
Scientia Iranica E (2014) 21(6), 2368{2378

Sharif University of Technology
Scientia Iranica

Transactions E: Industrial Engineering
www.scientiairanica.com

A novel Pareto-based multi-objective vibration
damping optimization algorithm to solve
multi-objective optimization problems

V. Hajipoura;�, E. Mehdizadehb and R. Tavakkoli-Moghaddamc

a. Young Researchers and Elite Club, Qazvin Branch, Islamic Azad University, Qazvin, Iran.
b. Department of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran.
c. School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran.

Received 9 January 2013; received in revised form 27 October 2013; accepted 23 November 2013

KEYWORDS
Multi-objective
optimization;
Vibration damping
optimization;
Pareto optimal
solution;
NSGA-II;
MOSA.

Abstract. This paper presents a Vibration Damping Optimization (VDO) algorithm
to solve multi-objective optimization problems for the �rst time. To do this, fast non-
dominated sorting and crowding distance concepts were used in order to �nd and manage
the Pareto-optimal solution. The proposed VDO is validated using several examples taken
from the literature. The results were compared with Multi-Objective Simulated Annealing
(MOSA) and Non-dominated Sorting Genetic Algorithms (NSGA-II) presented as state-of-
the-art in evolutionary multi-objective optimization algorithms. The results indicate that
Multi-Objective VDO (MOVDO) gives better performance with a signi�cant di�erence in
terms of computational time, while NSGA-II is better in �nding Pareto solutions. In other
standard metrics, MOVDO is able to generate true and well-distributed Pareto optimal
solutions and compete with NSGA-II and MOSA.
© 2014 Sharif University of Technology. All rights reserved.

1. Introduction

Nowadays, most problems encountered by Decision
Makers (DMs) in the real world are recognized to be
multi-objective optimizations. In fact, the DM likes to
pursue more than one target or consider more than
one factor or measure. Unlike single optimization
problems, which deal with only one global optimum
value, there is a set of solutions, called the Pareto
solution, in the area of multi-objective optimization [1].

Unlike hard computing schemes, which strive for
exactness and full truth, soft computing deals with
imprecision, uncertainty, partial truth, and approxi-
mation to achieve practicability, robustness and low
solution cost. Components of soft computing include
terms such as neural networks, fuzzy logic, Evolution-
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ary Computation (EC), and ideas about probability
(Bayesian network, Chaos theory, and perceptron).
Among these terms, EC is a practicable and common
method to solve the problems. Several evolutionary
algorithms have been developed which combine rules
and randomness mimicking natural phenomena. These
phenomena include biological evolutionary processes;
for example, evolutionary algorithms [2], Genetic Al-
gorithms (GA) [3,4], animal behavior [5-7], physical
annealing processes [8], and the musical process of
searching for a perfect state of harmony [9,10]. Many
researchers have studied these meta-heuristics to solve
various optimization problems recently.

Classical optimization methods suggest convert-
ing the multi-objective optimization problem to a
single-objective one by emphasizing one particular
Pareto-optimal solution at a time, such as classical
weighted sum [11], desirability function [12], and Lp-
metric [13]. On the other hand, such a method can
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be utilized to �nd multiple solutions. Over the past
decades, a number of Multi-Objective Evolutionary
Algorithms (MOEAs) have been suggested [14-18]. It is
worth noting that the main reason for the popularity
of evolutionary algorithms for solving multi-objective
optimization is their population-based nature and their
ability to �nd multiple optima simultaneously. The
Non-dominated Sorting Genetic Algorithm (NSGA-
II) introduced by Deb et al. [19] is an MOEA that
has been applied to �nd Pareto front solutions in
di�erent �elds of study, such as facility location prob-
lems [20], scheduling problems [21] and inventory con-
trol problems [22]. Moreover, in addition to the earlier
aggregating approaches of Multi-Objective Simulated
Annealing (MOSA), there have been a few methods
that incorporate the concept of Pareto dominance.
Some of these methods are proposed in [23,24], which
use Pareto-domination based acceptance criterion in
MOSA. A good review of several MOSA algorithms
and their comparative performance analysis can be
found in [25]. Several researchers developed multi-
objective algorithms and justi�ed them by comparing
with NSGA-II and MOSA. Rahmati et al. [10] devel-
oped a multi-objective harmony search algorithm and
compare it with NSGA-II and a non-dominated ranking
genetic algorithm (NRGA). Sadeghi et al. [26] solved
their bi-objective model with NSGA-II and NRGA.
Bandyopadhyay et al. [27] developed a special type of
MOSA and demonstrated its performance in contrast
with NSGA-II.

Mehdizadeh and Tavakkoli-Moghaddam [28] pro-
posed a new meta-heuristic optimization algorithm,
namely, Vibration Damping Optimization (VDO),
which is based on the concept of vibration damping in
mechanical vibration. This algorithm simulates the vi-
bration phenomenon. They �rst utilized the VDO algo-
rithm to solve the parallel machine scheduling problem.
To demonstrate the performance of VDO, they applied
GA. They showed that when problems are small, the
proposed VDO and GA have the same results. But,
with increasing problem sizes, the VDO algorithm
�nds a better solution in terms of computational time
and average objective function values. Mehdizadeh
et al. [29] proposed a hybrid VDO algorithm to solve
the multi-facility stochastic-fuzzy capacitated location
allocation problem. Following this, Mousavi et al. [30]
developed a special type of VDO algorithm to solve a
capacitated multi-facility location{allocation problem
with probabilistic customer locations and demands.
They formulated their mathematical model in the
frameworks of the Expected Value Model (EVM) and
the Chance-Constrained Programming (CCP) based on
two di�erent distance measures. They demonstrated
the performance of their proposed algorithm with GA.
Based on their results analysis in 16 test problems, it
was shown that there was no statistical signi�cant dif-

ference between the performance of the two algorithms;
it seems that not only does VDO perform better than
GA for the CCP model with Euclidean distance, but
also has better performance for both CCP and EVM
models with squared Euclidean distance.

In this paper, the VDO algorithm is extended
using Fast Non-Dominated Sorting (FNDS) and rank-
ing procedures to �nd Pareto-optimal solutions for
multi-objective optimization problems with conict-
ing objectives. Thus, this paper proposes the �rst
proposal of applying multi-objective versions of the
VDO algorithm in the literature. In fact, FNDS and
Crowding Distance (CD) have been used to �nd and
manage the Pareto-optimal front. The proposed Multi-
Objective VDO (MOVDO) algorithm was tested on
multi-objective facility location problems with com-
peting objectives presented in [13]. To demonstrate
the performance of the MOVDO, two well-developed
MOEAs, including NSGA-II and MOSA, were applied.

The remainder of this paper is as follows. Section
2 provides some main concepts and de�nitions of multi-
objective optimization algorithms. In Section 3, the
�rst proposal of the multi-objective version of the VDO
algorithm is illustrated in detail. In Section 4, the
results are analyzed and discussed by graphical and
statistical comparisons. Finally, Section 5 presents the
conclusions.

2. Concepts and de�nitions

A mono-objective optimization algorithm will be ter-
minated upon to obtain an optimal solution, yet it is
unlikely to �nd a single solution for a multi-objective
problem. Since objectives are contradictory, we gener-
ally �nd a set of solutions. In order to clarify the point,
some basic multi-objective concepts are required to be
reviewed [31]. Consider a multi-objective model with a
set of conict objectives as follows:

f (~x) = [f1 (~x) ; � � � ; fm (~x)] ;

S.t.:

gi (~x) � 0; i = 1; 2; � � � ; I; ~x 2 X; (1)

where ~x denotes m-dimensional vectors that can get
real, integer, or even Boolean values, and X is the
feasible region. Then, for a minimization model, we
say solution ~a dominates solution ~b(~a;~b 2 X) if:

(I) fi (~a) � fi
�
~b
�

, 8i = 1; 2; � � � ;m
(II) 9i 2 f1; 2; � � � ;mg : fi (~a) < fi

�
~b
�

.

Moreover, a set of solutions that cannot dominate one
other is called the Pareto solutions set or Pareto front.
The main goal of multi-objective problems are stated
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as appropriate convergence and appropriate diversity,
which forms a good Pareto front. Accordingly, Pareto-
based algorithms aim to achieve the Pareto-optimal
front during the evolution process. The Pareto-optimal
front is called to the front of the last iteration of
the algorithms. This front is expected to have the
most convergence and the highest diversity [17]. In
fact, two major problems should be addressed when
an evolutionary algorithm is applied to multi-objective
optimization. The �rst is how to accomplish �tness
assignment and selection, respectively, to guide the
search towards the Pareto-optimal front; and the sec-
ond is how to maintain a diverse population to prevent
premature convergence and achieve a well-distributed
trade-o� front [1].

3. Proposed methodology

In this section, we �rst introduce the multi-objective
version of the Vibration Damping Optimization (VDO)
algorithm to solve the multi-objective optimization
problem. Then, to demonstrate the performance of
MOVDO, two well-developed Pareto-based MOEAs,
including NSGA-II and MOSA, are employed.

3.1. Multi-Objective Vibration Damping
Optimization (MOVDO)

In the vibration theory, the concept of vibration can
be considered to be the oscillation. If the damping
is small, it has very little inuence on the natural
frequencies of the system, and, hence, the calculation
for the natural frequencies is nearly made on the
basis of no damping [32]. In the VDO algorithm, at
high amplitudes, the scope of a solution is bigger and
the probability of obtaining a new solution is further
away. Therefore, when the amplitude is reduced, the
probability of obtaining a new solution decreases, and
then the system stops from the amplitude state [28-30].

In the analogy between an optimization problem
and the vibration damping process,

- The states of the oscillation system represent feasible
solutions of the optimization problem;

- The energies of the states correspond to the objective
function value computed at those solutions;

- The minimum energy state corresponds to the op-
timal solution to the problem, and rapid quenching
can be viewed as local optimization.

The VDO algorithm starts working by generating
random solutions in search space. Then, the algorithm
parameters, including initial amplitude (A0), max of
iteration at each amplitude (L), damping coe�cient
() and standard deviation (�), are initialized. Then,
the solutions are evaluated by means of the Objective
Function Value (OFV). The algorithm contains two

main loops. The �rst loop generates a solution ran-
domly and then, using a neighborhood structure, new
solutions are obtained and the best is chosen. However,
similar to the SA algorithm, the solution with a worse
OFV can be selected, with regards to the Rayleigh
distribution function. At given amplitude, it states the
probability of an oscillatory system determined by the
Rayleigh probability distribution function. In fact, the
new solution is accepted if �=OFV (new solution)-
OFV (current solution) < 0. Besides, if � > 0, a
random number (r) is selected between (0, 1). When r
is less than or equal to this function, the worse solution
is chosen. This approach causes escape from local and
convergence to global optimum:

r < 1� exp
�
� A2

2�2

�
: (2)

The second loop adjusts the amplitude, which is used
for reducing amplitude at each iteration. The algo-
rithm is stopped when the stopping criterion is met:

At = A0 exp
�
�t

2

�
: (3)

After brief illustration of the VDO algorithm, we in-
troduce the �rst proposal of applying a multi-objective
version of the VDO algorithm, called MOVDO, to
solve and manage Pareto-optimal solutions. To do
so, we apply two main concepts of multi-objective
meta-heuristics, namely, Fast Non-Dominated Sorting
(FNDS) and Crowding Distance (CD), to compare the
solutions. In FNDS,R initial populations are compared
and sorted. To do this, all chromosomes in the �rst
non-dominated front are �rst found. Assuming that
all objective functions are of a minimization type,
the chromosomes are chosen using the concept of
domination, in which solution xi is said to dominate
solution xj . If 8o 2 f1; 2g, we have Zo(xi) � Zo(xj)
and 9o 2 f1; 2g, such that Zo(xi) < Zo(xj). In this
case, we say xi is the non-dominated solution within
the solution set, fxi; xjg. Otherwise, it is not. Then,
in order to �nd the chromosomes in the next non-
dominated front, the solutions of the previous fronts are
disregarded temporarily. This procedure is repeated
until all solutions are set into fronts.

After sorting the populations, a CD measure is
de�ned to evaluate solution fronts of populations in
terms of the relative density of individual solutions [19].
To do this, consider Z and fk; k = 1; 2; � � � ;M as
the number of non-dominated solutions in a particular
front (F ) and the objective functions, respectively.
Besides, let di and dj be the value of the CD on
the solutions, i and j, respectively. Then, the CD is
obtained using the following steps:

(I) Set di = 0 for i = 1; 2; � � � ; Z;
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(II) Sort all objective functions, fk; k = 1; 2; � � � ;M ,
in ascending order;

(III) The CD for end solutions in each front (d1 and
dZ) are d1 = dZ !1;

(IV) The crowding distance for dj ; j = 2; 3; � � � ; (Z �
1) are dj = dj + (fkj+1 � fkj�1).

To select individuals of the next generation, the
crowded tournament selection operator, \�", is ap-
plied [18]. In order to do that, the following steps are
required to be carried out:

Step 1: Choose n individuals in the population
randomly.

Step 2: The non-dominated rank of each individual
should be obtained and the CD of the solutions having
equal non-dominated rank is calculated.

Step 3: The solutions with the least rank are those
selected. Moreover, if more than one individual share
the least rank, the individual with the highest CD
should be selected.

In other words, the comparison criterion of
MOVDO algorithm's solutions can be written as: If
rx < ry or (rx = ry and dx > dy), then x � y, where
rx and ry are the ranks, and dx and dy are the CDs.
In this paper, a polynomial neighborhood structure for
the selected chromosome is performed.

After operating the aforementioned concepts and
operators, the parents and o�spring population should
be combined to ensure the elitism. Since the combined
population size is naturally greater than the original
population size, N , once more, non-domination sorting
is performed. In fact, chromosomes with higher ranks
are selected and added to the population until the
population size becomes N . The last front also consists
of the population based on the crowding distance.
The algorithm stops when a predetermined number of
iterations (or any stopping criteria) is reached.

Figure 1 illustrates the evolution process of the
proposed MOVDO schematically. The process is

started by initializing the initial population of the
solution vectors, Pj . Then, the new operators are
implemented on Pj to create a new population, Qj .
The combination of Pj and Qj creates Rj for keeping
elitism in the algorithm. In this step, vectors of Rj are
sorted in several fronts based on FNDS and CD. Using
the proposed selection method, a population of the
next iteration, Pj+1, is chosen to have a predetermined
size.

It is worth mentioning that by using Pareto domi-
nance solutions, it becomes a computationally e�cient
algorithm, implementing the idea of a selection method
based on classes of dominance of all the solutions. In
order to clarify the trend of the proposed algorithm,
we represent a pseudo code of MOVDO, as shown in
Figure 2.

To demonstrate the performance of the proposed
MOVDO, two Pareto-based MOEAs, including NSGA-
II and MOSA, are applied. The main di�erence
between NSGA-II and MOSA in comparison with
MOVDO is the evolution process of the algorithms
from Pt to Qt. Furthermore, NSGA-II and MOSA
are di�erent in their selection strategies. NSGA-II
uses a binary tournament selection and MOSA uses
the roulette wheel selection strategy. Accordingly,
after generating or modifying populations by means
of single-objective operators of the algorithms (e.g.,
GA, SA or VDO), the population is dealt in a multi-
objective way in a similar fashion in all algorithms.
Besides, to minimize the impact of using di�erent
operators on the performance comparison process of
the algorithms, operators are designed identically. To
do so, the neighborhood structure of the proposed
MOVDO is designed similar to the mutation operator
of NSGA-II and the neighborhood structure of MOSA.
Moreover, in NSGA-II, the crossover operator is also
designed similarly using a uniform crossover opera-
tor [33]. A ow chart of the proposed NSGA-II is
depicted in Figure 3. Moreover, to clarify the trend
of the proposed MOSA, Figure 4 represents a pseudo
code of this algorithm.

In the next section, we analyze the results and

Figure 1. Evolution process of the proposed MOVDO.
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Figure 2. Pseudo code of MOVDO.

Figure 3. Flowchart of NSGA-II.

demonstrate the performance of the proposed MOVDO
in the area of multi-objective optimization problems.

4. Result analysis and comparisons

To evaluate the performances of the proposed
MOVDO, �ve standard metrics of multi-objective al-
gorithms are applied as follows:

� Diversity: Measures the extension of the Pareto
front, in which bigger value is better [34].

� Spacing: measures the standard deviation of the
distances among solutions of the Pareto front, in
which smaller value is better [35].

� Mean Ideal Distance (MID): Measures the conver-
gence rate of Pareto fronts to a certain point (0, 0),
in which smaller value is better [34].

� Number Of found Solutions (NOS): Counts the
number of Pareto solutions in the Pareto optimal
front in which bigger value is better [35].

� The computational (CPU) time of running the
algorithms to reach near optimum solutions.

As mentioned before, the proposed multi-objective
algorithm is applied to solve multi objective facil-
ity location problems in the literature [13]. The
experiments are implemented on 20 test problems.
Furthermore, to eliminate uncertainties of the solutions
obtained, each problem is used three times under
di�erent random environments. Then, the averages of
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Figure 4. Pseudo code of MOSA.

these three runs are treated as the ultimate responses.
Then, we compare the proposed MOVDO algorithm
with MOSA and NSGA-II, as the most applicable
Pareto-based MOEAs in the literature, to demonstrate
the performance of the proposed algorithm in solving
multi-objective optimization problems. It should be
mentioned that the input parameters of the algorithms
are reported in Table 1.

To evaluate the performance of the proposed
MOVDO, Table 2 reports the multi-objective metric
amounts on the 20 test problems, in which \NAS"
shows that the algorithm cannot �nd the Pareto front
in the reported time. It is noted that MATLAB
software [36] has been used to code the proposed
meta-heuristic algorithms, and the programs have been
executed on a 2 GHz laptop with eight GB RAM.

Table 1. Values of algorithms parameters along with
their tuning procedure.
Multi-objective

algorithms
Algorithm
parameters

Optimum
amount

Selected
policy

NSGA-II

nPop 25

RSM [13]
Pc 0.6
Pm 0.4
Ngen 100

MOSA

T0 500

RSM [13]
Popsize 5
Ngen 500
� 0.99

MOVDO

nPop 5

Taguchi [30]
A0 6
L 40
� 1.5
 0.05

The algorithms are statistically compared based
on the properties of their obtained solutions via the
analysis of variance (ANOVA) test. These outputs are
reported in Tables 3 to 7 in terms of de�ned metrics.
In these tables, the abbreviation of �rst row show
Degrees of Freedom (DF), Sum of Squares (SS), Mean
Square (MS), F-value test (F), P-value (P). In order to
clarify our statistical results, box-plots are represented
in Figures 5 and 6. Moreover, graphical comparisons of
all metrics on 20 test problems are shown in Figure 7.

Based on the statistical outputs in Tables 3 and 4,
along with Figure 5, NSGA-II shows better perfor-
mances, in terms of NOS, while MOVDO has better
performance in terms of CPU time. Moreover, Tables 4
to 7, along with Figure 6, show the comparability of
MOVDO, in comparison with NSGA-II and MOSA,
on MID, spacing, and diversity metrics in which the
algorithms have no signi�cant di�erences and, statis-
tically, work the same. It should be mentioned that
this conclusion is con�rmed at 95% con�dence level.
Based on the outputs in Table 2, with increasing the
size of problems, in test problems 19 and 20 and in
test problem 20, NSGA-II and MOSA cannot �nd the
Pareto front, respectively. However, in these large sizes,
MOVDO can �nd the Pareto front. The MOVDO
algorithm performs better in terms of CPUT metric.
These features conclude the robustness of the proposed
MOVDO in large-sized problems in the area of multi-
objective optimization problems.

To increase the readability of the proposed
MOVDO, Figure 8 represents the non-dominated solu-
tions of a single run of the proposed MOVDO algorithm
in the initial and �nal iterations in the left and right
sides, respectively. These two �gures indicate the
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Table 2. Multi-objective metrics computed for three proposed MOEAs.

P
ro

b
le

m
n
o. Time NOS MID Spacing Diversity

N
S
G

A
-I

I

M
O

S
A

M
O

V
D

O

N
S
G

A
-I

I

M
O

S
A

M
O

V
D

O

N
S
G

A
-I

I

M
O

S
A

M
O

V
D

O

N
S
G

A
-I

I

M
O

S
A

M
O

V
D

O

N
S
G

A
-I

I

M
O

S
A

M
O

V
D

O

1 17.76 16.43 11.33 24 6 5 2.40E+07 2.46E+07 2.14E+07 2.55E+08 3.46E+07 1.78E+07 2.15E+08 2.20E+08 1.34E+07

2 32.67 25.23 13.11 20 4 8 4.57E+08 2.89E+08 3.21E+08 3.89E+08 4.52E+08 4.17E+05 1.89E+09 2.74E+09 2.38E+07

3 35.98 22.13 18.73 24 5 6 5.69E+08 5.91E+09 4.32E+09 3.94E+08 8.98E+09 8.32E+06 1.98E+09 1.78E+09 5.62E+07

4 33.57 29.12 18.31 21 6 5 2.47E+08 2.20E+08 1.43E+09 2.76E+09 2.40E+09 3.17E+06 4.52E+07 1.57E+10 2.62E+07

5 33.94 29.91 17.13 23 4 6 3.99E+08 7.55E+09 8.91E+09 2.47E+08 2.98E+10 2.36E+06 3.50E+09 5.85E+09 8.18E+08

6 31.83 28.12 19.84 22 5 6 2.89E+08 4.87E+09 5.32E+09 2.47E+08 2.19E+11 4.69E+07 1.57E+09 8.92E+10 2.35E+09

7 44.87 31.13 22.90 23 6 7 3.98E+08 8.77E+09 7.40E+09 2.41E+11 3.18E+11 4.72E+06 5.19E+10 8.92E+09 2.19E+09

8 40.90 32.24 22.73 25 NAS 6 6.69E+09 NAS 5.49E+09 2.93E+10 NAS 5.84E+06 1.87E+11 NAS 9.27E+08

9 44.23 29.44 29.82 25 7 7 1.29E+08 5.70E+08 4.32E+08 6.78E+08 8.80E+07 6.22E+06 2.35E+08 2.90E+09 1.23E+09

10 48.98 33.92 27.61 24 5 8 3.71E+08 3.85E+08 2.25E+08 3.43E+09 9.46E+06 2.68E+07 2.32E+08 2.40E+08 2.16E+09

11 59.47 39.23 29.28 24 4 8 3.28E+08 1.34E+10 2.49E+10 3.39E+08 7.96E+09 3.62E+07 1.84E+08 2.18E+10 2.80E+08

12 61.11 44.23 25.88 22 5 6 3.29E+08 2.85E+09 2.82E+10 5.48E+08 1.49E+10 2.34E+07 1.24E+09 5.72E+10 2.71E+08

13 75.12 55.32 30.91 21 4 8 7.80E+08 3.49E+10 2.39E+10 2.39E+08 2.98E+11 1.32E+07 1.94E+08 4.18E+10 4.18E+09

14 77.10 51.13 31.99 22 6 6 1.99E+09 2.26E+09 2.46E+09 6.88E+08 1.87E+08 1.48E+07 2.20E+10 1.87E+09 5.20E+10

15 98.13 77.22 39.51 25 6 7 3.66E+09 6.46E+09 5.88E+09 6.49E+10 3.42E+09 1.44E+07 2.99E+10 2.72E+10 4.62E+10

16 89.49 73.21 37.91 25 7 8 2.87E+09 2.86E+09 2.45E+09 1.89E+09 7.69E+07 5.88E+07 2.87E+09 1.48E+09 8.92E+09

17 92.13 89.12 45.60 25 5 7 5.06E+09 4.88E+09 4.38E+10 2.01E+10 4.67E+08 2.61E+09 2.43E+10 2.72E+10 1.63E+10

18 99.71 99.74 62.12 19 4 8 5.08E+10 5.68E+09 5.37E+09 1.90E+10 6.54E+09 2.70E+10 1.86E+11 1.90E+10 2.36E+11

19 165.89 101.88 77.19 NAS 5 8 NAS 7.64E+09 8.54E+09 NAS 5.87E+09 1.57E+10 NAS 1.43E+10 1.96E+10

20 264.42 232.83 123.88 NAS NAS 7 NAS NAS 3.42E+10 NAS NAS 2.92E+10 NAS NAS 1.26E+11

Figure 5. Box-plots of metrics with signi�cant di�erence.

Table 3. Analysis of variance for the time metric.

Source DF SS MS F P

Algorithms 2 13887 6944 3.28 0.045

Error 57 120615 2116

Total 59 134502

Table 4. Analysis of variance for the NOS metric.

Source DF SS MS F P

Algorithms 2 3522.32 1761.16 955.77 0.000

Error 53 97.66 1.84

Total 55 3619.98

Table 5. Analysis of variance for the MID metric.

Source DF SS MS F P

Algorithms 2 4.27263E+20 2.13631E+20 1.71 0.191

Error 53 6.62076E+21 1.24920E+20

Total 55 7.04802E+21

Table 6. Analysis of variance for the spacing metric.

Source DF SS MS F P

Algorithms 2 2.13294E+22 1.06647E+22 2.26 0.114

Error 53 2.49807E+23 4.71334E+21

Total 55 2.71136E+23
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Figure 6. Comparability of MOVDO in comparison with NSGA-II and MOSA on MID, spacing, and diversity metrics.

Figure 7. Graphical comparisons of metrics on 20 test problems.
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Figure 8. Pareto solutions obtained by the proposed MOVDO.

Table 7. Analysis of variance for the diversity metric.

Source DF SS MS F P

Algorithms 2 9.23360E+20 4.61680E+20 0.18 0.832
Error 53 1.32671E+23 2.50322E+21
Total 55 1.33594E+23

intelligence of the proposed algorithm for solving multi-
objective Pareto-based meta-heuristic algorithms.

5. Conclusions

In this paper, a Vibration Damping Optimization
(VDO)-based multi-objective meta-heuristic algorithm
has been presented. In this respect, the concept of
domination has been used in solving the multi-objective
optimization problems. In the Multi-Objective Vi-
bration Damping Optimization (MOVDO), two main
concepts (i.e., Fast Non-Dominated Sorting (FNDS)
and Crowding Distance (CD)) have been considered
in order to introduce the proposed MOVDO. In or-
der to demonstrate the applicability of the proposed
MOVDO, multi-objective facility location problems
are applied. The results show the capability of the
MOVDO algorithm to solve the multi-objective prob-
lems. To justify this, NSGA-II and MOSA algorithms
have been implemented to evaluate the performance of
the proposed MOVDO. The e�ciency of MOVDO in
large-size problems has been demonstrated, although,
only the CPU time metric has been statistically di�er-
ent in comparison with NSGA-II and MOSA. As future
research, one can compare the proposed MOVDO
with other multi-objective algorithms (e.g., MOPSO
or MOTS) in various optimization problems.
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