chromic devices, gas sensors, and flat-panel displays [1]. In order to enhance the application of these materials, many researchers have studied the effect of dopant material on their physical properties [2,3]. B. Thangarajahave prepared F: SnO\textsubscript{2}, Sb: SnO\textsubscript{2}, and (F+Sb): SnO\textsubscript{2} film by spray pyrolysis at several temperatures (400°C, 350°C and 375°C).

It was shown that the lowest sheet resistance, 5.65 \(\Omega/\square\), was obtained from the F:SnO\textsubscript{2} sample [4]. It depends on the presence of interstitial Sn atoms and oxygen vacancies that leads to SnO\textsubscript{2}, and becomes an n type semiconductor [5]. Some researchers report that the physical properties, such as structure, and electrical and optical properties, could be improved by an improvement in the doping process. For example, Leite et al. reported that Sb plays an important role in reducing the resistivity of SnO\textsubscript{2} thin films prepared by soft chemical methods. The minimum resistivity was obtained around \(10^{-3} \Omega\text{-cm}\) for 6\% Sb doped SnO\textsubscript{2}, while the resistivity for pure SnO\textsubscript{2} is 3 \(\Omega\text{-cm}\) [6]. Some researchers have studied the effect of transition metal dopants, such as Mn, Co, Cr and Ni, on the physical properties of SnO\textsubscript{2}. These elements act as an electron, acceptable at the tin oxide site, and change the type of semiconductors. Ghodsi et al. prepared Mn-doped

* Corresponding author.
E-mail address: baqiah@utm.my (N.B. Ibrahim)
SnO$_2$ thin films using the sol-gel method, and reported that the n-type semiconductor changes to a p-type semiconductor as the Mn dopant is increased to more than 0.035 wt%. The transparency of their films was between 80-85%. [7].

Ni doped SnO$_2$ (film and nanoparticles) has attracted research interest since some experimental results have shown that Ni doped SnO$_2$ is a possible candidate for diluted magnetic semiconductor material [8-10]. Almad et al. prepared Ni-doped SnO$_2$ nanoparticles using the sol-gel method [11]. The XRD results show that all samples have tetragonal structures and the average crystalline size changes from 5 nm to 2 nm as the Ni dopant increases. The optical band gap decreases with the increment of the dopant level. Room temperature ferromagnetism (RTFM) of Ni doped SnO$_2$ is one of the interesting properties investigated by some research workers. Sharma et al. reported on Ni doped SnO$_2$ nanoparticles using a co-precipitation technique. The XRD result shows that Ni dopant has no significant effect on SnO$_2$ nanoparticle structure. The optical result revealed that Ni dopant decreases the band gap. Also, the highest magnetization is obtained from the Sn$_{0.07}$Ni$_{0.03}$O$_2$ sample by 0.028 emu/g [12]. Zhang et al. prepared Ni-doped SnO$_2$ thin films on silicon (111) substrate by a sol-gel method and studied the structure and magnetic properties of the films. The films with different nickel content have a rutile structure, and the sample annealed at 600°C has the highest magnetic properties at room temperature. The magnetic properties are explained using the Bound Magnetic Polaron theory (BMP) [8]. However, other important characteristics for Ni-doped SnO$_2$ deposited on glass substrates by a sol-gel method, such as electrical, optical and magnetic properties, have not been reported. SnO$_2$ is a famous transparent conductor, and, therefore, it is important to know its physical properties after doping with Ni.

This work reports the characterization of undoped and Ni-doped SnO$_2$ deposited on glass substrates by a sol-gel method. The objective of this study is the preparation and discussion of Ni effects on the physical properties of SnO$_2$ film.

2. Experimental procedure

SnCl$_2$ 2H$_2$O (tin (II) chloride dehydrate (Merk)) and NiCl$_2$ 6H$_2$O were dissolved in 10 ml ethanol (99.9%). The solution was stilled for 1 hour at 27°C and refluxed at 75°C for three hours. The obtained solution was filtered and spin-coated on a clean glass substrate for 30 seconds. The films were dried at 100°C for 30 minutes and then annealed at 600°C in the air for two hours. The structural pattern was characterized by a D6 Advance Bruker system using CuKα radiation. The surface morphology and cross-section of samples were studied using a Field Emission Scanning Electron Microscope (FESEM) model Zeiss supra 55 Vp. The electrical properties were measured using a Keithley source meter and a Keithley 2700 multimeter, via the Van der Pauw method. The optical transparency of the samples was studied by a Lambda 900 UV-Vis spectrophotometer, while the magnetic properties were studied by a Vibration Sample Magnetometer (VSM) (Model 7404 lakeshore).

3. Result and discussion

Figure 1 shows the TGA graph of the dried SnO$_2$ gel. The mass loss occurred at about 100°C to 120°C, which may be attributed to the evaporation of ethanol and water [6]. In addition, other mass losses were not observed until 600°C.

Figure 2 shows the X-ray diffraction patterns of the Sn$_{1-x}$Ni$_x$O$_2$ thin films that were studied at 2θ value from 20° to 60°. All samples are polycrystalline with tetragonal phases. The tetragonal phase of SnO$_2$ is refined by the P$_{4_2}$/mnm space group. The planes [(110), (011), (020), and (211)] have high intensity, and the ratios of the intensities are tabulated in Table 1. The

![Figure 1](image1.png)

Figure 1. TGA curves of the dried SnO$_2$ gel.

![Figure 2](image2.png)

Figure 2. X-ray diffraction scans of the Sn$_{1-x}$Ni$_x$O$_2$ thin film.
Table 1. Intensity of plans in Sn_{1-x}Ni_{x}O_{2} thin films.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Ni (wt %)</th>
<th>(I_{101}/I_{110})</th>
<th>(I_{211}/I_{110})</th>
</tr>
</thead>
<tbody>
<tr>
<td>SnNi00</td>
<td>0</td>
<td>0.69</td>
<td>0.29</td>
</tr>
<tr>
<td>SnNi02</td>
<td>2%</td>
<td>0.68</td>
<td>0.33</td>
</tr>
<tr>
<td>SnNi04</td>
<td>4%</td>
<td>0.50</td>
<td>0.19</td>
</tr>
<tr>
<td>SnNi06</td>
<td>6%</td>
<td>0.57</td>
<td>0.28</td>
</tr>
<tr>
<td>SnNi10</td>
<td>10%</td>
<td>0.56</td>
<td>0.26</td>
</tr>
<tr>
<td>SnNi20</td>
<td>20%</td>
<td>0.70</td>
<td>0.40</td>
</tr>
</tbody>
</table>

The ratios of the intensities of these peaks changes with the increment of \(x\) content, indicating that the doping process affects the crystallinity of the film. Thus, the Ni ions replaced the lattice site of the tin oxide, then, produced a crystal defect [11]. Some reports have shown that the ratio of the intensity peaks was changed as the Cr dopant increased in the SnO_{2} films [13.14].

The lattice parameters and cell volume were calculated for all samples using Rietveld refinement software and tabulated in Table 2. The RWP was 13.5 to 14.90. These values show that cell volume and crystalline size decrease as dopant percentage increases due to the replacement of Sn^{4+} (ionic radius 71 pm) with smaller Ni^{2+} ion (ionic radius 69 pm) [11].

The Sn_{0.98}Ni_{0.02}O_{2} and Sn_{0.80}Ni_{0.20}O_{2} film were analyzed by X-ray Photoelectron Spectroscopy (XPS) instruments. The obtained binding energy from XPS spectra were calibrated to the adventitious C 1s peak (248.5 eV). Figure 3 shows the Sn 3d (a), Ni 2p (b), and O 1s (c) binding energy of the films. The obtained binding energy of SnNi02 film was analyzed and the result was tabulated in Table 3. The binding energy confirms Sn^{2+} and Sn^{4+} in the film but if the percentage of SnO in the composition is low, then XRD could not detect it. And, also, the binding energy of Ni^{2+} and Ni^{3+} identify the oxidation state in the film.

The obtained energy of SnNi20 was analyzed and is given in Table 4. It has been identified as the binding energies for Sn^{4+} and Ni^{2+} in the sample. The above analysis confirms that tin and nickel ions in the films have a chemical valance of 4+ and 2+, respectively.

Table 2. Characterization of films was calculated.

<table>
<thead>
<tr>
<th>Sample</th>
<th>(a) (Å)</th>
<th>(c) (Å)</th>
<th>Thickness (nm)</th>
<th>Crystalline size (nm)</th>
<th>Cell volume (nm)</th>
<th>Average grain size (TEM) (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SnNi00</td>
<td>4.7357</td>
<td>3.2038</td>
<td>73.09</td>
<td>4.70</td>
<td>71.85</td>
<td>4.37</td>
</tr>
<tr>
<td>SnNi02</td>
<td>4.7200</td>
<td>3.1925</td>
<td>100</td>
<td>3.79</td>
<td>71.08</td>
<td>5.27</td>
</tr>
<tr>
<td>SnNi04</td>
<td>4.3368</td>
<td>3.1977</td>
<td>106.3</td>
<td>4.92</td>
<td>71.16</td>
<td>5.29</td>
</tr>
<tr>
<td>SnNi06</td>
<td>4.7451</td>
<td>3.2050</td>
<td>63.28</td>
<td>4.63</td>
<td>72.08</td>
<td>4.89</td>
</tr>
<tr>
<td>SnNi10</td>
<td>4.7347</td>
<td>3.1965</td>
<td>67.73</td>
<td>3.96</td>
<td>71.63</td>
<td>4.60</td>
</tr>
<tr>
<td>SnNi20</td>
<td>4.731</td>
<td>3.181</td>
<td>84.11</td>
<td>3.06</td>
<td>71.21</td>
<td>4.36</td>
</tr>
</tbody>
</table>

Figure 3. XPS data from Sn_{1-x}Ni_{x}O_{2} (\(x = 0.02\), and 0.20).

The binding energy of O 1s in the Sn_{0.98}Ni_{0.02}O_{2} sample is 529.8, 531.1 and 532 eV, and for the Sn_{0.80}Ni_{0.20}O_{2} sample is 529.7, 530.8 and 531.7 eV. It indicates that the oxygen in the film is –2 (Figure 3(c)). The binding energies of 531 and 529.8 eV belong to Sn-
Table 3. The obtained XPS result for SnNi02 film.

<table>
<thead>
<tr>
<th>Obtained binding energy (eV)</th>
<th>Spectral line</th>
<th>Standard binding energy (eV)</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>485.6</td>
<td>3d5/2</td>
<td>485.6</td>
<td>SnO</td>
</tr>
<tr>
<td>486.2</td>
<td>3d5/2</td>
<td>486.20</td>
<td>SnO2</td>
</tr>
<tr>
<td>494.5</td>
<td>3d3/2</td>
<td>494.20</td>
<td>SnO2</td>
</tr>
<tr>
<td>494.7</td>
<td>3d3/2</td>
<td>494.70</td>
<td>SnO1.15</td>
</tr>
<tr>
<td>854.7</td>
<td>2p3/2</td>
<td>854.7</td>
<td>NiO</td>
</tr>
<tr>
<td>856</td>
<td>2p3/2</td>
<td>856.6</td>
<td>Ni2O3</td>
</tr>
<tr>
<td>857.2</td>
<td>2p3/2</td>
<td>857.2</td>
<td>NiO</td>
</tr>
<tr>
<td>871.7</td>
<td>2p1/2</td>
<td>871.8</td>
<td>NiO</td>
</tr>
<tr>
<td>873.4</td>
<td>2p1/2</td>
<td>873.8</td>
<td>NiO</td>
</tr>
<tr>
<td>874.7</td>
<td>2p1/2</td>
<td>874.9</td>
<td>Ni</td>
</tr>
</tbody>
</table>

Table 4. The obtained XPS result for SnNi20 film.

<table>
<thead>
<tr>
<th>Obtained binding energy (eV)</th>
<th>Spectral line</th>
<th>Standard binding energy (eV)</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>485.9</td>
<td>3d5/2</td>
<td>486.0</td>
<td>SnO2</td>
</tr>
<tr>
<td>494.5</td>
<td>3d5/2</td>
<td>494.50</td>
<td>SnO2</td>
</tr>
<tr>
<td>495</td>
<td>3d3/2</td>
<td>495.1</td>
<td>SnO2</td>
</tr>
<tr>
<td>854.9</td>
<td>2p3/2</td>
<td>854.7</td>
<td>NiO</td>
</tr>
<tr>
<td>856.3</td>
<td>2p3/2</td>
<td>856.3</td>
<td>NiCl2</td>
</tr>
<tr>
<td>872.5</td>
<td>2p1/2</td>
<td>872.4</td>
<td>ClO2H2H4(NiCl4)</td>
</tr>
<tr>
<td>873.7</td>
<td>2p1/2</td>
<td>873.8</td>
<td>Ni(OH)2</td>
</tr>
</tbody>
</table>

Figure 4. Typical FESEM micrographs of film’s cross-section.

O bonding in the SnO2 system and Ni-O bonding in the NiO system, respectively.

Figure 4 shows the typical FESEM of the cross-section of Sn0.98Ni0.02O2 samples, and the measured thickness values are tabulated in Table 2.

Figure 5 shows the typical TEM images of the undoped and the Ni-doped SnO2 films. The grain sizes were measured and tabulated in Table 2. The grain size changes irregularly from 4.4 nm to 5.3 nm. Our value is smaller than the value reported by Ahmad et al. who reported that the grain size for Ni-doped SnO2 nanoparticles is between 9 nm to 15 nm [11].

The electrical result (Figure 6) shows that the resistivity of SnO2 is much higher than tin oxide films prepared by other techniques. For example, Abdi et al. deposited undoped and Cr-doped SnO2 thin film on a glass substrate by spray pyrolysis technique and obtained the resistivity of undoped tin oxide at about 1.3 × 10−2 Ω-cm [15]. Also, the resistivity of the SnO2 thin film prepared by electron beam evaporation is 2.65 × 10−2 Ω-cm [16]. The high resistivity obtained in this study is related to the low deviation from the stoichiometry of the film.

Figure 6 shows the resistivity and carrier concentration of Ni-doped SnO2 at room temperature (25°C), wherein the resistivity increases with the increment of Ni content, due to the increment of the degradation in the crystalline site (as shown in the XRD results). Another factor that affects the resistivity can be explained by the fact that the replacement of Sn4+ ions with Ni2+ ions creates carrier traps that can affect film resistivity. This phenomenon also leads to reduction of carrier concentration, as shown in Figure 6. Carrier concentration was calculated using this formula:

\[n = \frac{IB}{qV_Ht^2} \]

where \(I \) is the applied current, \(B \) is the applied magnetic field, \(q \) is the electron charge, \(V_H \) is the Hall voltage and \(t \) is the film thickness.

The optical transparent spectra (T%) for all samples are shown as a function of wavelength in Figure 7. The transparency of all the films was between 90% and 98% in the visible region (300 nm to 850 nm). The transparency of the films had slight changes with the increment of Ni dopant. The small crystalline size (increased boundary) leads to the scattering of light, thereby, decreasing the transmission.

The absorption coefficient (\(\alpha \)), as a function of wavelength for all samples, is shown in Figure 8. The highest dopant of Ni provides the highest absorption coefficient in the visible region.

The presence of Ni dopant in the SnO2 site causes disorder (mismatch) in its lattice, and increases the band gap. The direct optical band gap of tin oxide and Ni-doped tin oxide was calculated using the following relation:

\[A = \log T, \]

where \(A \) is the absorption coefficient, \(T \) is the sample transmission.
Figure 5. Transmission electron micrograph of (a) SnNi00, (b) SnNi02, (c) SnNi06, (d) SnNi10, and (e) SnNi20 thin films.

\[\alpha = \frac{1}{d} \log \left(\frac{I}{I_0} \right) \]

(3)

\(\alpha \): Sample absorption coefficient and \(d \): Sample thickness.

\[(\alpha h\nu) = A(h\nu - E_g)^n \]

(4)

The details of the procedure to determine the correct value of \(n \) was explained earlier [13]. The direct band gaps for \(\text{Sn}_{1-x}\text{Ni}_x\text{O}_2 \) \((x = 0.00, 0.02, 0.04, 0.06, 0.10, 0.20)\) thin films were determined from the plot \((\alpha h\nu)^n(\nu = 2)\) versus \(h\nu \). The plot shows that the optical band gap increases with the enhancement of Ni concentration, except for the SnNi02 sample that has the smallest band gap (see Figure 9). There are two possibilities to explain this behavior. First, some reports have suggested that impurities such as the NiO phase is responsible for the increment of the energy band gap [17].

However in this study, none of the NiO phases can be detected in the films. Furthermore, the band gap energy of the NiO was small (3.34 eV) compared with the obtained value. The second possibility is the particle size of the films. The optical band gap decreases for 2% Ni dopant and increases for \(x > 0.04 \) wt%. This is related to the particle size of samples (see Figure 9), consistent with the normal phenomena of quantum confinement. Although the measured grain size in this study is approximated around the Bohr radius for \(\text{SnO}_2 \) (2.70 nm), the effect of the grain size on the energy band gap can still be detected. Furthermore, regarding electrical properties, the Ni-doped \(\text{SnO}_2 \) cannot generate a carrier in the \(\text{SnO}_2 \) lattice. In addition, the carrier decreases with the increment of Ni dopant, indicating that the increase in band gap cannot be attributed to the Burstein-Moss (BM) shift. Basjiah et al. obtained a similar result for Cr-doped \(\text{In}_2\text{O}_3 \) thin film via the sol-gel method [2].

The extinction coefficient ‘\(k \)’ was calculated using
the following formula:

\[\alpha = \frac{4\pi k}{A} \]
(5)

where \(\alpha \) and \(A \) are the absorption coefficient and the absorption spectra, respectively. Figure 10 shows the extinction coefficient versus wavelength in which the extinction coefficient has a small value that changes irregularly with an increment of level dopant. The highest extinction coefficient value is given by the highest dopant of Ni, due to the high absorption coefficient.

The refractive index ‘\(n \)’ has a relationship with the extinction coefficient, and the reflection is explained by:

\[R = \frac{(n - 1)^2 + k^2}{(n + 1)^2 + k^2}. \]
(6)

where \(R \) is the reflection spectra. According to extinction coefficient data presented by the above formula, the data is so small, and can, thus, be neglected without losing effective information. The refractive index can then be written as follows:

\[R = \frac{(n - 1)^2}{(n + 1)^2}. \]
(7)

Figure 11 shows the refractive index versus the wavelength of all the films wherein the refractive index saturates at wavelengths larger than 400 nm.

The \(k \) and \(n \) results coincide with the results
well-used mechanism for explaining RTFM [19]. In our films, the carrier concentration decreased with enhancement of the Ni dopant, and the large density of carriers had the lowest ferromagnetic momentum (Figure 13). These results indicate that the original RTFM cannot be explained by carrier-mediated exchange interaction, such as the RKKY (Ruderman-Kittel-Kasuya-Yosida) mechanism.

The original ferromagnetic of pure SnO$_2$ is called \(d^0\) ferromagnetic. This phenomenon is related to the lattice defect in the crystal. To understand the \(d^0\) ferromagnetic, a charge transfer ferromagnetic model was developed by Coey et al. [20]. According to this model, ferromagnetic order is from itinerant electrons associated with structure defects. These defects create an impurity band in the band gap. Based on the tight-bonding model, the density of states depends on the number of nearest neighbours. In the vicinity of defects, this number of nearest neighbours is reduced, resulting in an increase in the local density of states. This will lead to some sort of density state structure. Electrons can be transferred to the defect states from an electron reservoir (this electron reservoir occurs due to ions coexisting in different valence states). This electron transfer could raise the Fermi level up to the point where spontaneous stoner spin splitting of the impurity band occurs. Spontaneous ferromagnetic order exists if the energy gap from spin splitting exceeds the energy cost of the charge transfer [21].

The description of the other samples \((x = 0.04, 0.06, 0.10, \) and \(0.20\) can be interpreted by the Bond Magnetic Polaron (BMP) model [22]. Oxygen vacancies were created in the SnO$_2$ to maintain the charge neutrality when the Ni$^{2+}$ ions substitute the Sn$^{4+}$ ions. The oxygen vacancies cause the conduction of RTFM. Furthermore, a hydrogen orbital is created when an electron belongs to the oxygen trap in the oxygen vacancy. The trapped electron and coupled Ni$^{2+}$ construct polaron, as well as the overlapping of the magnetic moment of the polarons, causes RTFM [8].
4. Conclusion

Transparent SnO$_2$ thin films were prepared successfully using the sol-gel method. The physical properties of these films were investigated with various nickel dopants. The structures of these films exhibited a slight change in the lattice parameter and the cell volumes. The resistivity for SnO$_2$ was 74 Ω-cm, which increased with the increment of Ni concentration until 843 Ω-cm. The optical properties showed that the samples have high transparency and their band gap changed between 3.85 and 3.94 eV. The presence of nickel reduced the transparency and increased the band gap. The extinction coefficient and refractive index were altered for different level content. The sample with different Ni dopant, except for the lowest dopant, exhibited RTFM, and the 10\% Ni dopant had the highest magnetic moment.

Acknowledgment

This research is funded by the UKM research grant code 03-01-02-SF0742.

References

Biographies

Mohammad Hassan Abdi was born in Qaen, Iran, in 1972. He received BS and MS degrees from Ferdowsi University, Mashhad, Iran, and a PhD degree from Universiti Kebangsaan Malaysia, Malaysia. He is currently lecturer in the Islamic Azad University, Iran. His research interests include magnetic material, thin films and spintronics.

Noor Ba‘ayyah Ibrahim was born in Perak, Malaysia, in 1970. She received her BS degree from Universiti Kebangsaan Malaysia, Malaysia, and MS and PhD degrees from the University of Warwick, UK. She is currently Associate Professor in Universiti Kebangsaan Malaysia, Malaysia. Her research interests include magnetic material, thin films and spintronics.

Hussain Baqiah was born in Yemen, in 1978. He received his BS degree from Sanaa University, Yemen, his MS degree from UPM, Malaysia, and his PhD degree from Universiti Kebangsaan Malaysia, Malaysia. His research interests include magnetic material, thin films and spintronics.

Abdul Halim Shaari received his BS degree from the Second Upper National University of Malaysia, in 1976, an MS degree from the University of Southampton, UK, in 1978, and a PhD degree from the University of Hull, UK, in 1981. He is currently Professor of Physics in the University of Putra, Malaysia. His research interests include superconductivity, magnetism, and materials science.