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Abstract. In this paper, the Resource Investment Problem (RIP) has been studied in
which the availability levels of the resources are considered as decision variables. The
objective is to maximize the net present value of a project by a given project deadline
subject to progress payments. The project has activities interrelated by Generalized
Precedence Relations (GPR's), which require a set of renewable resources. A non-linear
mixed integer programming formulation is proposed for the problem. The problem formed
in this way is an NP-hard one, leading to the use of a Modi�ed version of the SA (MSA)
algorithm in order to obtain a satisfying solution, based on its hybridization with a local
search procedure. In order to improve the MSA, the Taguchi technique is executed to
tune its parameters. Moreover, the Genetic Algorithm (GA) is also applied to validate the
performance of the proposed algorithm. Finally, for examining the algorithm's performance,
the Relative Percent Deviation (RPD) index is applied for comparison. The results
of the performance analysis of the proposed MSA show the e�ciency of the presented
algorithm.
© 2014 Sharif University of Technology. All rights reserved.

1. Introduction

The Project Scheduling Problem (PSP) is the most
investigated area in the �elds of operations research
and management science [1]. Finding a schedule for
the activities of a project is subject to some side con-
straints, such as precedence constraints and resource
constraints, although there are many other factors also
involved. The classical Resource Constrained Project
Scheduling Problem (RCPSP) is known as a project
with a set of n activities, numbered 1 to n, where each
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activity has to be processed without interruption to
accomplish the project [2].

The Resource Investment Problem (RIP) is one
of the most important problems in the area of project
scheduling. In the real world, at least two fac-
tors are included for implementation of the projects;
project owner and contractor. Financial payments are
achieved as a result of the type of project contracts
and agreements between these two factors. In the
literature, there are various models to determine how
the contractor receives the employer's payment, which
are proposed by Ulusoy et al. [3] in four types:

I. Lump-Sum Payment (LSP) where the contract
amount is paid to the employer at the end of a
successful project.

II. Payment at Event Concurrency (PEO) where the
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contractor agrees to pay the employer during
project implementation at predetermined mile-
stones.

III. Payment at Equal Time Interval (ETI) where
payments are paid at equal time intervals, and the
last payment paid when the project is completed.

IV. Progress Payment (PP), where payments are
paid at regular intervals according to the project
progress.

Tavares [2] categorized di�erent types of objective
functions utilized in PSPs, such as: minimizing project
duration, maximizing the net present value of the
project cash ow, and maximizing project resource
utilizations. Since most projects consist of lengthy
running times, the magnitude volume of cash ow
during the project implementation time, high interest
rates, limited capital, and large projects and activities,
are among the best factors for a maximum amount of
project pro�t. In PSP literature, most research concen-
trates on minimizing project duration. In this article,
to make a model more realistic, maximizing the total
Net Present Value (NPV) is considered as the main
objective function. Thus, the scheduling problem of
resource constrained projects with discounted cash ow
(RCPSP-DCF) has recently attracted more attention.
The NPV of a project is considered to be maximized,
even if the project duration may not be minimized [4].
In addition, minimum, as well as maximum, time lags
may be given between di�erent activities. This problem
is also known as the RIPDCFPP/GPR. It should
be mentioned that Generalized Precedence Relations
(GPRs) are applicable for cases where activities require
�xed or simultaneous starting or completion times,
non-delay execution, mandatory overlap with other
activities, time-varying resource requirements or ready
times and deadlines [5].

Vanhoucke et al. [6] considered the problem of
progress payments in project scheduling problems.
Since, in a large number of projects, cash ow depends
on their occurrence in di�erent ways, recent research
has focused on cases where activity cash ow depends
on the completion times of the corresponding activities.

The Resource Investment Problem (RIP) is a
close variant of RCPSP, which consists of scheduling
project activities in such a way that the total cost of
the renewable resources required for completing the
project by a pre-speci�ed project deadline is mini-
mized. Mohring [7] investigated the issue of investment
in resources and demonstrated the NP-hardness of the
problem. He developed an exact solution method,
based on examples of graphs, with 16 activities and four
resources. Shadrokh and Kianfar [8] presented the issue
of investment in resources and proposed the Genetic
Algorithm (GA) for its solution. Also, the compu-
tational results demonstrated the better performance

of the developed GA. The problem of investment, in
resources with positive and negative cash ow, for
maximizing the NPV of project cash ow (RIPDCF),
was introduced by Naja� and Niaki [9], and the GA
was suggested for the corresponding model. Naja�
et al. [10] developed the source investment problem
with positive and negative cash ow for maximizing the
net present value of project cash ow, and generalized
precedence relationships (RIPDCF/GPR). Also, they
proposed a GA for solving the model. Bianco and
Caramia [11] proposed a B&B algorithm to solve
RCPSP, with generalized precedence relationships and
a minimum makespan objective. Recently, Afshar-
Nadja� et al. [12] developed a GA to optimize a
Mode Identity Resource Constrained Project Schedul-
ing Problem (MIRCPSP) in which the set of project
activities is partitioned into disjoint subsets. Rahimi
et al. [13] proposed three meta-heuristic algorithms,
namely, the imperialist competitive algorithm, SA, and
di�erential evolution, to solve MIRCPSP.

Since the RCPSP is severely NP-hard, soft com-
puting approaches are e�cient. Paraskevopoulos et
al. [14] proposed a new solution representation and an
evolutionary algorithm inspired by an event list-base
for solving the RCPSP. He et al. [15] proposed some
meta-heuristics for multi-mode capital constrained
project payment scheduling. Xiao et al. [16] developed
an e�cient ant colony algorithm to optimize software
project scheduling problems. Several meta-heuristic
algorithms have since been developed which combine
rules and randomness, mimicking natural phenomena.
These phenomena include biological evolutionary pro-
cesses, for example, the evolutionary algorithm [17],
GA [12,18], animal behavior [19,20], the physical an-
nealing process [13,21], the social process [22], and so
on.

This research studies the Resource Investment
Problem with Discounted Cash Flow (RIPDCF) in-
cluding generalized precedence relations and a progress
payment, called RIPDCFPP/GPR. To do so, a mathe-
matical model, as a non-linear mixed integer program-
ming, is proposed. As stated, the proposed model is
NP-hard, therefore, a Modi�ed Simulated Annealing
(MSA) algorithm is proposed to solve the problem.
In this respect, we extended SA, with regard to hy-
bridizing it with a local search procedure. The Taguchi
approach is also applied to tune the parameters of the
algorithms. To demonstrate the applicability of the
proposed algorithms, some problems with various sizes
are generated. For performance evaluation of the MSA,
a proper index is applied and, �nally, the results are
compared with one of the best-developed algorithms in
the literature, called GA.

The rest of this paper is organized as follows:
In Section 2, the formulation of RIPDCFPP/GPR is
represented. Two meta-heuristic algorithms, namely,
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GA and MSA, are described in Section 3. Moreover, in
order to realize the performance of the proposed model,
result analysis and parameter tuning are provided in
Section 4. Finally, in Section 5, the conclusion and
remarks for future work are discussed.

2. Model description

In this section, the problem, notations, parameters,
and decision variables are de�ned and then the model
is developed.

2.1. Problem de�nition
Neumann and Zimmermann [23] classi�ed the resource
leveling problem into three categories. In one of these
categories, which is called the resource investment
problem, resource levels are determined at the begin-
ning of the project, which will not change up to the
end of the project. Therefore, in this problem, it
is assumed that the resource leveling and scheduling
of activities should be done in such a way that the
objective function is optimized. A simple objective
function of the problem is to minimize the cost of
resource employment. Suppose a project with n + 2
activities in which 0th and (n + 1)th activities are
dummies and represent the start and end point of the
project, respectively. We assume that there exists at
least one path with nonnegative length from node 0
to every other node, and at least one path from every
node i to node n + 1, which is equal to or larger than
di. If there are no such paths, we can insert arcs (0; i)
or (i; n + 1) with weight zero or di, respectively. In
this type of study, projects are presented by a directed
graph, G(V;E), in which a set of nodes, V , indicates
project activities, and the set of arcs, E, indicates the
precedence relations. The deterministic duration of
activity i is denoted by di. To complete the project
activities, K types of renewable resources are needed.
The cost of employing each unit of resource k per unit
of time is equal to Ck. Meanwhile, the amount of
kth resource required for the activity i per unit of
time is rik. Also, each activity, i, requires a �xed
cost, including material costs, overhead costs, etc., over
activity execution. The amount of �xed cost at period
t for each activity, i, is presented by Fit. During the
project progress time, the inows are determined based
on the amount of completed work of the activities.
Meanwhile, the interest rate per unit time is equal
to �. The precedence relation between the activities
is assumed as generalized. Finally, the predetermined
deadline for completing the project is denoted by DD.

Here, we illustrate the problem by an instance.
The corresponding AON project network is shown in
Figure 1. There are 7 real activities (0 and 8 are
dummy activities) and two resource types. The number
above the node denotes the activity duration, while

Figure 1. Problem instance for the RIPDCFPP/GPR.

the numbers below denote the resources requirements,
respectively. However, the numbers above the arcs de-
note minimal start-start time lags, which are accepted
as a standard form of GPRs.

2.2. Parameters and notations
The notations, parameters, and decision variables are
considered for the RIPDCFPP/GPR, as follows:
di Duration of activity i;

i = 0; 1; 2; � � � ; n+ 1;
Ck Employment cost per unit of resource

type k per unit of time, k = 1; 2; � � � ;K;
rik The required level of activity, i, from

resource type, k, per period;
Fit Fixed cost of activity, i, at period t;
wit Completed portion work during period,

t, for activity i;
C+
i Progress payment cash inow of

activity, i, at the end of some review
period incurred;

Si Starting time of activity i, i =
0; 1; 2; � � � ; n+ 1;

Rk Required level of resource type, k, to
be provided, k = 1; 2; � � � ;K;

SRk Employment time of resource k
(start time of resource scheduling),
k = 1; 2; � � � ;K;

FRk Releasing time of resource k (end
time of resource scheduling),
k = 1; 2; � � � ;K;

U(k) Set of activities that use a kth resource;
PB(t) Payment at t when a set of activities

ends;
PR(k) Series of activities that use the kth

resource and have no precedence;
UR(k) Series of activities that use the kth

resource and have no successor;
Xit A binary variable: It is one if activity i

is started at period t, otherwise is zero,
i = 0; 1; 2; � � � ; n+ 1 and t = 1; 2; � � � ; DD
y1 and y2 are binary variables.
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2.3. RIPDCFPP/GPR formulation
As mentioned earlier, the �rst issue is to determine
resource employment levels and the schedule of activi-
ties, so that the desired objective function is optimized.
The objective functions consist of three parts. In
these parts, ESi and LSi, respectively, indicate the
earliest and latest starting times of activity, i. Re-
viewing points are occurred in T; 2T; � � � ;mT under
the following conditions: mT � DD and (m � 1)T �
DD. It should be noticed that when mT > DD,
the last period is equal to DD. Variable wit(t =
T; 2T; � � � ;mT and 1 � i � n) is de�ned as part
of the completed work of activity i during period
[t � T; t]. Therefore, cash inow is calculated as
follows [6]:X

t=T;2T;3T;���mT witC
+
i e
��t: (1)

According to Relation (1), the �rst part of the
objective function can be presented as follows:

I. +
nX
i=0

�X
t=T;2T;3T;���mT witC

+
i e
��t� : (2)

Also, the second part of the objective function, which
is outgoing discounted cash ow, is:

II. +
nX
i=0

 
�
LSiX
ESi

di�1X
u=0

F+
iuie
��(u+t)xit

!
: (3)

In this part, Fit denotes di�erent items of cost, such
as material costs, overheads, etc. As mentioned
earlier, we consider all of these items of cost as a �xed
combined value of costs, which is denoted by Fiu. The
third part denotes the cost of resources:

III. �
KX
k=1

CKRK
�
e��SRK � e��FRK

e��
�
: (4)

Therefore, the objective function can be introduced as
follows:

max(Z) =
nX
i=0

 X
t=T;2T;3T;���mT witC

+
i e
��t

�
LSiX
ESi

di�1X
u=0

Fiue��(u+t)xit

!

�
KX
k=1

CKRK
�
e��SRK � e��FRK

e��
�
: (5)

Subject to:

Wit =

 
t�PLSi

ESi txit + di
di

!
y1

+

 
min

(
1;
PLSi
ESi txit+T�t)

di

)!
y2; (6)

y1 + y2 � 1; (7)

LSiX
ESi

txit + lij �
LSiX
ESi

txit 8(i; j) 2 G; (8)

LSiX
ESi

txn+1;t � DD; (9)

t �XLSi

t=ESi
xn+1;t + witdi; 8i 2 pB(t)

t = T; 2T; 3T; � � �mT; (10)

SRK �
LSiX
t=ESi

xn+1;t 8i 2 pR(K)

k = 1; 2; 3; � � �K; (11)

FRK �
LSiX
t=ESi

xn+1;t + di 8i 2 UR(K)

k = 1; 2; 3; � � �K; (12)

n+1X
i=0

min(t;LSi)X
l=max(t�di+1;ESi)

rikxil � RK ;

t = 0; 1; 2; 3; � � � ; DD and k = 1; 2; 3; � � � ;K;
(13)

LSiX
t=ESi

xit = 1 i = 0; 1; 2; 3; � � �n+ 1; (14)

Si =
LSiX
t=ESi

txit i = 0; 1; 2; � � � ; n+ 1; (15)

Si; Rk; SRk; FRk � 0 y1; y2; xit = f0; 1g 8k; i; t:
(16)

Constraints (6) and (7) denote the percentage of work
completed constraints. Constraint (8) is a precedence
constraint. The project completion deadline constraint
is denoted by Constraint (9). Constraint (10) indicates
project payment limits. Employment and release
times of resources are represented by Constraints (11)
and (12). Constraint set (13) shows the limitation
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of resource consumption. Constraint (14) forces one
completion time for each activity. Equation (15)
computes the start time of each activity. Constraint
(16) speci�es that the decision variables, y1, y2 and
xit, are binary, while Si, SRk, FRk and Rk are integer.

It has been proved by [7] that the Resource
Investment Problem (RIP) belongs to an NP-hard class
of problems. Therefore, since RIPDCFPP/GPR is
an extended model of RIP in both constraints and
objective, this model also belongs to the NP-hard class
of problems. Therefore, we utilize a soft-computing
approach to solve the model. In the next section, the
proposed algorithm is also described in detail.

3. Solving methodologies

As mentioned in the previous section, our model
belongs to the NP-hard class of optimization problems.
Generally, to solve such models, di�erent types of
meta-heuristic algorithms are applied. In this paper,
we proposed a modi�ed version of the SA algorithm
called MSA. In the rest of this section, our proposed
MSA is �rst explained, then, GA is described as well.
At the end, we apply a random search approach to
demonstrate the applicability of both meta-heuristics.

3.1. Modi�ed simulated annealing algorithm
The SA algorithm searches the solution area according
to the stochastic mechanism of the physical annealing
process in metallurgy which is used for solving complex
combinatorial problems [21]. Generally, in this algo-
rithm, the objective value of a solution, usually called
the cost factor, is equivalent to the internal energy
state. This algorithm starts with a high temperature
and selects the initial solution randomly. Then, it
calculates a new solution within the neighborhood
of the current solution. New solutions are accepted
based on a probability that depends on the di�erence
between the corresponding costs and on the current
temperature. Correspondingly, high temperatures let
the new solutions be accepted more easily. The prob-
ability of accepting higher costs decreases within the
optimization process through an e�ective decreasing
rate of temperature [24,25]. In order to enhance the
performance of the SA, the steps of the proposed MSA,
which is combined with a local search procedure, are
described in the following subsections.

3.1.1. Input parameters
The performance of MSA greatly depends on the
following parameters:

I. Initial temperature, T0 (a starting point for cal-
culating the value of temperature in di�erent
iterations);

II. Decreasing function of temperature, T (t);
III. Number of iterations in each temperature;

IV. Conditions for reaching the equilibrium system;
V. Stop criterion.

� Decreasing function of temperature, T (t):
One of the major factors having an important

e�ect on the performance of the MSA is the decreas-
ing function of the temperature. In this paper, the
new value of the temperature is calculated through
Eq. (17):

Tk = �Tk�1; � < 1: (17)

� Conditions for reaching the equilibrium system:
In MSA, before temperature reduction, the

equilibrium condition should be checked. If this
condition is met, the next temperature is selected;
otherwise iterations will continue at the same tem-
perature. In this paper, the system equilibrium is
calculated from the following equation [25]:

Ns = Ns(1 + h� step); (18)

where Ns denotes the number of iterations needed
for achieving the equilibrium condition.

� Stop criterion.

The stop criterion in this paper is a predetermined
number of iterations.

3.1.2. Representations and evaluation
In MSA, like any other meta-heuristic algorithms,
representation is severely important. It is better that
the representation vector is in a way that makes all con-
straints feasible. To do so, we utilize a representation in
which a solution is modeled through n+ 2 component
vectors (two shows the number of dummy activities)
and each component shows the starting time (si) of
the project activities. A scheme of this representation
is shown in Eq. (17).

RE = (s0; s1; � � � ; sn+1): (19)

To have a feasible representation, the starting times
should consider predecessor and successor activities.
It means that activities should not start before the
earliest start time, E(j), and should not last longer
than the latest start time, L(j) or E(j) � Si � L(j).

Now, in order to evaluate the representations,
the �tness value obtained by the objective function
should be calculated. To do so, for each representation,
we need to obtain both the activity starting times
and the resource plan. The activity starting times
are directly obtained from the components of the
representation. Finally, for the resource plan, the
resources at representation scheduling are entered that
will determine the requirement level, the employment
time and the releasing time of the resources.
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3.1.3. Initial population
In order to create presentations, �rst, we should cal-
culate the earliest and latest start times through the
following algorithms [26].

It should be mentioned that the earliest start
time of all activities is set at zero, which means that
for calculating the earliest start time of all activities,
Earliest (0) should be executed. Earliest (i) is a
recursive function as follows:

1. List all the successor activities of activity i and
determine the �rst successor activity.

2. Call the �rst successor by j, and the weight of arc
i to j by dij . Now, if E(i) + dij � E(j), consider
E(j) = E(i) + dij and execute Earliest (j).

3. Select the next successor and go back to step 2. The
algorithm will end when all activities of the list are
assessed.

For calculating the latest start times again, we �rst
should set all L(:) to T (which denotes the maximum
execution time of the project). The function of the
latest start time is denoted by Latest (:). Now, for
calculating the latest start time, the Latest (n + 1)
function should be calculated. Latest (i) is a recursive
function as follows:

1. List all the predecessor activities of activity i and
determine the �rst predecessor activity.

2. Call the �rst predecessor by j, and the weight of
arc i to j by dji. Now, if L(i)�dji < L(j), consider
L(j) = L(i)� dji and execute Latest (j).

3. Select the next predecessor and go back to step 2.
The algorithm will end when all activities of the list
are assessed.

After obtaining all earliest and latest times, or
calculating all E(i) and L(i) for producing a random
representation, the following algorithm is used.

1. Consider i = 0;
2. Generate a random number called Rand within the

interval [E(i); L(i)];
3. The start time of the activity Si = E(i) = L(i) =

Rand;
4. Execute Earliest (i);
5. Execute Latest (i);
6. i = i+ 1;
7. If i = n + 1, the algorithm ends, otherwise go to

step 2.

Earliest and latest start times can also be cal-
culated through a Floyd-Warshall algorithm [27]. The
Floyd-Warshall algorithm is of time complexity, O(n3).

Calculation of the earliest start times can be related to
the test for the existence of a time-feasible schedule.
A time-feasible schedule for a project exists if the
standard form of project network (G) has no cycle
of positive length. Such cycles would enable us to
compute start times for activities which satisfy gener-
alized precedence relations (Constraint set (8)). In the
Floyd-Warshall algorithm, matrix � = [�ij ] is often
referred to as the distance the matrix is computed,
where �ij denotes the longest path length from node i
to node j. A positive path length from node i to itself
indicates the existence of a cycle of positive length,
and, consequently, the non-existence of a time-feasible
schedule.

To give an equal chance to each point of the
solution space, the algorithm has been modi�ed as
follows:

1. Consider the activity list (act-list) and:

2. If the list is empty, the algorithm is ended, other-
wise, select randomly one of the activities from the
act-list, denote it, and omit it from the mentioned
list;

3. Generate a random number called Rand within the
interval [E(i); L(i)];

4. The start time of the activity is Si = E(i) = L(i) =
Rand;

5. Execute Earliest (i);

6. Execute Latest (i);

7. i = i+ 1;

8. Go back to the �rst step.

3.1.4. Neighborhood generation algorithm
1. Choose one of the project activities and denote it

by j;

2. Generate a random number called Rand within the
interval [E(j); L(j)];

3. If, Si < RAND, Si = E(i) = L(i) = RAND.

Execute Earliest (j) on the RE, and during the pro-
cess for all activities, set start times (Si) and the latest
start time to calculated start times in Earliest (j).
Otherwise:

Si = E(i) = L(i) = RAND:

Execute Earliest (j) on the RE, and during the
process for all activities, set start times (Si) and the
latest start time to calculated start times in Latest (j).

At the end, to show the readability of the algo-
rithm, the Pseudo-code of the proposed MSA is also
plotted and represented in Figure 2.
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Figure 2. The MSA procedure.

3.2. The GA
In order to compare the proposed MSA, we applied one
of the best-developed algorithms in the literature called
GA. The structure of GA is designed in such a way
that the generation population or the chromosomes are
produced in the �rst step. The new generation is de-
termined with four operators: reproduction, crossover,
mutation and local search (for better performance).
The initial solutions are randomly created and eval-
uated. Then, all the chromosomes are considered for
the crossover. In this phase, the crossover occurs for
two pairs of chromosomes with a probability of Pcr,
and with each crossover, two new chromosomes are
created. The �tness functions of the chromosomes are
calculated. Before two new chromosomes are selected,
the mutation operation occurs for each of them with
the probability of Pm. Then, a local search operation
is performed. To choose between the child and the
parent chromosomes, suppose that the �rst parent is
called P1, the second parent is called P2, the �rst child
is called Ch1 and the second child is called Ch2. The
�tness function of chromosome i is shown by f(i). At
�rst, by considering P1 and Ch1 chromosomes, the
random number, r, in the interval zero and one will
be produced. If equation (f(P1) + f(CH1)) � r �
f(P1) is established, the �rst child will be replaced
by the �rst parent, and the otherwise Ch1 will leave
generation. The same relationship exists for Ch2 and
P2. The same approach is used for the replacement.
The replacement happens and a mutation chromosome
is produced. Then, a comparison is done between the
�tness of the primary chromosome and mutation chro-
mosome. Moreover, as elitism is considered, the best
chromosome is directly copied to the new generation.
This is repeated continuously until the stop condition
is achieved. In this model, the stop conditions either
achieve 50 generations or the same objective function
in 5 iterations. The penalty function is as follows:

f(I) =
mX
k=1

CkRIk: (20)

3.3. Random search
To justify the obtained solutions of both meta-heuristic
algorithms, a Random Search (RS) policy has been
considered to represent the e�ciency and intelligence
of the solving methodologies. In fact, comparison
of the meta-heuristic algorithms with a RS causes a
lower bound to be obtained for the problem outputs,
which obviously indicates the appropriate performance
of the solving methodologies. Let f : Rn ! R be the
combined cost function, which must be minimized, and
x 2 Rn designate a position or candidate solution in the
search space.

4. Computational results and comparisons

This section deals with the parameters of the proposed
MSA including initial temperature, decreasing ratio,
the number of the Markov chain, step, and neighbors.
In GA, the parameters, such as Number of Gener-
ations, crossover operation (Pc : Pcross), mutation
(Pm : Pmute), and local improvement operation (Pl :
Plocal search) of the proposed GA are used. Each of them
is especially important and can a�ect the performance
of the algorithm.

Then, the computational performance of the MSA
is investigated on a set of test problems. Since the
RIPDCFPP/GPR is a new mathematical model in the
area of project scheduling, no standard test problems
could be found to check the performance of the pro-
posed MSA procedure. Thus, we are forced to examine
the RIP/max test problems that are available in the
PSPLIB library [28]. Consequently, due to RIP/max,
the test problems do not contain some variables of the
current. The use of the recommended procedure is
applied in the manner of [9].
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Table 1. GA operators and parameters.

Factor Levels Type

Number of generation 4 A-1)15 A-2)30 A-3)45 A-4)60
Popsize 4 B-1)10 B-2)30 B-3)50 B-4)70
PC 4 C-1)0.55 C-2)0.75 C-3)0.85 C-4)0.95
Pm 4 D-1)0.001 D-2)0.005 D-3)0.025 D-4)0.05
Pl 4 E-1)0.2 E-2)0.4 E-3)0.6 E-4)0.8

Table 2. MSA operators and parameters.

Factor Levels Type

T0 4 A-1)800 A-2)1200 A-3)1600 A-4)2000
ALPHA 4 B-1)0.2 B-2)0.4 B-3)0.6 B-4)0.9
Markov chain 4 C-1)1 C-2)2 C-3)3 C-4)4
Step 4 D-1)10 D-2)30 D-3)50 D-4)70
Neighbors 4 E-1)10 E-2)30 E-3)50 E-4)70

Table 3. Setting the parameters of the algorithms.

Algorithms Factor Low Medium Large
Level Size Level Size Level Size

GA

Number of generation 3 45 4 60 2 30
Popsize 2 30 2 30 1 10
Pc 3 0.85 2 0.75 4 0.95
Pm 3 0.025 4 0.05 1 0.001
PL 3 0.6 2 0.6 3 0.6

MSA

T0 3 1600 3 1600 4 2000
ALPHA 2 0.4 2 0.4 2 0.4
Markov 2 2 2 2 4 4
Step 2 70 2 70 4 70
Neighbors 4 70 4 70 4 70

Regarding the nature of the problem, most times,
LINGO is unable to obtain a global optimal solution
for large-scale problems. In this research, the perfor-
mances of the proposed MSA are compared to the ones
of another meta-heuristic algorithm, namely GA. So,
to obtain a better performance for comparing the two
algorithms, the GA parameters are also tuned. To
optimize the parameter values, we utilize the Taguchi
method. For more details of this method, one can
refer to [29]. These issues consist of three ranges of
problems with 10, 20 and 30 non-dummy activities,
which are considered to be 270 issues in each range.
Among these issues, 90 issues in di�erent sizes are
selected. In the proposed model, the range of problems
is divided into three sizes: small, medium and large
for the algorithms. Therefore, three ranges for �ve
times on 10 random issues have been considered. To do
so, we utilized MINITAB15 software. The algorithms
are implemented under Windows 7 and Intel (R)
Core (TM) 2Duo CPU and RAM 1.96GB based on

MATLAB software [30]. Then, the numbers of required
levels for each algorithm are expressed in Tables 1
and 2.

The Taguchi outputs are represented by L16
(4**5). To do so, MEAN and SNR graphs are
plotted for di�erent sizes of the problem. Regarding
maximization of the objective function, optimal levels
for each factor are as follows:

1. SNR graph to be maximized;

2. Responses mean graph (MEAN) to be minimized.

The results of the Taguchi parameter settings for two
meta-heuristic algorithms on small, medium, and large
sizes are illustrated in Table 3.

On the other hand, Relative Percentage Deviation
(RPD), which is one of the most famous methods
for e�ciency measurement in objective problems, is
considered. Regarding the 90 selected problems, the
best solution for each algorithm is presented. RPD are
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obtained as follows:

RPDJ =
r=5X
i=1

����zi � zmax

zmax

���� ; (21)

where zi is solution i in each algorithm, and zmax is the
best solution of the problem in all tests.

According to maximization of the objective func-
tion, lower RPD criteria represents the e�ciency of
the algorithm in the corresponding size. To do so,
the RS algorithm is considered for obtaining a lower
bound for the problem. The reason for selecting
this heuristic algorithm is to obtain a lower bound
of the target function for the problem. So, obtained
solutions can evaluate the e�ciency of the algorithms.
The application of this heuristic algorithm is, at �rst,
selecting a population and then considering the average
of the population solutions as a minimization of the
problem. Thus, to assess whether there is a signi�cant
di�erence for the RPD and RPD of two algorithms, a
more applicable statistical analysis, called the T-paired
method, with 95% con�dence level, has been utilized as
follows:8<:H0 : Di � 0

H1 : Di < 0
; i = 1; 2; 3: (22)

With regard to small, medium, and large sizes of the
corresponded problem, Di are de�ned as follows:

D1 = RPDGA;S �RPDPSA;S ; (23)

D2 = RPDGA;M �RPDPSA;M ; (24)

D3 = RPDGA;L �RPDPSA;L; (25)

D4 = NPVPSA;s �NPVGA;s; (26)

D5 = NPVPSA;M �NPVGA;M ; (27)

D6 = NPVPSA;L �NPVGA;L: (28)

In this way, when P � value > �, the H0 hypothesis
would not be rejected. Table 4 represents the hypoth-
esis tests of Eq. (23)-(28), respectively.

Moreover, in order to demonstrate the perfor-
mance of proposed MSA, the algorithms are statis-
tically compared based on the properties of their
obtained solutions via analysis of variance (ANOVA)
tests. The procedure of ANOVA, including the F-test
value, P -values, and the results on each metric, are
summarized in Table 5 for small size (NPV-S), medium
size (NPV-M), and large size (NPV-L).

To clarify the statistical outputs, box-plots are
shown in Figure 3. In order to increase the readability
of the comparisons, the algorithms are also compared

Figure 3. Box-plot of NPV metric for di�erent sizes of
the problem.

graphically on the whole test problems in Figures 4-6.
These �gures show a comparison between the proposed
MSA, GA, and RS, based on NPV criteria, for all test
problems.

Finally, with regard to paired comparison and
acceptance criteria for GA and MSA, we perceive that
the proposed MSA has a better performance than GA
in NPV solutions and RPD criteria, especially in large-
size problems.
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Table 4. Hypothesis tests.

Criteria Size Test statistic P -value Result

RPD
Small T -value = 2.16 P -value = 0:983 > 0:05 D1 � 0; RPDGA;S � RPDPSA;S

Medium T -value = 1.83 P -value = 0:965 > 0:05 D2 � 0; RPDGA;M � RPDPSA;M

Large T -value = 24.28 P -value = 1:000 > 0:05 D3 � 0; RPDGA;L � RPDPSA;L

NPV
Small T -value = 2.78 P -value = 0:997 > 0:05 D4 � 0; NPVGA;S � NPVPSA;S

Medium T -value = 0.91 P -value = 0:818 > 0:05 D5 � 0; NPVGA;M � NPVPSA;M

Large T -value = 0.91 P -value = 0:818 > 0:05 D6 � 0; NPVGA;L � NPVPSA;L

Table 5. The results of ANOVA test for di�erent sizes of the problem.

Metrics Source DF SS MS F P -value Test results

NPV-S
Algorithms 1 295119 295119 0.34 0.558 Null

hypothesis is
not rejected

Error 178 152459058 856512

Total 179 152754177

NPV-M
Algorithms 1 14968 14968 0.01 0.926 Null

hypothesis is
not rejected

Error 178 305821143 1718096

Total 179 305836111

NPV-L
Algorithms 1 1426578994 1426578994 594.90 0.000 Null

hypothesis is
rejected

Error 178 426849654 2398032

Total 179 1853428648

Figure 4. The comparison between GA and MSA based
on NPV criteria for small size.

Figure 5. The comparison between GA and MSA based
on NPV criteria for medium size.

Figure 6. The comparison between GA and MSA based
on NPV criteria for large size.

5. Conclusions and future work

In this paper, a new model in RIP, by maximizing NPV,
based on payment progress, has been investigated. The
following items have been considered in this paper:
positive and negative cash ow during the project,
money time value, and issue of prerequisite types
with minimum and maximum time delay of payment
progress. Since the proposed model is NP-hard, two
meta-heuristic algorithms, including GA and MSA,
were proposed. To do so, the Taguchi parameter
setting technique and RPD index were applied. To
demonstrate the applicability of the model, various
sizes of problem, including the 270th issue with 10,
20 or 30 activities, were carried out. Ultimate results
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represent the better performance of MSA over GA, in
terms of the metrics, especially in large-size problems.
For future research, the multi-objective multi-mode
RIPDCFPP/GPR in which tardiness is permitted with
penalty, is suggested.
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