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Abstract. With respect to Multi-Criteria Decision-Making (MCDM) problems under
both stochastic and intuitionistic fuzzy uncertainties, this paper proposes an intuitionistic
random MCDM approach based on prospect theory. The reference point in prospect theory
is a�ected by many factors that result in di�culties for the determination of Decision
Makers (DMs). This paper develops an approach to acquire multiple reference points in
the form of interval numbers to support a certain alternative to be the most preferred one,
thus, helping DM to �nd a satisfying solution by comparison with her/his own preference.
Meanwhile, a novel score function of Intuitionistic Fuzzy (IF) number is proposed, based on
DM's psychology of loss aversion, and a distance measure of the IF set is proposed as well,
considering fully its actual meaning. Finally, we illustrate the e�ectiveness and practicality
of the proposed method through a numerical example.
© 2014 Sharif University of Technology. All rights reserved.

1. Introduction

Multi-Criteria Decision-Making (MCDM) problems are
usually under various uncertainties, which can gener-
ally be considered using fuzzy set theory. Since Zadeh
introduced the fuzzy set theory in 1965 [1], several ex-
tensions of fuzzy sets have been proposed, an important
extension of which is the Intuitionistic Fuzzy (IF) set,
introduced by Atanassov [2]. Compared with the fuzzy
set, the IF set seems to be more suitable for expressing
a very important factor, namely, the hesitation of the
Decision Maker (DM), which should be taken into
account in actual decision making problems.

Over the last decades, the IF set theory has been
widely applied to MCDM problems [3-15]. In order to
rank IF numbers, Chen and Tan [16] put forward a
score function, which various researchers have continu-
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ously improved upon [17-22]. In 2012, Wang et al. [23]
fully analyzed the limitations of these score functions
and proposed a prospect score function, which showed
greater priority over the others. However, the prospect
score function is quite complex, and further, it is not
exible enough to make modi�cations according to
DM's risk attitudes.

Another important measure of the IF set is the
distance measure. The well acknowledged distance
measure of IF sets was proposed by Szmidt and
Kacprzyk [24], and has good geometric properties.
However, the corresponding outcomes often result in
a contradiction with actual meaning in real life, due
to the IF number special size measurement. In other
words, the contribution of the three elements (the de-
gree of membership, non-membership and hesitation)
to its size in the IF number is di�erent from that in a
regular real number. In view of this, Wang and Xin [25]
made some improvements on Szmidt and Kacprzyk's
method, but the fundamental problem has still not
been solved.
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Currently, most of the existing intuitionistic
MCDM models and methods with random backgrounds
are based on expected utility theory, which assumes
that the DMs are totally rational. But, in real life deci-
sion making processes, actual decision making behavior
usually departs from the predictions of the expected
utility theory, due to the ambiguity of the problems,
individual cognitive limitations and lack of knowledge.
As a descriptive model, the prospect theory, proposed
by Kahneman and Tversky [26,27], has attracted a
good deal of attention for its descriptive power, which
well reects the DMs' actual decision making behavior.

Some researchers have applied prospect theory
to MCDM problems. Based on the central idea of
prospect theory, Lahdelma and Salminen proposed
SMAA-P [28], which is an extension of the SMAA
method. They analyzed the type of importance weights
and reference alternatives that would support each
alternative for any given rank, which provided a good
way to deal with di�erent kinds of imprecise, uncertain
or missing preferences. However, the authors in this
paper �xed each alternative as the reference point,
which might be quite di�erent from DMs' actual
reference points. Besides, Hu and Zhou [29] proposed
a MCDM method for the risk decision making problem
based on prospect theory. Wang et al. [30] proposed
a fuzzy MCDM method with prospect theory, based
on multiple criteria decision making problems in which
the criteria weight was unknown and the criteria values
of the alternative were in the form of trapezoidal fuzzy
numbers. Hu et al. [31] proposed a MCDM method for
risk decision making problems with linguistic evalua-
tion information based on prospect theory, and Liu et
al. [32] proposed a MCDM method based on prospect
theory to deal with risk decision making problems with
interval probability in which the attribute values were
in the form of uncertain linguistic variables. The above-
mentioned research all assumes, excepting the �rst,
that the reference point is an accurate value that can be
determined by DMs. However, it is actually the status
quo that a DM may be a�ected by many factors. Under
the same condition, di�erent DMs may have di�erent
reference points, and, for the same DM, when she/he
confronts di�erent conditions, the reference point may
be di�erent. Due to the uncertainty of the problems
and the complexity of conditions, it is very di�cult for
a DM to determine a precise reference point.

From the above literature review, we know that
the existing score functions and distance formulas of
the IF set have their limitations. Besides, the existing
MCDM methods based on prospect theory (except
the SMAA-P method), only consider one accurate
reference point, which is not easy to determine in
practical situations.

As to the �rst problem, we propose a new score
function based on DM's psychology of loss aversion.

Meanwhile, a new distance measure of IF sets is de�ned
based on the new proposed score function, transforming
the IF number into a real number. Compared with the
existing score functions and distance measures, those
newly proposed can lead to more reasonable results in
line with actual situations.

As to the second problem, we propose a method
to produce multiple reference points in the form of
interval numbers. First, we �nd the worst point and
optimal point from the alternatives for each criterion.
Then, we divide the distance between the worst and
optimal points into multiple parts, and set each part
as a reference interval equivalent to a reference point.
Eventually, we calculate the prospect values of the
alternatives based on multiple reference intervals. The
outcomes can o�er the types of reference intervals that
support a certain alternative, and help the DM to �nd
a satisfying solution by comparison with her/his own
preference. The multiple reference intervals have some
advantages over the single reference point. Firstly,
when facing complex conditions, it is almost impossible
for a DM to determine a precise reference point, while
it is easier to determine a scope, which is much closer to
DM's mental status when making decisions. Secondly,
when the DM is quite confused about the reference
point, the multiple references and corresponding out-
comes can help the DM to �nd a reasonable solution,
which has the most support of multiple references. Last
but not least, multiple intervals, which are selected as
the references, reveal the di�erent risk attitudes of the
DMs to some degree (the closer to the optimal point,
the more risk preference of the DM; the closer to the
worst point, the more loss aversion of the DM). Hence,
the �nal outcomes can help the DM understand how
di�erent risk attitudes correspond to di�erent choices.

The rest of this paper is organized as follows. In
Section 2, we review some basic concepts of the IF set,
interval numbers and prospect theory. Then, we put
forward a new score function and distance formula of an
IF set and make full comparisons with other methods
in Section 3. In Section 4, the MCDM method based
on prospect theory, under an intuitionistic random
environment, is proposed. In Section 5, a numerical
example is illustrated. Finally, some conclusions are
given in Section 6.

2. Preliminaries

2.1. Intuitionistic fuzzy set
De�nition 1 [2,33]. Let X be a �nite universal set.
Then, an IF set, ~A, in X is an object having the
following form:

~A = f< x; u ~A(X); v ~A(x) > jx 2 Xg ;
where u ~A; v ~A : X ! [0; 1] are functions satisfying 0 �
u ~A(x) + v ~A(x) � 1, 8x 2 X.
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For each x, numbers u ~A(x) and v ~A(x) repre-
sent the degree of membership and degree of non-
membership of the element, x 2 X, to set ~A, respec-
tively.

Let � ~A = 1 � u ~A(x) � v ~A(x) be the intuitionistic
index of element x in set ~A [34,35], which is the degree
of indeterminacy membership of element x to set ~A.
Obviously, 0 � � ~A(x) � 1. In practice, if X is a sin-
gleton, then IF set ~A = f< x; u ~A(x); v ~A(x) > jx 2 Xg
degenerates to an IF number, which can be denoted as
A =< uA; vA > or A =< uA; uA; �A >.

As for real life problems, symbols uA; vA and �A
can denote the shares of supporters, dissenters and
abstention groups for alternative, A, respectively.

De�nition 2 [2,36]. Let ~A and ~B be two IF sets in
set X, and � � 0, then:

1. ~A+ ~B =
�
< x; u ~A(x) + u ~B(x)� u ~A(x):u ~B(x);

v ~A(x):v ~B(x) > jx 2 X
�

;

2. ~A: ~B =
�
< x; u ~A(x):u ~B(x); v ~A(x) + v ~B(x)

�v ~A(x):v ~B(x) > jx 2 X
�

;

3. ~A�=
n
< x; u ~A(x)� ; 1� (1� v ~A(x))�> jx 2 Xo ;

4. � ~A=
n
< x; 1�(1� u ~A(x))� ; v ~A(x)� > jx 2 Xo :

De�nition 3 [16]. Let A =< uA; vA > be an IF
number. Then, the score function of A is de�ned as
follows:

�(A) = uA � vA:
Obviously, �(A) 2 [�1; 1].

De�nition 4 [17]. Let A =< uA; vA > be an IF
number. Then, the accuracy function of A is de�ned
as follows:

�(A) = uA + vA = 1� �A;
where �A = 1� uA � vA.

Obviously, �(A) 2 [0; 1], which represents the
non-hesitation degree.

To rank two IF numbers, A =< uA; vA > and
B =< uB ; vB >, their score functions and accuracy
functions need to be compared, respectively. In gen-
eral, the score function is more important than the
accuracy function. Based on this principle, the ranking
rules of IF numbers can be de�ned as follows:

1. If �(A) > �(B), then, A is larger than B;
2. If �(A) = �(B), then;

(a) If �(A) = �(B), then, A is equal to B;
(b) If �(A) < �(B), then, A is smaller than B;
(c) If �(A) > �(B), then, A is larger than B.

2.2. Interval numbers
De�nition 5 [37]. Suppose A is an interval number,
then its form is as follows:

A = [aL; aR] = fajaL � a � aRg ;
where aL and aR are the left and right limit of interval
A on the real line, R, respectively. If aL = aR, then, A
degenerates to a real number.

De�nition 6 [38]. Let A = [aL; aR] and B = [bL; bR]
be two interval numbers. Then, the Hamming distance
between them is de�ned as follows:

d (A;B) =
1
2

(jaL � bLj+ jaR � bRj) : (1)

If aL, aR and bL all take the form of IF numbers,
then the Hamming distance between A and B can be
expressed as follows:

d (A;B) =
1
2

[d(aL; bL) + d(aR; bR)] : (2)

De�nition 7 [39]. Let A = [aL; aR] and B = [bL; bR]
be two interval numbers. Then, the comparing rules
are de�ned as follows:

If
aL + aR

2
>
bL + bR

2
; then; A > B;

If
aL + aR

2
=
bL + bR

2
; then; A = B;

If
aL + aR

2
<
bL + bR

2
; then; A < B:

2.3. Prospect theory
In prospect theory, the outcome is determined by the
prospect value, which is a combination of value function
and probability weight function [26], shown as follows:

V =
nX
i=1

w(pi)v(�xi); (3)

where V is the prospect value; w(p) is the probability
weight function of the probability assessment; and
v(�x) is the value function of the subjective feelings
of the DM. Here, �xi is used to measure the di�erence
between xi and a certain reference point, x0. If the
outcome is larger than the reference point, then, we
perceive the outcome as gain; otherwise, we perceive
the outcome as loss.

In this paper, as there is no subtraction operator
for the IF number, we de�ne �xi as the distance
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between xi and x0, which is given as follows:

�xi =

8<:d(xi; x0); xi � x0

�d(xi; x0); xi < x0

(4)

where xi and x0 take the form of IF numbers. Then we
introduce the value function and the probability weight
function as follows:

1. The value function.
The value function proposed by Kahneman

and Tversky [27] is as follows:

v(x) =

8<:(x)�; x � 0

��(�x)� ; x < 0
(5)

where x is the gain or the loss of the surface value,
which is positive for the gain and negative for the
loss; � and � are risk attitude coe�cients satisfying
0 < �; � < 1; and � is the loss aversion coe�cient.
The larger the parameters of � and �, the more the
DMs are willing to seek risk. When � = � = 1,
DMs can be seen as risk neutral, and when � > 1,
it indicates that the DMs are more sensitive to
loss. According to previous research, Kahneman
and Tversky [27] considered that � = 2:25 and
� = � = 0:88; Wu and Gonzalez [40] considered
that � = 2:25 and � = � = 0:52; and Zeng [41]
considered that � = 2:25, � = 1:21 and � =
1:02.

2. The probability weight function.
Kahneman and Tversky [26] considered that

the probability weight is the subjective judgment
of the DM, based on probability p of the outcome.
It is neither the probability nor the linear function
of probability, but the corresponding weight on
the probability. The probability weight function is
shown as follows [27]:8><>:w

+(p) = p

(p+(1�p))1=

w�(p) = p�

(p�+(1�p)�)1=�

(6)

where w+ and w� are the weighting function of
the gain and the loss, respectively,  is the risk
gain attitude coe�cient, and � is the risk loss
attitude coe�cient. Scholars at home and abroad
have undertakaen research into the coe�cient of the
weighting function. For example, Kahneman and
Tversky [27] suggested  = 0:61 and � = 0:72;
Wu and Gonzales [40] suggested  = 0:74 and
� = 0:74; and Zeng [41] suggested  = 0:55 and
� = 0:47.

3. The score functions and distance formulas
of IF set

3.1. The score functions of IF number
Researchers have proposed many score functions during
the past 20 years, but most of them still have limita-
tions. Wang et al. [23] made a full analysis of these
score functions and proposed a prospect score function
to conquer existing limitations. Based on this, in this
paper, we propose a new score function based on DMs'
degree of loss aversion, and the following examples will
show its e�ectiveness and practicality.

De�nition 8. Let A =< uA; vA > be an IF number.
Then, the new score function is de�ned as follows:

S(A)=uA+
1
�

(1� uA � vA)=uA+
1
�
�A (� > 1);

(7)

where �A = 1�uA� vA, and � is the coe�cient of loss
aversion. Larger � always means more loss aversion of
the DM.

De�nition 9. Suppose A =< uA; vA > and B =<
uB ; vB > are two IF numbers, then, we get that:

1. If S(A) > S(B), then A > B;

2. If S(A) = S(B), then A = B;

3. If S(A) < S(B), then A < B.

Considering the inuence of the abstention group
on the score function, many researchers tend to divide
the abstention group into three parts, as uA�A, vA�A
and (1� uA � vA)�A, to denote the shares of a�r-
mation, dissent and abstention, respectively [18-20].
However, there is no empirical study to support them.
Hence, the abstention group is absolutely uncertain,
which means we cannot know how many shares of the
abstention group tend to a�rm, dissent or hesitate if
we do not have extra information, such as a full anal-
ysis or some investigation into the abstention group.
As a consequence, we hold that without any extra
information, the abstention group would be absolutely
uncertain. According to prospect theory [26-27], people
tend to be more sensitive to loss than to gain, and
they will be more loss averse when confronting gain.
Hence, if the DM regards the abstention group as gain,
with dissenters as the reference point, the coe�cient
assigned to �A, which is determined by DM's degree of
loss aversion, will be inevitably less than 1.

Referring to the loss aversion coe�cient, �, in
prospect theory [27], we can also let � be 2.25. Here,
we make a full comparison of our method with other
methods, as shown in Table 1.

From Examples 1-8, shown in Table 1, we can see
that the outcomes acquired from the new score function
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Table 1. Comparison of the results based on di�erent methods.

Examples Hong and Choi's
method [17]

Wang and Li's
method [23]

The new score
function (� = 2:25)

1 A =< 0:40; 0:10 >
B =< 0:50; 0:20 >

A < B Spt(A) = 0:3017
Spt(B) = 0:4318 ) A < B

S(A) = 0:6222;
S(B) = 0:6333 ) A < B

2 A =< 0:00; 0:20 >
B =< 0:00; 0:30 >

A > B Spt(A) = 0:4316
Spt(B) = 0:5727 ) A > B

S(A) = 0:3556;
S(B) = 0:3111 ) A > B

3 A =< 0:20; 0:40 >
B =< 0:30; 0:10 >

A < B Spt(A) = �0:4456
Spt(B) = 0:2876 ) A < B

S(A) = 0:3778;
S(B) = 0:5667 ) A < B

4 A =< 0:30; 0:40 >
B =< 0:20; 0:10 >

A < B Spt(A) = �0:1454
Spt(B) = �0:1199 ) A < B

S(A) = 0:4333;
S(B) = 0:5111 ) A < B

5 A =< 0:40; 0:20 >
B =< 0:20; 7=15 >

A > B Spt(A) = 0:3460
Spt(B) = �0:5479 ) A > B

S(A) = 0:5778;
S(B) = 0:4074 ) A > B

6 A =< 0:40; 0:20 >
B =< 0:60; 0:30 >

A < B Spt(A) = 0:0460
Spt(B) = 0:3560 ) A < B

S(A) = 0:5778;
S(B) = 0:6444 ) A < B

7 A =< 0:30; 0:60 >
B =< 0:30; 0:50 >

A < B Spt(A) = �0:3390
Spt(B) = �0:2579 ) A < B

S(A) = 0:3444;
S(B) = 0:3889 ) A < B

8 A =< 0:60; 0:04 >
B =< 0:68; 0:12 >

A < B Spt(A) = 0:6739
Spt(B) = 0:6937 ) A < B

S(A) = 0:7600;
S(B) = 0:7689 ) A < B

9 A =< 0:40; 0:10 >
B =< 0:60; 0:36 >

A > B Spt(A) = 0:1641
Spt(B) = 0:2565 ) A < B

S(A) = 0:6222;
S(B) = 0:6178 ) A > B

10 A =< 0:50; 0:50 >
B =< 0:30; 0:20 >

A < B Spt(A) = 0:0000
Spt(B) = �0:1463 ) A > B

S(A) = 0:5000;
S(B) = 0:5222 ) A < B

11 A =< 0:30; 0:00 >
B =< 0:60; 0:36 >

A > B Spt(A) = �0:0516
Spt(B) = 0:2565 ) A < B

S(A) = 0:6111;
S(B) = 0:6178 ) A < B

are in accordance with results from the prospect score
function, so the score function proposed in this paper
can also solve the limitations of the existing functions,
except the prospect score function of Wang and Li.
Examples 9-10 (shown in Table 1) illustrate that the
outcomes acquired by the new score function, with
� = 2:25, are closer to Hong and Choi's results than
Wang and Li's prospect score function. Examples 9-
11 demonstrate that when �A is much larger than
�B , and uA � vA is just a little larger than uB � vB ,
it is probable that alternative, A, will be inferior to
alternative, B. In fact, whether alternative A will be
inferior to alternative B or not is decided by DM's
degree of loss aversion, namely, the value of �. As
example 9 shows, when � = 2:3 > 2:25, S(A) = 0:6174
and S(B) = 0:6174 which indicates A = B. It is
can be well explained by phenomena in real life. For
example, when evaluating two alternatives, A and B,
if alternative A has more advantages than alternative
B, as well as more disadvantages, then the perceived

values of alternative A and B may be the same for
a certain DM. If we have to make a choice between
alternatives A and B, we can modify the coe�cient of
loss aversion according to the real life situation.

According to the above analysis, we know that
the new score function has several advantages over the
prospect score function, which are shown as follows:

1. The form of the new score function is more simple,
so its calculation is much easier;

2. In general (� = 2:25), the results acquired by the
new score function are closer to the results of Hong
and Choi [17];

3. For some special DMs, whose sensitivity of loss is
much stronger or weaker than the normal, or under
some special surroundings in which the DM's degree
of loss aversion is very di�erent from that in normal
situations, the outcomes acquired by the new score
function can be modi�ed by the parameter, �,
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while the prospect score function cannot make the
corresponding modi�cation.

3.2. The distance formulas of IF sets
De�nition 10 [24]. Let ~A=f< x; u ~A(x); v ~A(x) > jx 2
Xg and ~B=f< x; u ~B(x); v ~B(x) > jx 2 Xg be two IF
sets in set X = fx1; x2; ; :::; xng. Then, the Hamming
distance between ~A and ~B is de�ned as follows:

d
�

~A; ~B
�

=
1
2

nX
i=1

�
ju ~A(xi)� u ~B(xi)j+ jv ~A(xi)

� v ~B(xi)j+ j� ~A(xi)� � ~B(xi)j
�
; (8)

where � ~A(xi) = 1 � u ~A(xi) � v ~A(xi) and � ~B(xi) =
1� u ~B(xi)� v ~B(xi).

IfX is a singleton, then ~A = f< x; u ~A(x); v ~A(x) >
jx 2 Xg and ~B = f< x; u ~B(x); v ~B(x) > jx 2 Xg
degenerate to two IF numbers, A =< uA; vA > and
B = uB ; vB >, and the distance between them is as
follows:

d(A;B) = juA � uB j+ jvA � vB j+ j�A � �B j ; (9)

where �A = 1� uA � vA and �B = 1� uB � vB .
Obviously, the distance formula of IF sets pro-

posed by Szimidt and Kacprzyk [24] has good geomet-
ric property, but it cannot explain well the real meaning
of some IF numbers. For example, let A =< 1; 0 >,
B =< 0:5; 0 > and C =< 0:5; 0:5 > be three IF
numbers. Then, by De�nition 10, we can obtain that
the distance between A and B is equal to that between
A and C, which is shown as follows:

d(A;B) =
1
2

[j1� 0:5j+ j0� 0j+ j0� 0:5j] = 0:5;

d(A;C) =
1
2

[j1� 0:5j+ j0� 0:5j+ j0� 0j] = 0:5:

However, according to the real meaning of the IF
number, the ranking of A;B and C is A > B > C,
namely, d(A;B) < d(A;C), which is di�erent from the
above result. Consequently, in order to overcome this
limitation, Wang and Xin [25] proposed a new distance
measure of IF sets, which is expressed as follows:

d( ~A; ~B)=
1
n

nX
i=1

�ju ~A(xi)�u ~B(xi)j+jv ~A(xi)� v ~B(xi)j
4

+
max (ju ~A(xi)�u ~B(xi)j;jv ~A(xi)�v ~B(xi)j)

2

�
:
(10)

If X is a singleton, then, ~A = f< x; u ~A(x); v ~A(x) >
jx 2 Xg and ~B = f< x; u ~B(x); v ~B(x) > jx 2 Xg
degenerate to two IF numbers, A =< uA; vA > and

B =< uB ; vB >, and the distance between them is as
follows:

d(A;B) =
juA � uB j+ jvA � vB j

4

+
max (juA � uB j; jvA � vB j)

2
: (11)

According to this distance formula, we can get
d(A;B) < d(A;C), and the concrete results are shown
below:

d(A;B) =
� j1� 0:5j+ j0� 0j

4

+
max (j1� 0:5j; j0� 0j)

2

�
= 0:375;

d(A;C) =
� j1� 0:5j+ j0� 0:5j

4

+
max (j1� 0:5j; j0� 0:5j)

2

�
= 0:5:

For two IF numbers, A =< uA; vA > and B =<
uB ; vB >, if there exist uA < uB & vA < vB or
uA > uB & vA > vB , the distance between A and
B calculated by the existing distance formulas may
be unreasonable. For example, let A =< 0:5; 0:5 >,
B =< 0:4; 0:2 > and C =< 0:6; 0:3 > be three IF
numbers, then, the ranking of A;B and C is A <
B < C according to the real meaning of the IF
number, indicating d(A;B) < d(A;C), but the results
obtained by Eqs. (9) and (11) are both d(A;B) >
d(A;C). Therefore, we can conclude that the existing
distance formulas of IF numbers have their applicative
condition: uA < uB & vA < vB or uA > uB & vA > vB
cannot coexist for two IF numbers A =< uA; vA >
and B =< uB ; vB >. However, this condition cannot
always hold in real life situations, since the IF set ~A
in X consists of ~A(xi) =< xi; u ~A(xi); v ~A(xi) > for all
xi 2 X, which are actually IF numbers.

De�nition 11 [25]. Let d: IFSs(X) � IFSs(X) !
[0; 1] be a real function on X. If d( ~A; ~B) satis�es the
following properties:

1. 0 � d( ~A; ~B) � 1;
2. d( ~A; ~B) = 0 if and only if ~A = ~B;
3. d( ~A; ~B) = d( ~B; ~A);
4. If ~A � ~B � ~C; ~A; ~B; ~C 2 IFSs(X), then d( ~A; ~C) �

d( ~A; ~B) and d( ~A; ~C) � d( ~B; ~C); then d( ~A; ~B) is a
distance measure between IF sets, ~A and ~B.

De�nition 12 [2]. Let ~A=f< x; u ~A(x); v ~A(x) > jx 2
Xg and ~B=f< x; u ~B(x); v ~B(x) > jx 2 Xg be two IF
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sets in set X = fx1; x2; :::; xng. Then, we have:

~A � ~B i�
�
8xi 2 X

� �
u ~A(xi) < u ~B(xi)

& v ~A(xi) > v ~B(xi)
�
;

~A = ~B i�
�
8xi 2 X

� �
u ~A(xi) = u ~B(xi)

& v ~A(xi) = v ~B(xi)
�
:

In fact, IF numbers are also the kinds of numbers that
can be compared with each other. When concerning
the practical meaning of two IF numbers, A =<
0:55; 0:15 > and B =< 0:60; 0:22 >, most DMs may
feel that A is nearly equal to B. Hence, when the score
functions of A and B are equal, we can say A = B to
the practical sense of the IF number. Similarly, when
the score function of A is larger than that of B, we can
say A > B.

Consequently, we modify De�nition 12 as De�ni-
tion 13, which can better reect the practical meaning
of the IF number.

De�nition 13. Let ~A = f< x; u ~A(x); v ~A(x) > jx 2
Xg and ~B = f< x; u ~B(x); v ~B(x) > jx 2 Xg be two IF
sets, in set X = fx1; x2; :::; xng. Then, we have:

~A � ~B i� (8xi 2 X) S
�

~A(xi)
� � S � ~B(xi)

�
;

~A = ~B i� (8xi 2 X) S
�

~A(xi)
�

= S
�

~B(xi)
�
:

Here, S
�

~A(xi)
�

and S
�

~B(xi)
�

are the score functions

of the IF number, ~A(xi) and ~B(xi), respectively.
Based on the new score function and De�nition

13 proposed in this paper, we put forward a novel
distance measure of IF sets, which can make up for
the de�ciency of the existing ones.

De�nition 14. Let ~A = f< x; u ~A(x); v ~A(x) > jx 2
Xg and ~B = f< x; u ~B(x); v ~B(x) > jx 2 Xg be two IF
sets in set X = fx1; x2; :::; xng, and denote that:

d( ~A; ~B) =
1
n

nX
i=1

���S � ~A(xi)
�� S � ~B(xi)

����
=

1
n

nX
i=1

�����u ~A(xi) +
1
�
� ~A(xi)

�
�
�
u ~B(xi) +

1
�
� ~B(xi)

�����; (12)

where � ~A(xi) = 1�u ~A(xi)�v ~A(xi) and S
�

~A(xi)
�

and

S
�

~B(xi)
�

are the score functions of the IF number,
~A(xi) and ~B(xi), respectively.

When X is a singleton, ~A = f< x; u ~A(x); v ~A(x) >
jx 2 Xg and ~B = f< x; u ~B(x); v ~B(x) > jx 2 Xg
degenerate to two IF numbers, A =< uA; vA > and
B = uB ; vB >. Then, the distance between them is as
follows:

d(A;B) = jS(A)� S(B)j

=
�����uA +

1
�
�A
�
�
�
uB +

1
�
�B
����� ; (13)

where �A = 1 � uA � vA, and S(A) and S(B) are the
score functions of IF numbers, A and B, respectively.

Theorem 1. d( ~A; ~B) de�ned in De�nition 14 is the
distance measure of IF sets, ~A and ~B, in the set X =
fx1; x2; :::; xng.
Proof. According to De�nition 13, it is obvious that
d( ~A; ~B) satis�es properties (2)-(4) in De�nition 11. So,
we only need to prove d( ~A; ~B) satis�es property (1).

The new score function for any IF number, ~A(xi),
is: S

�
~A(xi)

�
= u ~A(xi)+ 1

�� ~A(xi) (� > 1). Since � > 1,
we can get 1� 1

� > 0, � 1
� < 0.

Hence, the larger the u ~A(xi), the larger the
S
�

~A(xi)
�

, while the larger the v ~A(xi), the smaller the

S
�

~A(xi)
�

.
Besides, since 0 � u ~A(xi) � 1, 0 �

v ~A(xi) � 1 and 0 � u ~A(xi) + v ~A(xi) � 1, we
can get max

�
S( ~A(xi))

�
= 1(u ~A(xi)=1v ~A(xi) = 0),

min
�
S( ~A(xi))

�
= 0(u ~A(xi) = 0, v ~A(xi) = 1), namely,

S
�

~A(xi)
� 2 [0; 1].

Since d( ~A; ~B) = 1
n
Pn
i=1

���S( ~A(xi))� S( ~B(xi))
���,

where S
�

~A(xi)
� 2 [0; 1], S

�
~B(xi)

� 2 [0; 1], it is

obvious that
���S � ~A(xi)

�� S � ~B(xi)
���� 2 [0; 1]. As a

consequence, 0 � d( ~A; ~B) � 1, which means that
d( ~A; ~B) satis�es property (1).

Therefore, d( ~A; ~B) is the distance measure of two
IF sets, ~A and ~B, in set X. The proof is completed.

Researchers have made many studies of the dis-
tance measure of IF numbers, but their proposed
methods do not always make sense. The actual reason
is that IF numbers cannot be compared with each other
as real numbers. As a result, for three IF numbers,
A;B and C, A > B > C does not always mean that
d(A;C) � d(A;B), according to traditional distance
formulas. In this paper, we develop a new distance
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formula from the perspective of perceived values of the
IF number, namely, the score function, which can well
satisfy d(A;C) � d(A;B), if A > B > C for three IF
numbers, A;B and C. Although our proposed method
does not have good geometric properties, it conforms
better to practical situations.

4. Intuitionistic random MCDM method
based on prospect theory

4.1. Intuitionistic random MCDM problems
with multiple reference intervals

Suppose there exists an alternative set, A =
fA1; A2; :::; Amg, consisting of m alternatives, from
which the best alternative is to be selected, and that
each alternative is assessed on n criteria, denoted by
c = fc1; c2; :::; cng. Xij(i = 1; 2; ::;m; j = 1; 2; :::; n) is
the evaluation of the alternative, with respect to cj(j =
1; 2; :::; n), in the form of IF number, < uij ; vij >,
where uij and vij are the degree of membership and
the degree of non-membership of the alternative, Ai,
with respect to the criterion, cj , for the fuzzy concept
\excellence", respectively, and it reveals the degree of
satisfaction or dissatisfaction of the DM to criterion
cj for alternative Ai. Let �j = f�j1; �j2; :::; �jtg be
the possible status which belongs to the criterion, cj ,
and pkj (k = 1; 2; :::; t) be the corresponding possibility,
where t � 1 and 0 � pkj � 1. Suppose ! =
(w1; w2; :::; wn)T is the weight vector of criteria that
has been completely known, where !j 2 [0; 1](j =
1; 2; :::; n)

Pn
j=1 !j = 1.

Due to the complexity of decision making prob-
lems, it is quite di�cult for DM to determine a single
accurate reference point for each criterion. Thus, in
this paper, the decision making reference points of
di�erent criteria are expressed in the form of intervals.
Meanwhile, in order to simplify the problem, we only
choose four intervals. In fact, we can use three or
�ve intervals instead, according to real situations, but
the intervals should not be less than three, because
if the DM has no idea about the reference point
completely, we cannot determine which alternative has
more support.

De�nition 15. Let xmin
j and xmax

j be the worst
and optimal values from the criteria value space, with
respect to criterion, cj , respectively. Then, we divide
the distance between xmin

j and xmax
j into four equal

pieces, which are shown as follows:

xc0j =
xmin
j + xmax

j

2
; (14)

xc1j =
xmin
j + xc0j

2
; (15)

xc2j =
xc0j + xmax

j

2
: (16)

Thus, we can obtain four intervals as the ref-
erence points, denoted by x01

j ; x02
j ; x03

j ; x04
j , where

x01
j =

�
xmin
j ; xc1j

�
, x02

j =
�
xc1j ; xc0j

�
, x03

j =
�
xc0j ; xc2j

�
and x04

j =
�
xc2j ; xmax

j
�
.

In general, when the reference point chosen by
DM is closer to the optimal point, it indicates the DM
is more risk seeking; otherwise, it means the DM is
more loss-aversion.

4.2. Procedures of the decision making method
Step 1: Determine the evaluation values of alternative
Ai(i = 1; 2; :::;m), with respect to criterion cj(j =
1; 2; :::; n), in the form of < uij ; vij >.

Step 2: Determine the reference points, and obtain
four reference intervals through Eqs. (14)-(16).

Step 3: Calculate the prospect value, Zlijk, of al-
ternative Ai(i = 1; 2; :::;m), with respect to criterion
cj(j = 1; 2; :::; n), in the kth status, based on the four
reference intervals above.

Zlijk = V (�xijk);

l = 01; 02; 03; 04; k = 1; 2; :::; t; (17)

where V (x) is the value function de�ned in Eq. (5),
and �xijk is the distance between xijk and reference
interval xlj , which can be calculated through Eq. (4).

Step 4: Calculate the prospect value of criterion
cj(j = 1; 2; :::; n) for alternative Ai(i = 1; 2; :::;m).

Zlij =
tX

k=1

wkijZ
l
ijk;

l = 01; 02; 03; 04; k = 1; 2; :::; t; (18)

where wkij is the probability weight function, which can
be calculated by Eq. (6).

Step 5: Calculate the weighted prospect value of
alternative Ai(i = 1; 2; :::;m).

Zli =
nX
j=1

wjZlij (l = 01; 02; 03; 04); (19)

where wj(j = 1; 2; :::; n) is the weight of criterion cj(j =
1; 2; :::; n).

Step 6: Rank the alternatives based on the di�erent
reference intervals. The larger the weighted prospect
function value, the better the outcome.
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5. A numerical example

5.1. Background introduction
A company, X, wants to invest in new products, and
there are three alternatives to be considered, denoted
by Ai(i = 1; 2; 3). Three criteria of pro�tability
(c1), social bene�ts (c2) and pollution loss (c3) will
be used to evaluate the alternatives, respectively, and
the corresponding weight is w = (0:38; 0:32; 0:30)T .
The evaluation values take the form of IF number.
< uij ; vij >, which reveals the degree of satisfaction
or dissatisfaction of the DM to criterion, cj , for
alternative, Ai. As the evaluation information may be
di�erent under di�erent economic environments in the
future, di�erent evaluation information is given with
discrete probability distribution, respectively, under
possible economic environments in the future, which
are shown in Tables 2-4.

5.2. The steps of decision making

Step 1: Calculate the reference intervals through
Eqs. (14)-(16); the results are shown in Table 5.

Step 2: Calculate the prospect value Zlijk of alter-
native Ai(i = 1; 2; :::;m), with respect to criterion
cj(j = 1; 2; :::; n), in the kth status, respectively, based
on the four reference intervals above. Here, we let
� = � = 0:88 and � = 2:25 according to the research
by Kahneman and Tversk [27]. The results are given
in Tables 6-8.

Step 3: Transform the probabilities into probability
weight function values.

If Zlij1 > 0 (l = 01; 02; 03; 04), we can get !+
1 =

0:318; otherwise, !�1 = 0:329, with  = 0:61, � = 0:72,
according to Kahneman and Tversky [27]. Similarly,

Table 2. The criteria values of alternatives under good economic environment.

Under good economy environment (30%)

Pro�tability (c1) Social bene�ts (c2) Pollution loss (c3)

A1 < 0:80; 0:10 > < 0:80; 0:16 > < 0:55; 0:40 >

A2 < 0:70; 0:23 > < 0:66; 0:26 > < 0:70; 0:10 >

A3 < 0:80; 0:18 > < 0:66; 0:32 > < 0:66; 0:18 >

Table 3. The criteria values of alternatives under normal economic environment.

Under normal economy environment (50%)

Pro�tability (c1) Social bene�ts (c2) Pollution loss (c3)

A1 < 0:70; 0:17 > < 0:70; 0:20 > < 0:40; 0:30 >

A2 < 0:65; 0:30 > < 0:60; 0:35 > < 0:64; 0:17 >

A3 < 0:72; 0:20 > < 0:62; 0:35 > < 0:60; 0:20 >

Table 4. The criteria values of alternatives under poor economic environment.

Under poor economy environment (20%)

Pro�tability (c1) Social bene�ts (c2) Pollution loss (c3)

A1 < 0:63; 0:22 > < 0:60; 0:24 > < 0:40; 0:40 >

A2 < 0:50; 0:30 > < 0:58; 0:36 > < 0:60; 0:16 >

A3 < 0:61; 0:28 > < 0:50; 0:50 > < 0:50; 0:33 >

Table 5. The reference intervals of each criterion.

Pro�tability (c1) Social bene�ts (c2) Pollution loss (c3)

x01 [< 0:50; 0:30 >;< 0:60; 0:22 >] [< 0:50; 0:50 >;< 0:60; 0:37 >] [< 0:40; 0:40 >;< 0:50; 0:28 >]

x02 [< 0:60; 0:22 >;< 0:68; 0:17 >] [< 0:60; 0:37 >;< 0:68; 0:28 >] [< 0:50; 0:28 >;< 0:58; 0:20 >]

x03 [< 0:68; 0:17 >;< 0:76; 0:13 >] [< 0:68; 0:28 >;< 0:75; 0:21 >] [< 0:58; 0:20 >;< 0:64; 0:14 >]

x04 [< 0:76; 0:13 >;< 0:80; 0:10 >] [< 0:75; 0:21 >;< 0:80; 0:16 >] [< 0:64; 0:14 >;< 0:70; 0:10 >]
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Table 6. The prospect values of alternative A1.

Pro�tability
(c1)

Social bene�ts
(c2)

Pollution loss
(c3)

x01
0.2986, 30%; 0.3068, 30%; 0.0772, 30%
0.1585, 50%, 0.2295, 50%; -0.1737, 50%;
0.0868, 20%; 0.1484, 20%; -0.1737, 20%;

x02
0.1673, 30%; 0.2018, 30%; -2.2045, 30%;
0.0646, 50%; 0.0617, 50%; -0.3082, 50%;
-0.1103, 20%; 0.0617, 20%; -0.4210, 20%

x03
0.0923, 30%; 0.1143, 30%; -0.3877, 30%;
-0.1062, 50%; 0.0523, 50%; -0.4840, 50%;
-0.2467, 20%; -0.1938, 20%; -0.5910, 20%;

x04
-0.5883, 30%; 0.0389, 30%; -0.5245, 30%
-0.7083, 50%; -0.1564, 50%; -0.6173, 50%
-0.8482, 20%; -0.3525, 20%; -0.7211, 20%

Table 7. The prospect values of alternative A2.

Pro�tability
(c1)

Social bene�ts
(c2)

Pollution loss
(c3)

x01
0.1280, 30%; 0.1760, 30%; 0.2906, 30%
0.0660, 50%, 0.0909, 50%; 0.2223, 50%;
-0.1485, 20%; 0.0800, 20%; 0.2030, 20%;

x02
0.0501, 30%; 0.0617, 30%; 0.1896, 30%;
-0.1357, 50%; -0.1389, 50%; 0.1162, 50%;
-0.3596, 20%; -0.1580, 20%; 0.0950, 20%;

x03
-0.1517, 30%; -0.1243, 30%; 0.1096, 30%;
-0.3111, 50%; -0.3240, 50%; 0.0457, 50%;
-0.5191, 20%; -0.3638, 20%; -0.1028, 20%;

x04
-0.7697, 30%; -0.2893, 30%; 0.0397, 30%
-0.9032, 50%; -0.4745, 50%; -0.1292, 50%
-1.0876, 20%; -0.5124, 20%; -0.1357, 20%

we can get !+
2 = 0:421, !�2 = 0:464, !+

3 = 0:261 and
!�3 = 0:254.

Step 4: Calculate the prospect value, Zlij , of criterion,
cj(j = 1; 2; :::; n), for alternative, Ai(i = 1; 2; :::;m),
based on the four reference intervals (l = 01; 02; 03; 04);
the results are shown in Table 9.

Step 5: Calculate the weighted prospect value, Zli(i =
1; 2; :::;m), of alternative, Ai(i = 1; 2; :::;m), based
on the four reference intervals (l = 01; 02; 03; 04); the
results are shown in Table 10.

Step 6: Rank the alternatives based on the four refer-
ence intervals, and the results are given in Table 11.

Table 8. The prospect values of alternative A3.

Pro�tability
(c1)

Social bene�ts
(c2)

Pollution loss
(c3)

x01
0.2151, 30%; 0.1459, 30%; 0.2295, 30%
0.1560, 50%, 0.1043, 50%; 0.1834, 50%;
0.0663, 20%; -0.1799, 20%; 0.0772, 20%;

x02
0.1267, 30%; 0.0617, 30%; 0.1241, 30%;
0.0617, 50%; -0.1389, 50%; 0.0730, 50%;
-0.1743, 20%; -0.4375, 20%; -0.0868, 20%;

x03
0.0472, 30%; -0.2896, 30%; 0.0457, 30%;
-0.1062, 50%; -0.2954, 50%; -0.1028, 50%;
-0.3460, 20%; -0.6241, 20%; -0.3793, 20%;

x04
-0.5883, 30%; -0.3584, 30%; -0.1095, 30%
-0.7134, 50%; -0.4475, 50%; -0.2288, 50%
-0.9335, 20%; -0.7636, 20%; -0.5164, 20%

Table 9. The prospect values of alternatives with respect
to each criterion.

Pro�tability
(c1)

Social bene�ts
(c2)

Pollution loss
(c3)

A1

x01 0.1843 0.2329 -0.1018
x02 0.0524 0.1303 -0.3172
x03 -0.0826 0.0091 -0.5022
x04 -0.7376 -0.1497 -0.6421

A2

x01 0.0308 0.1151 0.2390
x02 -0.1384 -0.0850 0.1340
x03 -0.3261 -0.2836 0.0280
x04 -0.9486 -0.4455 -0.0818

A3

x01 0.1514 0.0446 0.1703
x02 0.0220 -0.1560 0.0481
x03 -0.1222 -0.3909 -0.1295
x04 -0.7617 -0.5195 -0.2734

Table 10. The weighted prospect values.

A1 A2 A2

x01 0.1140 0.1202 0.1229
x02 -0.0336 -0.0396 -0.0271
x03 -0.1791 -0.2063 -0.2104
x04 -0.5208 -0.5276 -0.5377

Meanwhile, the ranking result calculated by ex-
pected utility theory is: A2 � A3 � A1.

5.3. A comparison with SMAA-P method
In the SMAA-P method, the reference points are
�xed for each alternative. In the following, we will
take each alternative as the reference point to analyze
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Table 11. The ranking result.

x01 x02 x03 x04

A1 � A2 � A3 A2 � A1 � A3 A3 � A2 � A1 A3 � A2 � A1

Table 12. The weighted prospect values by SMAA-P.

Refrence Alternatives
point A1 A2 A3

A1 0 -0.1490 -0.1077
A2 -0.0784 0 -0.0533
A3 -0.0560 -0.0522 0

Table 13. The ranking result by SMAA-P.

Reference
point

A1 A2 A3

Ranking
result

A2�A3�A1 A1�A3 �A2 A1�A2 �A3

the above problem, and in order to show that our
proposed method is superior to SMAA-P in dealing
with reference points, we assume that the criteria
value, criteria weight and loss aversion coe�cient are
all known.

As the calculation process of SMAA-P method is
similar to that of our method, we just give the �nal re-
sult directly. Here, as the criteria value, criteria weight
and loss aversion coe�cient have been determined, the
only uncertainty variable is the reference points, which
have been �xed as each alternative. So, our result
is much easier, and there is no need to calculate the
probabilities for each rank. The result is shown in
Table 12.

Then, we can obtain the �nal ranking result, as
Table 13 shows. From Table 13, we can see that
taking di�erent alternatives as the reference points may
result in di�erent �nal results, but, we cannot get more
information. Therefore, compared with our method in
dealing with the reference point, the SMAA-P method
has its limitations.

Firstly, it is not suitable to handle problems with
few alternatives, as the example above, as it will make
it di�cult to select the best alternative.

Secondly, from the �nal result, we cannot obtain
the relationship between the results and the DMs' risk
attitudes. This is because taking which alternative as
the reference point has nothing to do with the DMs'
real feelings.

Last but not least, the SMAA-P method can tell
the DMs which alternative is better when they are not
sure about their preference, but it cannot display how
the preference (risk attitude) a�ects the results.

The above limitations of the SMAA-P method can
be solved by our method, and we will discuss them in
detail in the following part.

5.4. Discussion
In the example above, the rank of the alternatives
by our method is di�erent when based on di�erent
reference intervals. For example, alternative A1 is
inferior to others when taking x01 and x02 as the
reference intervals, but it becomes superior to others
when taking x03 and x04 as the reference intervals. On
the contrary, alternative A3 is superior to others when
taking x01 and x02 as the reference intervals, while it
becomes inferior to others when taking x03 and x04

as the reference intervals. In traditional MCDM prob-
lems, the researchers always take the mean value, worst
value or optimal value as the reference point. In fact,
di�erent DMs will have di�erent reference alternatives
based on the context and their own personalities, which
can be a�ected by the change of DMs' risk attitudes.
When a DM is more risk seeking under a certain
circumstance, the reference point he/she chooses will
be closer to the optimal value; otherwise, it will be
closer to the worst value. Hence, the results obtained
in Table 11 indicate that if the DM is willing to take on
more risks, alternative A1 is the best choice, otherwise,
alternative A3 is better, which conforms better to real
decision making situations.

From Tables 2-4, we know that for criterion
pro�tability (c1) and social bene�ts (c2), alternative A1
has evident advantages over others, but, as to criterion
pollution loss (c3), alternatives A2 and A3 have evident
advantages over alternative A1, namely, alternative A1
is an extreme alternative, which has both best and
worst values on some criteria. However, compared with
alternative A1, alternative A3 does not have extreme
values on each criterion. As a result, if the DM is
not willing to take on more risks on pollution loss
(c3), he/she will tend to invest in alternative A3. But,
the choice can only be alternative when based on the
expected utility theory, which cannot well reect the
actual decision making psychology of di�erent DMs
with di�erent risk attitudes.

The multiple reference intervals applied in this
paper can help DMs understand how the references
a�ect the �nal result and acquire deeper information
about the results, telling the DMs to make a satisfying
decision according to their own preferences. This
cannot be achieved by the SMAA-P method.

The MCDM method proposed in this paper can
be applied when DMs cannot determine the reference
point on each criterion, or can only determine a rough
range of the reference point, which is a common
problem in actual decision making situations. Our
method of dealing with reference points can be used
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in the SMAA-P method, thus, helping to conquer its
limitations proposed in Section 5.3.

6. Conclusions

In this paper, we develop a method to deal with MCDM
problems under both stochastic and IF uncertainties,
based on prospect theory, for a more accurate descrip-
tion of DMs' behaviors.

Considering that traditional prospect theory has
limitations in dealing with reference points, we propose
multiple reference intervals, extending the reference
points to reference intervals and providing multiple
choices, which can help DMs �nd satisfying solutions.
Meanwhile, the multiple reference intervals can help
DMs �nd more information about the �nal decision,
and tell them which alternative is better under dif-
ferent situations. Although the SMAA-P method also
supplies multiple reference points, it cannot achieve the
function as in our method.

As for the IF number, we de�ne a new score func-
tion based on the common loss aversion psychology of
people. We illustrate its e�ectiveness and practicality
through the representative examples and compare the
results with other score functions. In order to overcome
the fundamental de�ciency of existing distance mea-
sures of the IF set, which will result in a contradiction
with our understanding of the actual meaning of the IF
number, we put forward a novel distance measure of the
IF set based on the new proposed score function. The
main feature of the method is that we transform the
IF number into a real number based on its practical
meaning in life, regardless of its form, which can
better describe actual situations. For example, two
patients may have di�erent symptoms, but they may
be diagnosed with the same disease.
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