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Abstract. For many years, the Economic Order Quantity (EOQ) model has been
successfully applied to inventory management. This paper studies a multiproduct EOQ
problem in which the defective items will be screened out by 100% screening process, and
will be sold after the screening period. Delay in payment is permissible, though payment
should be made during the grace period, and the warehouse capacity is limited. If not,
there will be an additional penalty cost for late payment and the retailer will not be able to
buy products at discount prices. All-units and incremental discounts are considered for the
products which depend on order quantity, just like the permissible delay in payment. The
Genetic Algorithm (GA) and the Particle Swarm Optimization (PSO) algorithm are used
to solve the proposed model, and numerical examples are provided for better illustration.
© 2014 Sharif University of Technology. All rights reserved.

1. Introduction

The basic economic order quantity model is expanded
by researchers using di�erent assumptions. Some of
these assumptions seem to be more realistic and can
be observed in real market environments. Retailers
do not usually receive perfect goods and, conceivably,
some defective items are found in their orders. The
defect may be caused during the delivery process or
by bad production. Porteus [1] studied the e�ect
of defective items on an EOQ model in which the
production process goes out of control considering a
hypothesized probability. Wu and Ouyang [2] assumed
the number of defective items as a random variable in a
(Q,r,L) inventory model. They developed an algorithm
procedure to obtain the optimal order quantity, the or-
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der point and the lead time. Shortages and permissible
delays in payment are practical assumptions that help
reach a tangible model. Economic order quantity under
permissible delays in payment was studied by Goyal [3]
for the �rst time. Huang [4] studied a partial delay
in payment, wherein the retailer pays the purchase
cost at the end of the grace period in cases where the
order quantity is more than the minimum amount of
quantity, which leads to complete delay in payment.
Otherwise, a part of the payment must be made as
the order is �lled. All-units discount and incremental
discount are the policies that suppliers use to encourage
retailers to increase their order size. Benton and
Park [5] overviewed di�erent purchase discounts and
Weng [6] studied the all-units discount and incremental
discount in inventory models, which were subsequently
mentioned by many researchers.

Salameh and Jaber [7] studied the EOQ model in
which all the products are screened and defective ones
are sold in a single batch after the screening process.
(There was an error in their paper that was corrected
by Barron [8].) Wee et al. [9] extended the model
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of Salameh and Jaber [7] and gained optimal order
and backorder quantities when shortage is permissible
and completely backordered. Eroglu and Ozdemir [10]
developed an EOQ model with shortages and defec-
tive items that are categorized as imperfect quality
and scrap items. Chang and Ho [11] revisited the
model by Wee et al. [9] and used a renewal-reward
theorem to obtain the expected pro�t per unit time.
Kevin Hsu and Yu [12] considered a one-time only
discount for Salameh and Jaber [7] model. They
obtained the optimal order size, which is placed at
a time when a price decrease is e�ective for three
possible situations. Khan and Mehmood [13] studied
an EOQ model considering errors in inspections and
sales returns. In their model, the amount of returns
was added to actual demands and was equal to perfect
screened out items at a maximum to avoid shortage
during the sales period. Hsu and Hsu [14] showed
that there is an error in the model of Wee et al. [9],
wherein the units that were backordered were shipped
to customers before the screening process. They
corrected the model and obtained the optimal order
and backorder quantities using a renewal-reward theo-
rem. This model was extended by Tai [15] considering
two warehouses and using a multi screening process.
Moreover, Hsu and Hsu [16] developed the model of
Khan et al. [13], where the shortage is allowed and
backordered. This paper further developed the model
of Hsu and Hsu [14] by adding some new assumptions
and considerations. As a result, it changed to a
multi-product model. The mathematical model is later
described in Sections 2 and 3. The genetic algorithm
and the particle swarm optimization algorithm are used
to solve the proposed model in Section 4, and these
algorithms are then compared in the di�erent examples
in Section 5.

2. Notations and assumptions

The following notations and assumptions are used
throughout this paper.

2.1. Notation
Qi : Order size of product i;

Di : Demand rate of product i;

xi : Screening rate for product i;

Ai : Ordering cost for product i;

pi : Average fraction of an order quantity
for product i, that is defective in Qi;

#i : Selling price per unit for product i;

Vi : Salvage value per defective item for
product i, Vi < ci;

di : Screening cost per unit for product i;

Bi : Maximum backordering quantity in
units for product i;

bi : Backordering cost per each unit of
product per unit of time for product i;

�i : Backordering cost per unit for product
i;

hi : Holding cost per each unit of product
per unit of time for product i;

H : Length of planning horizon (in this
paper it is considered as one year),
H = 1;

n : Number of products;
fi : Capacity of product i;
F : Total warehouse available space;
i : Delay cost per unit of time for product

i;
Ti : Cycle time for product i;
Ni : Number of cycle times for product i,

Ni = H=Ti;

t1i : Length of cycle time for product i, in
which there is an inventory;

t2i : Length of cycle time for product i in
which there is no inventory;

t3i : Time taken to �ll Bi for product i;
ti : Length of cycle time for screening

product i;
k : Number of products that bene�t

all-units discount;
Mi : Permissible delay period for paying the

purchasing cost of product i to the
supplier;

Ci : Unit purchasing cost without discount
of product i;

Ci;j : Purchasing cost per unit of product
i at the jth discount point; j =
1; 2; :::;m+ 1;

Mi;j : Permissible delay time for product i at
the jth discount point;

u : An in�nite number;
TSi : Ordering cost per cycle for product i;
TBi : Shortage cost per cycle for product i;
THi : Holding cost per cycle for product i;
TMi : Delay cost of product i;

TP 0i : Purchasing cost per cycle for product i
considering discount;

TP 00i : Purchasing cost per cycle for product i
without discount;
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TPi : Purchasing cost per cycle for product i;
TRi : Revenue per cycle for product i;
TPV : TotalNetPro�t value per cycle.

si =

8<:1; If product i receives discount (TMi = 0)

0; Otherwise (TMi > 0)

Decision variables:
Qi : Order quantity of product i;
Bi : Maximum shortage (backorder) level

of product i.

2.2. Assumptions
1. Replenishment is instantaneous.
2. Shortage is allowed and will be backordered in the

next period.
3. 100% screening process is used and screening rate

is greater than demand rate (xi > Di).
4. Defective items are sold at price Vi, subsequently,

the screening process is �nished.
5. The supplier demands the cost of each product

batch in just one payment, and, since the retailer
pays for his current costs, like holding costs, during
the cycle time, the purchasing cost occurs at the
end of the selling period when all the goods are sold
(when the inventory level reaches zero). Therefore,
the payment may occur during or after the grace
period and hinges on the cycle time.

6. There are all-units discount and incremental dis-
count policies for the products.

7. Permissible delay in payment hinges on order quan-
tity. If the payment occurs in the permissible time,
the retailer bene�ts from discount prices. Other-
wise, not only are discount prices not considered
for him, he will be charged a fee for lateness, as a
delay cost.

3. Mathematical model

Figure 1 depicts the inventory model in which the
shortage is satis�ed in each cycle at a rate of xi(1 �
pi) � Di, after that the time period t3i, the shortage
is completely backordered. According to Hsu and
Hsu [13], Bi + t3iDi = xi(1� pi)t3i = Bixi(1�pi)

xi(1�pi)�Di and
t1i; t2i; t3i are parts of the cycle with no shortage, the
part of the cycle with shortage, and the time taken to
�ll Bi instantaneously, which can be shown as:

t1i =
Qi(1� pi)�Bi

Di
; (1)

t2i =
Bi
Di
; (2)

Figure 1. Behavior of the proposed inventory model.

Table 1. The amounts of Mi and Ci depend on the order
quantity.

Qi Mi Ci
qi;0 < Qi � qi;1 Mi;1 Ci;1
qi;1 < Qi � qi;2 Mi;2 Ci;2

... ... ...
qi;m�1 < Qi � qi;m Mi;m Ci;m

qi;m < Qi Mi;m+1 Ci;m+1

t3i =
Bi

xi(1� pi)�Di
: (3)

Eqs. (4) and (5) calculate shortage cost and the holding
cost per cycle:

TBi =
1
2
biB2

i

 
1
Di

+
1

xi(1� pi � D
xi )

!
+Bi�i; (4)

THi =hi
�

1
2
QiBi
xi

 
(1� pi)

(1� pi � Di
xi )

!
+

1
2

�
Q2
i (1� pi)2

Di
� QiBi(1� pi)2

Di(1� pi � Di
xi )

�QiBi(1� pi)
Di

+
B2
i (1� pi)

Di(1� pi�Di
xi )

�
+
piQ2

i
xi

�
:
(5)

Ordering cost per cycle is Ai and the price discount
and permissible delay in payment depend on the order
quantity. Table 1 shows the relationship between them.
In this table:

qi0 = 0; 0 < Mi;1 < Mi;2 < ::: < Mi;m+1;

and:

Ci;1 > Ci;2 > ::: > Ci;m+1:

All the discount items for every product are the same.
This situation may occur for many companies. For
example, consider a company that produces TV sets
in di�erent models. The discount rate does not di�er
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between TV set models and only depends on the price
of the merchandise.

The retailer is not able to pay the supplier before
selling all units in each period, and the payment may
occur during or after the grace period. Therefore, there
will be a delay cost if the inventory level reaches zero
after the grace period, due to non-payment within the
de�ned period and delay in payment. In this case, the
retailer is not allowed to bene�t from discount prices,
and delay cost equals Eq. (6). When the inventory
level reaches zero before �nishing the grace period (all
the products of type i are sold and the retailer can pay
the purchasing cost before the grace period is �nished),
TMi = 0 and the retailer can bene�t from the discount
price. Moreover, Mi and Ci can be gained from Table 1.
They can be replaced by

Pm+1
j=1 yi;jMi;j ,

Pm+1
j=1 yi;jCi;j

in which yi;j is a binary variable and
Pm+1
j=1 yi;j = 1.

Therefore, TMi can be summarized to Eq. (7).

TMi =
�
Qi(1� pi)�Bi

Di
�Mi

�
i; (6)

TMi=max

8<:0;

0@Qi(1� pi)�Bi
Di

�
m+1X
j=1

yi;jMi;j

1Ai9=; :
(7)

The �rst k products receive an all-units discount and
the incremental discount is considered for the others.
As mentioned before, the retailer can bene�t from the
discount only when the payment occurs within the
grace period. Unit price can be obtained from Table 1.
When Mi < t1i, the retailer has to pay the purchasing
cost with no discount:

TP 00i = QiCi;1; i = 1; 2; :::; n: (8)

When Mi � t1i, the retailer can use discount prices
and the purchasing cost can be formulated as:

Tp0i =

8>>>>>>>>>>><>>>>>>>>>>>:

m+1P
j=1

Qiyi;jCi;j ; i = 1; 2; :::; k

m+1P
j=2

�
(Qi � qi;j�1)Ci;j

+
j�1P
f=1

(qi;j�f � qi;j�f�1)Ci;j�f
�
yi;j

+QiCi;1yi;1; i = k + 1; :::; n

(9)

Therefore, the purchasing cost per cycle can be ob-
tained as:

TPi = TP 0isi + TP 00i (1� si); i = 1; 2; :::; n:

The revenue per cycle is:

TRi = (1� pi)Qi#i + piQiVi; i = 1; 2; :::; n:

The net pro�t value that the retailer earns per cycle is:

TPV =
nX
i=1

[TRi�(TSi+TPi+TMi+THi+TBi)] ;

i = 1; 2; :::; n:

The objective is to maximize the net pro�t value per
cycle, and the mathematical model becomes:

Max TC=
nX
i=1

�
TRi�

�
Ai+

1
2
biB2

i

 
1
Di

+
1

xi(1� pi�Di
xi )

!
+Bi�i + TMi + THi + TP 0isi

+ TP 00i (1� si)
��
: (10)

S.t.:

TP 0i =
m+1X
j=1

Qiyi;jCi;j ; i = k + 1; :::; n; (11)

TP 0i =
m+1X
j=2

�
(Qi � qi;j�1)Ci;j +

j�1X
f=1

(qi;j�f

� qi;j�f�1)Ci;j�f
�
yi;j +QiCi;1yi;1;

i = k + 1; :::; n; (12)

TP 00i = QiCi;1; i = 1; 2; :::; n; (13)

TRi = (1� pi)Qi#i + piQiVi; i = 1; 2; :::; n; (14)

THi =
1
2
hi
�
QiBi
xi

�
(1� pi)

(1� pi)� Di
xi

�
+
Q2
i (1� pi)2

Di

� QiBi(1� pi)2

Di(1� pi � Di
xi )
� QiBi(1� pi)

Di

+
B2
i (1� pi)

Di(1� pi � Di
xi )

+
piQ2

i
xi

�
; (15)

mX
j=0

qi;jyi;j+1 � Qi �
mX
j=1

qi;jyi;j + uyi;m+1;

i = 1; 2; :::; n; (16)

m+1X
j=1

yi;j = 1; i = 1; 2; :::; n; (17)
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TMi �
0@Qi(1� pi)�Bi

Di
�
m+1X
j=1

yi;jMi;j

1A i;

i = 1; 2; :::; n; (18)

TMi � si = 0; i = 1; 2; :::; n; (19)

TMi + si > 0; i = 1; 2; :::; n; (20)

nX
i=1

Qifi � F; (21)

Bi � 0; Qi � 0; xi;j � 0; yi;j � 0; si � 0;

TMi > 0 i = 1; 2; :::; n; j = 1; 2; :::;m+ 1

Eqs. (11), (12) and (13): Calculation of the purchasing
cost for an all-unit discount, an incremental discount
and purchasing cost when Mi � t1i:
Eq. (14): Calculation the revenue per cycle;
Eq. (15): Calculation the holding cost per cycle;
Eq. (16) and (17): Find the amounts of binary variable
for de�ning Mi and Ci.
Eq. (18): TMi = max

n
0;
�
Qi(1�pi)�Bi

Di �Mi;j

�
i
o

is
replaced by:

TMi �
0@Qi(1� pi)�Bi

Di
�
m+1X
j=1

yi:jMi;j

1A i;

and:

TMi > 0:

Eqs. (19) and (20): These two constraints together
de�ne:

si =

8<:1; If product i receives discount (TMi = 0)

0; Otherwise (TMi > 0)

Eq. (21): The warehouse capacity is limited.

4. Solving algorithms

The mathematical model mentioned is a constrained
nonlinear-programming model, and the number of
constraints depends on the number of products. The
greater the number of products, the more constraints
are faced, which makes the problem more complicated,
and more time is needed for solution. In this paper, the
genetic algorithm and the Particle Swarm Optimization
(PSO) algorithm are used to solve the proposed model
and numerical examples are given to clarify their
workability.

4.1. Genetic algorithm
The genetic algorithm was proposed by J. Holland [17].
This algorithm starts with a random population in
which infeasible chromosomes are vanished and re-
produced. Each chromosome has two rows; the �rst
indicating order quantities and the second indicating
shortages. Eq. (22) shows the proposed chromosome:

Chromosome =
�
Q1 Q2 ::: Qn
B1 B2 ::: Bn

�
: (22)

Other populations are created via elitism, crossover
and mutation. A speci�c number of generations are
considered as the algorithm stopping criteria. To avoid
producing infeasible siblings which contain columns
in which the amount of shortage is greater than the
order quantity, the crossover and mutation operations
are performed on the columns of the chromosomes.
Eqs. (23) to (28) show how these operations work. In
Eqs. (23)-(25), the random-crossover-mask de�nes how
to select columns from the parents. For example, if the
second number is 0, then the son chromosome's second
column is equal to the father chromosome's second
column. In Eqs. (26)-(28), the mutation percentage is
considered 0.1 and the columns, whose corresponding
elements in the random matrix are less than 0.1, will
be regenerated according to Bi < Qi.

Eqs. (23)-(25) show the performance of the
crossover operation:

Parents :
�
Q1 Q2 Q3
B1 B2 B3

�
;
�
Q01 Q02 Q03
B01 B02 B03

�
;

(23)

Random-crossover-mask :
�
1 0 1

�
; (24)

Siblings :
�
Q1 Q02 Q3
B1 B02 B3

�
;
�
Q01 Q2 Q03
B01 B2 B03

�
:
(25)

Eqs. (26)-(28) show the performance of the mutation
operation:

Selected chromosome :
�
Q1 Q2 Q3
B1 B2 B3

�
; (26)

Random-matrix :
�
0:8 0:03 0:66

�
; (27)

Mutation-o�spring :
�
Q1 Q02 Q3
B1 B02 B3

�
: (28)

4.2. Particle swarm optimization
PSO was proposed by Kenedy and Eberhard [18] to �nd
solutions for optimization problems. This algorithm is
inspired by the social behavior of bird ocking or �sh
schooling. The �rst population of particles is generated
randomly and each particle's velocity and position is
updated during each iteration, considering the best
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solution so far reached by the particle (personal best)
and the best current solution obtained so far by any
particle (global best). A speci�c number of iterations
are considered for the stopping criteria and the last
global best will be the �nal solution of the algorithm.

5. Numerical examples

After tuning the two proposed algorithm's parameters,
a small size example is solved by Lingo and the result
is compared to GA and PSO algorithms. The proposed
example parameters are shown in Tables 2 and 3. In
this example, the maximum capacity is considered to
be 1000; the �rst product bene�ts the all-units discount
and other products bene�t from incremental discounts.
As shown in Table 4, GA and PSO do not reach
the optimal solution, but GA's answer was closer to
Lingo's answer and the running time of GA was less

Table 2. Small example purchasing costs and permissible
delay times.

Qi C1 C2 C3 Mi

0 < Qi � 200 99 96 80 0.1
200 < Qi � 400 91 89 72 0.2

400 < Qi 73 52 55 0.4

than the running time of PSO. On the other hand, the
single optimal solution can be obtained by Lingo when
the problem is small. The scale of the model mainly
depends on the number of constraints, which increases
with the number of products. Therefore, to solve large
problems, GA and PSO algorithms are used. As shown
in Table 5, Lingo had a longer running time than the
heuristic algorithms when the number of the products
became more than 10 (500 iterations are considered the
stopping criteria for heuristic algorithms). Moreover,
Lingo obtained a local optimum for examples with 35
and 40 products, and it could not gain an answer for
examples with 45 and 50 products after 7200 seconds.
Comparing heuristic algorithms, the computational
time of GA is better than PSO in all examples.
Moreover, GA gained a better objective for most of
the examples and PSO worked better in examples with
20 and 35 products.

6. Conclusions

In this paper, an inventory model was studied con-
sidering defective items and their shortages, which
are backordered. Screening rate is always greater
than demand rate and all products are sold only after
a screening process. There is a delay in payment,

Table 3. Small example parameters.

Product Di pi hi Ai bi �i i fi xi #i Vi di
1 1000 0.2 0.4 194 18 20 24 5 8200 222 112 10
2 2200 0.3 0.6 165 16 11 37 6 9400 235 122 6
3 1800 0.15 0.3 125 13 11 22 4 9000 242 130 8

Table 4. Results of small example.

Solving method Q1 Q2 Q3 B1 B2 B3 Objective Time (second)

Lingo 1.25 1.429 246.29 1 1 1 35878.93 1
GA 41.49 6.63 187.39 5.36 3.37 33.38 31082 27.961231
PSO 67.8342 19.6408 135.57 3.701 7.94 18.20 27740 32.798773

Table 5. Comparison of GA and PSO solutions.

Number of GA PSO Lingo
products Objective Time (second) Objective Time (second) Objective Time (second)

5 591790 29.693927 524060 34.470654 725045 6
10 1007200 56.297679 726480 58.977584 1383250 28
15 1812500 80.239558 1320800 93.566596 2455254 109
20 4662100 106.608653 5597400 115.505749 5708085 559
25 3438000 132.968956 2349400 143.164634 4236878 993
30 6893800 156.156919 6216800 173.915791 7245396 2214
35 7481900 178.252049 10481000 202.076659 7870036 3911
40 4943300 201.447994 3074200 238.791332 2870065 5380
45 7246000 231.502811 4482600 247.241498 ... 7200
50 5972100 254.552539 3881500 281.836228 ... 7200
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which depends on the order quantity, and the retailer
is able to bene�t from discount prices only in cases
where payment occurs during the grace period. After
describing the mathematical model, a small example is
solved by Lingo and the optimal solution is gained. As
the number of products increases, the number of con-
straints and the scale of the problem will change. Lingo
can only gain local optimum solutions after a longer
running time. Therefore, for large scale problems, GA
and PSO algorithms are used and compared to each
other, considering 10 di�erent problems. Numerical
examples indicated that GA has a better performance
for the proposed model. GA solved the examples in less
time and achieved better solutions for most of them.
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