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Abstract. Scheduling is an important factor in project success. In the real world
atmosphere, project scheduling problems involve multiple objectives which must be
optimized simultaneously. According to the literature, several meta-heuristic algorithms
have been used in single objective resource-constrained project scheduling problems, but
very few of them have used a multi-objective framework. In this study, we focus on
a multi-objective resource-constrained project scheduling problem by minimizing project
completion time and the time value of project costs, which is the main contribution of
the current research. The goal is to provide an algorithm that can �nd optimum Pareto
front solutions, using a multi-objective cuckoo optimization algorithm. In order to increase
the e�ciency of the algorithm, the algorithm parameters are tuned using Taguchi tests.
Finally, the solutions derived from the algorithm have been compared to those obtained
from NSGA-II. The experiments show the e�ciency of the proposed algorithm.
© 2014 Sharif University of Technology. All rights reserved.

1. Introduction

Scheduling is one of the keys to successful projects.
The correct use of available resources reduces costs
and satis�es the project implementation in minimum
time. A Resource-Constrained Project Scheduling
Problem (RCPSP) is discussed in the area of project
scheduling. RCPSP consists of a project with a set of
activities and a set of resources. Implementing each
activity requires a certain number of resources and
amount of time. In traditional RCPCP, each activity
has a single execution. The Multi-mode Resource-
Constrained Project Scheduling Problem (MRCPSP)
is a more general version of RCPSP in which each
activity can be implemented in several modes. Each
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mode needs its own duration and resource consump-
tion in order to be implemented. In MRCPSP, the
objective is to decide when an activity begins and
how it is performed, so that the goal of the project
is optimized. Blazewicz et al. [1] proved that RCPSP
is strongly NP-hard. Kolisch and Drexl [2] proved
that if MRCPSP had more than one non-renewable
constraint, �nding even one feasible solution would be
NP-complete.

In real-world projects, project managers are con-
cerned with several objectives. Although many re-
searchers have considered project scheduling prob-
lems, very few have studied this problem using multi-
objective models. Di�erent ways have been used to
deal with multi-objective problems, but the majority
converts them into a single objective function. A
common aggregation function is the linear weighted
summation method. However, �nding the weights is
di�cult and the linear transformation could be non-
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realistic. Therefore, the Pareto solutions approach can
be an appropriate alternative to overcome these issues.

Slowinski [3] was the �rst author to study the
multi-objective RCPSP. He presented a linear pro-
gramming model for the multi-objective, multi-mode
RCPSP with consideration of resource constraints. He
discussed the usability of goal programming and fuzzy
linear programming to solve this problem. Objective
functions used in this research include project comple-
tion time, net present value, total resource consump-
tion, total number of delayed activities and weight of
consumed resources. Al-fawzan and Haourai [4] con-
sidered MRCPSP with limited resources and proposed
a two-objective Tabu search algorithm to minimize
the makespan and maximize the robustness. Viana
and de Sousa [5] proposed a multi-objective annealing
simulation and Tabu search algorithm to minimize the
makespan, the weight lateness of activities and the
violation of resource constraints. Abbasi et al. [6]
studied RCPSP with renewable resource constraints
with two objective functions, including makespan and
robustness. They proposed a simulated annealing al-
gorithm, along with the weighted summation method,
to deal with the two-objective problem. Abdelaziz et
al. [7] considered MRCPSP with renewable limitations
and suggested a multi-objective ant colony algorithm
to �nd non-dominant solutions. The objectives con-
sidered in this article include makespan, project costs
and the probability of project success. Ballestin
and Blanco [8] presented an algorithm based on the
concept of non-dominant solutions. They also proposed
special rules to help solve the problem. Nabipoor-
Afruzi et al. [9] considered a multi-mode, resource-
constrained, discrete, time-cost tradeo� problem and
solved it using an adjusted fuzzy dominance genetic
algorithm. Aboutalebi et al. [10] proposed NSGA-
II and MOPSO algorithms to solve this problem
and, according to some de�ned indices, showed that
NSGA-II is more e�cient than MOPSO. Kazemi and
Tavakoli-Moghadam [11] studied the multi-objective
RCPSP considering maximization of the net present
value and minimization of the makespan in terms
of the renewable resource constraint. In real world
applications, usually, there are non-renewable resource
constraints to execute activities. For example, in
construction projects, non-renewable resources are very
important in project scheduling, such as cement, plas-
ter, ironware, etc. Hence, adding this constraint
results in a more realistic model. On the other
hand, because this problem is a multi-mode problem,
and, in each mode, a certain level of non-renewable
resources is needed to perform each activity, de�ning
non-renewable resources in the problem model seems to
be essential. Thus, to get closer to reality, we consider
a multi-objective RCPSP problem, considering non-
renewable resource constraints, to maximize the net

present value of the project. In addition to the
above mentioned explanations, a new multi-objective
meta-heuristic algorithm is developed based on the
cuckoo Optimization Algorithm (COA) [12] to �nd
optimal front Pareto solutions, which are two main
contributions of this research. The paper is organized
as follows.

In Section 2, the mathematical model of the prob-
lem is presented. In the next section, the framework
of the multi-objective cuckoo optimization algorithm,
including parameter de�nitions, is proposed. In Section
4, experiment results and discussions are provided.
Finally, conclusions and recommendations for future
research are mentioned in Section 5.

2. The problem model

A project consists of activities which are shown by
a network, G = (N;E), where N represents the
nodes (activities), and E represents the edges (priority
between activities). Activity i cannot start up unless
the preceding activities are �nished. Each activity, i,
can be completed in one of Mi feasible modes. There
is no interruption in the activity. Each mode selected
to be implemented for activity i cannot be changed.
Node 1 represents the start event of the project and
node n shows its last event. The completion time of
activity i in mode m(m = 1; � � � ;Mi) is equal to dim.
A negative cash 
ow (activity cost) is allocated to each
activity, i. We assume that there are R� renewable
resources. The number of renewable resources available
for resource k(k = 1; � � � ; R�) is equal to R�k units.
Each activity, i, requires rimk units of the kth resource
to be implemented in mode m(m = 1; � � � ;Mi). There
are R� non-renewable resources. The non-renewable
resources available for resource k(k = 1; � � � ; R�) are
equal to R�k units. Each activity, i, requires �imk units
of the kth resource to be implemented in mode m(m =
1; � � � ;Mi). Using NPV, we can consider the time value
of money in the problem. The value of the spent money
(received money) is a function of spending (receiving).
To calculate the NPV, the reduction rate is selected as
�, which refers to the project capital return of rate.
The objective of MRCPSP is to allocate the modes of
implementation to the activities and determine their
starting time, considering the priority of activities and
existing resources, to obtain a set of optimal Pareto
fronts. The cost of each activity is determined at its
ending event. The available parameters in a multi-
objective MRCPSP are de�ned as follows:
n : The number of project activities;
Cim : Cash 
ow allocated to activity i in

mode m;
LFi : The latest start time of i;
EFi : The earliest start time of i;
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�i : The number of prerequisites of activity
of i;

rimk : The number of required units for
the Kth renewable resource for
implementation of activity i in mode
m;

�imk : The number of required unit for
the Kth non-renewable resource for
implementation of activity i in mode
m;

T : The upper level of makespan.

Considering the above symbol de�nitions, the
multi-objective MRCPSP model is suggested as fol-
lows:

Problem 1:

min
nX
i=1

miX
j=1

DDX
t=1

Cijxij
(1 + �)STi

+
DDX
t=1

xn+1;1;t

tX
u=1

C0

(1 + �)u
; (1)

min
LFi+1X
t=EFi+1

t:xn+1;1;t: (2)

Subject to:

mjX
m=1

LFjX
t=EFj

ximt = 1; 8i; (3)

miX
j=1

LFiX
t=EFi

t:xijt �
mjX
m=1

LFjX
t=EFj

(t� dj)xjmt; 8j; i 2 �j ;
(4)

nX
i=1

miX
j=1

rijk
minft+dij�1;LFjgX
b=maxft;EFjg

xijb � R�k;

8k = 1; � � � ; R�; t = 1; 2; � � � ; T; (5)

nX
i=1

miX
j=1

�ijk
LFiX
t=EFi

xijt � R�k; 8k = 1; � � � ; R� ; (6)

xijt 2 f0; 1g; i = 1; � � � ; n; j = 1; � � � ;mi;

t = 1; � � � ; T: (7)

Xjmt is the decision variable which is equal to 1, if
activity j is completed in mode m at time t, otherwise
it equals zero. Eq. (1), the objective function, shows
the net present value of the costs. Eq. (2) de�nes

the objective of minimizing the project makespan.
Eq. (3) indicates that during the completion time of
the project, just one mode should be allocated to each
activity. Eq. (4) ensures the technological precedence
of implementing activities. Eq. (5) is the constraint
related to the availability of renewable resources, while
Eq. (6) relates to the non-renewable resources of the
project.

3. The multi-objective cuckoo optimization
algorithm

3.1. General overview
Birds lay eggs for reproduction. A bird's egg is high
in protein, which causes hunters to search for them,
so, birds search for a safe place to nest and lay their
eggs. This issue is a great challenge for them. Di�erent
birds have clever ways to �nd a safe place for their
eggs. Among the birds, one of the most interesting
approaches relates to a bird called \cuckoo". This
cunning bird forces other birds to participate in the
process of its own survival. The mother cuckoo takes
an egg of a host bird's nest and replaces it with her
own, which is surprisingly similar to the original. Some
birds recognize the cuckoo egg and throw it out of the
nest, but, if not, it will mature into a cuckoo bird.
The mature bird instinctively does the same herself and
tries to �nd the best nest for the continued survival of
her children.

The Cuckoo Optimization Algorithm (COA) is
an optimization algorithm which improves the ini-
tial solutions (populations) through the algorithm.
Figure 1 shows the 
owchart of MOCOA steps (a
Multi-Objective COA). The initial population consists
of matured cuckoos, which have laid their eggs in
the nests of other birds. The eggs which are more
similar to the host bird eggs obtain the opportunity
to become a mature cuckoo and the other eggs are
destroyed by the hosts. An environment (region) is
called pro�table when a greater number of eggs become
matured cuckoos. In other words, the more survived
eggs in one region, the more inclination for laying eggs
in that region. The goal of the algorithm is to �nd
an environment which is most pro�table. Each mature
cuckoo represents a society and lives till mating. The
best habitat of all societies will be a region to where
the other societies migrate, so, the cuckoos settle in the
best part of the place. Each cuckoo, according to the
number of eggs and the de�ned egg-laying radius, will
begin to lay eggs. This process will continue until the
best habitat with more pro�t is found.

Conducted studies [12] into several speci�c prob-
lems in the single-objective mode show that the cuckoo
optimization algorithm has a more favorable perfor-
mance than the Genetic Algorithm and Particle Swarm
optimization meta-heuristics. The considerable key
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Figure 1. Flowchart of the propose MOCOA.

point in this algorithm is the lay-eggs operator, with a
speci�c performance, which has an appropriate ability
to create diverse solutions in the optimization process.
This paper uses a combination of an elitism mecha-
nism [13], together with COA, to generate the Pareto
solutions. The new changed parts of the algorithm,
in comparison to the original, are shown by di�erent
colors in Figure 1.

3.2. Generating the initial cuckoo habitat
In a cuckoo optimization algorithm, each solution is
called a habitat. To start the COA, NPOP habitats
are randomly generated. It is assumed that each of
these habitats is allocated to a cuckoo. In the proposed
COA, each chromosome is formed by a string with the
length of n components (number of activities). Each
habitat is shown by a decimal number in an interval
(0;Mi), in which Mi represents the mode number of
activity i. The decimal part of each habitat indicates
the priority of that activity, and one unit is added to
the integer part, which shows the selected completion
and implementation mode for completing the activity.
This way of representation is called a \random key".

3.3. Decoding
The Schedule Generation Scheme (SGS) is the main
core of converting the habitat to a project schedule
in the proposed meta-heuristic algorithm. A solu-
tion (habitat) is determined using a serial scheduling
scheme [14] and by decoding the scheduling of each
activity. A major 
aw in a SGS is that only the

renewable limitation is considered. Thus, we add a
penalty function to the SGS that calculates the degrees
of violation from the non-renewable limitation. This
penalty function is de�ned as follows:

STF (habitat)=#:
R�X
k=1

 
max

 
0;

nX
i=1

�imik�R�K
!!

:
(8)

3.4. Cuckoos' style of egg laying
Each mature cuckoo will be assigned a few eggs,
randomly. In nature, each cuckoo lays from 5 to 20
eggs. Of course, the number of eggs assigned to each
cuckoo has upper and lower bounds, and is part of the
problem parameters. The cuckoo will lay eggs in its
territory. This territory radius is called the Egg Laying
Eadius (ELR). ELR is determined using the following
formula:

ELR (habitat) = �

� Number of current cuckoo's eggs
Total number of eggs

� (varhi � varlow); (9)

where varhi and varlow are the upper and lower limits
decided by the decision maker, and � is an integer that
controls the maximum values of ELR. The cuckoo's egg
laying is shown in Figure 2 (here, it is assumed that
the cuckoo has 4 eggs). Each mature cuckoo starts
laying eggs randomly in some other host birds' nests
within her ELR. After laying eggs in the nests of other
birds, a percentage of eggs are to be identi�ed and
destroyed, (Usually 10% of the population solutions
with the highest ranks are destroyed.) In this phase,
the cuckoos and chicks are evaluated. The chicks grow
and become mature cuckoos. Now, all cuckoo rankings

Figure 2. Cuckoo's egg laying process for searching the
feasible region.
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Figure 3. Ranking approach of non-dominated solutions.

are based on the concept of non-domination solutions.
The ranking approach is shown in Figure 3. When the
sorting process is completed, the value of the crowding
distance will be assigned to the population fronts [13].
This approach is shown in Figure 4. The best solutions
have to be selected among the �rst ranked solutions,
based on the tournament selection rule. The crowding
distance criterion is an important criterion for choosing
the best solutions among the �rst ranked solutions.

3.5. Immigration of cuckoos
When the cuckoo chick matures and comes to lay
eggs itself, it will migrate close to the best place that
the group has already found. In order to reduce
computations, we categorize the cuckoos into some
cluster divisions. For each cluster, we calculate the
criterion of Mean Ideal Distance (MID). Each cluster
with the highest MID will migrate towards the selected
point. To achieve a favorable habitat, the birds require
a transfer vector. The transfer vector involves a
direct path and a direction. At the beginning of the
movement towards the optimal point, the cuckoos do
not 
y straight to the target, but pave �% of a direct
path between two points directly, and divert ! degrees

from the direction of the transfer vector. This issue
makes a better search space solution and prevents
falling into the trap of local optimality. Usually, ! is
a random angle between �=6 and ��=6. At the end,
the total solutions produced during the migration and
laying process are ranked, based on the non-dominated
solutions, and the value of the crowding distance is
assigned to the population fronts. The number of Npop
cuckoos which have the lowest rank and the highest
crowding-distance are transferred as mature cuckoos
for future egg laying processes in the next generation.

4. Experiment results and discussions

In this section, �rst, the parameters of MOCOA have
been tuned, in order to improve the solution quality
and computational speed, using the Taguchi design.
Then, the set of Pareto solutions obtained from MO-
COA will be compared to the set of solutions obtained
from non-dominated sorting in the Genetic Algorithms
(NSGA-II). The algorithms have been coded in MAT-
LAB 7.8 software. The program is run on a PC with
Core i7, 2.4 GHz as CPU, 4 GB RAM under Windows
7 platform.

4.1. Parameter tuning
The optimization process of the algorithm parameters
can be empirically an extremely time consuming activ-
ity. The factorial method is usually used to optimize
the algorithm parameters. In this approach, each level
of a factor is experimented with the levels of all other
factor. In this method, the optimum levels of factors
are detected by a high possibility. The main defect
of this method is that if factors are more than 4, and
levels are more than 3, then, the number of experiments
required grows increasingly. To overcome this problem,
orthogonal arrays can be used to decrease the number
of experiments, while the strength of �nding optimality
is not decreased. A favorite method using orthogonal
arrays is the Taguchi design, which has been used in
this research.

In the Taguchi method, factors a�ecting the

Figure 4. Crowding distance approach.
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Table 1. Parameter levels of the problem.

Factor levels

(Number of cuckoos,
maximum iteration)

(100,50), (50,100),
(40,120), (120, 40)

Number of clusters 1-2-3-4
Control parameter
of egg laying

2-4-6-8

Maximum egg 4-5-6-7
Minimum egg 1-2-3-4

algorithm are divided into two categories: controllable
factors and noise factors. We cannot control the noise
factors, thus, they are eliminated from the algorithm.
Therefore, the objective of the Taguchi method is to
minimize noise and �nd optimum levels of controllable
factors for the algorithm. For this purpose, the Taguchi
method converts solution values to a ratio of signal to
noise. The signal determines the optimal value (the
solution variable average) and the noise represents the
non-optimal value (standard deviation). The signal
to noise ratio shows a deviation rate in the solution
variable. In this research, smaller values are better:

S=Nratio = �10 log10

�X y2

n

�
: (10)

We studied the impacts of 6 factors on the proposed
algorithm e�ciency. For each factor, 4 levels were
de�ned, which can be seen in Table 1. Hence, to
optimize these levels (L16(54)), designs of orthogonal
arrays, including 16 experiments, were used. The aim
is to �nd the best levels for the algorithm parameters,
so that a set of Pareto solutions is optimal or near
optimal. For this purpose, we use the index of MID
(Mean Ideal Distance) [15]. This criterion measures
the approximation of the Pareto solutions to the ideal
point (0, 0) using Euclidean distance. According to this
criterion, the best Pareto solution set has the lowest
MID. The Graph Rate S=N parameter is shown in
Figure 4. As seen in Figure 5, the best levels for various
parameters are, respectively, levels 2, 2, 3, 3 and 1.
So, the number of cuckoos equals 50, the number of
algorithm iterations equals 120, the number of clusters
equals 2, the controlling coe�cient controlling the egg
laying radius is 6, the maximum number of eggs per
cuckoo equals 7 and, the minimum number of eggs per
cuckoo is 3.

5. Comparison indices

In order to evaluate the e�ciency of the proposed
algorithm, it has been compared to the NSGA-II
results. The NSGA-II has been shown as an e�cient
approach to dealing with project scheduling problems

Figure 5. In
uence diagram of parameters on the
possibility of �nding optimum solution.

and could be a good competitor for comparison pur-
poses and in the validation process of the proposed
algorithm. To compare these two algorithms, we have
adapted problems including 10, 18, 20 and 30 activities,
from the PSPLIB library; totally, 40 test problems.
The costs of activities are assumed to have uniform
distribution (between 1000 and 4000). Each of these
problems involves 10 di�erent ones. Then, we compare
the two algorithms, based on three criteria, described
below.

Mean Ideal Distance (MID): is the Euclidean
distance between the ideal point (0, 0) and Pareto
solutions. The smaller values of this criterion are the
better ones:

MID =

nP
i=1

p
f1i + f2i

n
: (11)

Spread of solution (SNS): calculates the dispersion
amount of the non-dominated solutions. The larger
values of this criterion lead to higher solution quality:

SNS =

vuuut nP
i=1

(MID�pf1i + f2i)2

n� 1
: (12)

Rate of achievement to the two objectives,
simultaneously (RAS): The smaller the values, the
higher quality solutions:

RAS =

nP
i=1

 
f1i�min(f1i;f2i)

min(f1i;f2i) + f2i�min(f1i;f2i)
min(f1i;f2i)

n
: (13)

Table 2 shows the parameter values obtained from
implementationof the algorithm for these problems. In
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Table 2. Evaluation of non-dominated solutions.

Test problem MOCOA
(MID)

NSGA-II
(MID)

MOCOA
(SNS)

NSGA-II
(SNS)

MOCOA
(RAS)

NSGA-II
(RAS)

CUP time
NSGA-II(s)

CUP time
MOCOA (s)

J10

J102-2.mm 14553 14657 133.7535 59.3011 14382 14679 48 44
J102-4.mm 15512 15489 178.8215 107.9015 15330 15507 49 45
J1010-2.mm 18255 18031 147.5071 95.6518 18183 18007 45 42
J1010-3.mm 15807 16272 145.1416 82.1040 15837 16299 47 46
J1010-4.mm 15983 16157 886.1713 403.7334 15003 16176 45 43
J1010-5.mm 20942 21644 992.4726 561.6616 20872 21669 51 45
J1010-6.mm 17843 19564 235.7426 141.9324 17442 17579 43 43
J1010-7.mm 16424 16421 236.4373 142.3654 16145 16444 49 44
J1010-8.mm 20951 21651 348.3625 164.5696 20970 21666 53 45
J1029-4.mm 17685 17526 745.5400 418.5261 17605 17546 55 46

Average 17395.5 17741.2 404.995 217.7747 17176.9 17557.2 48.5 44.3

J12

J122-8.mm 16453.0 17021.7 951.10 908.676 16465.7 17032.7 56.5 51.5
J125-9.mm 16696.0 16837.0 1009.17 911.939 16711.7 16517.0 57.5 53.5
J128-5.mm 15732.0 15616.3 903.83 949.255 15745.0 15797.0 53.5 51
J129-1.mm 4161.3 4179.3 865.67 860.215 4163.7 4381.3 55.5 52
J1210-1.mm 4135.0 4570.0 987.90 875.661 4203.7 4572.3 53.5 51.5
J1211-1.mm 33631.0 33259.0 1088.01 932.115 33652.3 33277.3 59 54
J1212-1.mm 37913.7 38333.7 1123.83 994.782 37930.3 38683.7 52 52
J1213-1.mm 15938.3 16019.7 1097.87 953.569 15954.7 16035.3 52.5 57.5
J1214-1.mm 15225.0 15730.7 901.20 881.938 15238.0 15858.0 61 54
J1215-1.mm 16658.7 17373.3 981.66 858.072 16662.0 17389.3 63 52

Average 17654.4 17894.07 991.024 912.6222 17672.71 17954.39 56.5 52.9

J14

J141-8.mm 20232.8 20881.7 1272.56 1067.85 22164.8 23403.1 66 62
J143-10.mm 22245.3 22333.9 1234.17 1158.04 22271.2 22051.4 67 63
J144-10.mm 20318.9 22024.1 1106.30 1031.06 22092.3 21735.7 63 61
J146-6.mm 24540.6 25620.0 1119.77 1025.15 23543.1 24563.7 65 62
J149-1.mm 24386.6 25783.8 1190.76 1118.81 24704.8 24418.1 63 61
J1410-1.mm 48367.6 50823.5 1446.69 1022.71 49459.2 49500.5 69 64
J1411-1.mm 53718.7 53565.4 1456.00 1000.08 52646.6 53746.0 61 64
J1412-1.mm 42511.4 41904.1 1613.64 1412.65 41543.6 42332.5 62 67
J1413-1.mm 44787.7 45374.0 1157.50 1000.41 46174.1 46806.2 71 64
J1414-1.mm 23642.5 23774.1 1228.80 1166.48 22262.8 23093.7 73 63

Average 32475.21 33208.46 1282.62 1100.326 32686.25 33165.09 66 63.1

J16

J162-3.mm 25433 25582 364.7535 290.3011 29571 31340 79 74
J166-2.mm 24551 25914 409.8215 338.9015 29723 29409 81 75
J169-1.mm 24768 24454 378.5071 326.6518 29396 28958 75 72.5
J1611-1.mm 25564 27697 376.1416 313.104 31540 32998 77 74
J1611-2.mm 27651 27582 924.1713 634.7334 31920 32790 75 73
J1611-3.mm 26101 25069 815.473 792.6616 68355 68622 81 74
J1611-4.mm 25199 26989 466.7426 372.9324 72515 74687 73 76
J1611-5.mm 25545 26846 467.4373 193.3654 57255 58661 74 74
J1612-1.mm 26230 26076 419.3625 395.5696 63910 64773 83 76
J1613-1.mm 24847 25951 766.54 649.5261 29761 30898 85 74

Average 25588.9 26216 538.895 430.7747 44394.6 45313.6 78.3 74.25
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Table 2. Evaluation of non-dominated solutions (continued).

Test problem MOCOA
(MID)

NSGA-II
(MID)

MOCOA
(SNS)

NSGA-II
(SNS)

MOCOA
(RAS)

NSGA-II
(RAS)

CUP time
NSGA-II(s)

CUP time
MOCOA (s)

J18

J1810-1.mm 32085 33100 818.181 439.014 30122 30133 110 116

J1811-1.mm 30004 30850 757.656 546.983 30035 31877 115 120

J1812-1.mm 30096 30736 313.754 208.386 28107 30767 127 122

J1813-1.mm 64731 65150 715.200 415.447 64776 64199 121 119

J1814-1.mm 75668 75828 919.500 557.376 74706 74388 122 118

J1815-1.mm 47411 49205 587.486 345.623 48447 49245 120 122

J1816-1.mm 62534 64354 714.929 574.322 63576 64399 125 120

J1817-1.mm 23101 23890 737.000 389.300 22134 23106 119 121

J1818-1.mm 22584 23770 305.392 205.828 23630 23811 123 122

J1819-1.mm 32937 33524 361.000 385.310 32552 32969 120 118

Average 42515.1 43040.7 623.01 406.7589 41808.5 42689.4 120.2 119

J20

J203-2.mm 27583 28510 639.800 204.507 30343 32112 128 121

J203-5.mm 30458 30156 442.104 333.3486 30495 30181 127 126

J2010-1.mm 27706 30142 259.424 151.9401 30168 29730 131 122

J2011-1.mm 33737 35279 421.535 143.500 32312 33770 128 123

J2012-1.mm 33517 34513 380.090 277.295 32543 33562 127 130

J2013-1.mm 66347 71284 745.700 140.019 69335 69394 129 128

J2014-1.mm 75420 75201 759.000 107.689 73317 75459 134 121

J2015-1.mm 57981 58542 984.200 697.077 58027 59154 128 125

J2016-1.mm 62590 63499 904.000 108.164 64642 65545 126 123

J2017-1.mm 32454 32642 577.284 345.402 30483 31670 127 118

Average 44779.3 45976.8 611.3137 250.8942 45166.5 46057.7 128.5 123.7

J30

J3010-1.mm 47038 48744 1432.300 405.028 47076 48777 155 158

J3011-1.mm 47767 48190 706.517 414.817 47814 47230 159 156

J3012-1.mm 44875 44528 1590.500 526.764 44914 45070 161 157

J3013-1.mm 10163 10217 876.000 259.644 10170 10823 154 155

J3014-1.mm 10084 11389 642.709 305.983 10290 11396 155 154

J3015-1.mm 98572 97456 943.021 475.346 98636 97511 156 157

J3016-1.mm 111420 112680 1050.500 663.346 111470 113730 159 156

J3017-1.mm 45494 45738 972.600 539.708 45543 45785 160 165

J3018-1.mm 43354 44871 382.600 324.815 43393 45253 156 155

J3019-1.mm 47655 49799 623.992 253.215 47665 49847 158 158

Average 50642.2 51361.2 922.0739 416.8666 50697.1 51242.2 157.3 156.1

this table, the �rst column is the problem named in
the library. The second column is the MID criterion
value, obtained using MOCOA. The third column is
the same value for NSGA-II. The 4th and 5th columns
are the values of the SNS criterion for MOCOA
and NSGA-II, respectively. Also, the 6th and 7th
columns are RAS values for the two algorithms. The
8th and 9th columns show the CPU time in both
algorithms. As the results show, MOCOA dominates

NSGA-II regarding all de�ned criteria, on average.
This fact shows the performance of the proposed
algorithm in comparison to its famous competitor.
Regarding CPU time, both algorithms have more or
less the same values, on average. Also, Table 3
shows the paired T-test for the indices obtained from
both algorithms. As the results show, distribution
of the Pareto solutions in the MOCOA algorithm is
better than those of NSGA-II. In general, according
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Table 3. Paired comparisons of two algorithms.

Test
problem

T -value
(MID)

P -value
(MID)

T -value
(SNS)

P -value
(SNS)

T -value
(RAS)

P -value
(RAS)

J10 -1.87 0.095 3.60 0.006 -2.92 0.017
J12 -2.21 0.055 3.63 0.003 -2.82 0.024
J14 -2.48 0.035 3.95 0.002 -2.44 0.037
J16 -2.02 0.075 3.56 0.006 -3.38 0.008
J18 -2.36 0.043 5.09 0.001 -3.28 0.009
J20 -2.45 0.037 4.56 0.001 -3.26 0.010
J30 -2.99 0.015 5.03 0.001 -2.28 0.049

Figure 6. Dispersion of non-dominated solutions for
MOCOA and NSGA-II.

to the computational results, with a signi�cant level of
90.5%, the MOCOA algorithm performs better than
NSGA-II in terms of de�ned indices. In addition,
to show the e�ciency of the proposed algorithm,
Figure 6 shows the non-dominated solutions of MO-
COA and NSGA-II algorithms for the problem, J3015-
1.mm.

6. Conclusions

In this research, we presented a multi-objective cuckoo
optimization algorithm to solve a multi-mode resource
constraint project scheduling problem with two ob-
jective functions, including the project makespan and
the project NPV. To validate the proposed algorithm,
we evaluated its performance using 40 test problems
taken from the literature. The solutions resulted from
this algorithm were compared to the results obtained
by multi-objective genetic algorithms, including several
di�erent metrics. The results show that the proposed
algorithm has a good performance in solving the test
problems. According to the computational results,
in 91% cases, the multi-objective cuckoo optimization
algorithm performed better than the multi-objective
genetic algorithm. We believe that cuckoo optimization
algorithms have a high ability to deal with optimization

problems. Therefore, the authors also recommend con-
sidering the use of this algorithm in other combinatorial
problems.
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