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Abstract. Ubiquitous power-law as a �ngerprint of Self-Organized Criticality (SOC) is
used for describing catastrophic events in di�erent �elds. In this paper, by investigating
the prerequisites of SOC, we show that SOC-like dynamics drive a correlation among dis-
turbances in Iranian bulk power systems. The existence of power-law regions in probability
distribution is discussed for empirical data using maximum likelihood estimat,ion. To verify
the results, long time correlation is evaluated in terms of Hurst exponents, by means of
statistical analysis of time series, including Rescaled Range (R=S) and Scaled Windowed
Variance (SWV) analysis. Also, sensitivity analysis showed that for correct inference in the
existence of SOC in power systems, all disturbances should be recorded for use in statistical
analyses. Greater thresholds for recording disturbances lead to underestimating the Hurst
exponent.
c
 2014 Sharif University of Technology. All rights reserved.

1. Introduction

Power systems, as a critical infrastructure, play an
important role in our modern society. Dependencies
of other infrastructures on electricity make power grids
even more vital, and, therefore, blackouts are a very
challenging problem faced by power system engineers.
Blackouts have direct and indirect consequences, and,
therefore, quantifying associated costs is very di�cult.

For hundreds of years, classic methods in di�erent
sciences have been based on the concept that problems
can be understood by breaking them into smaller parts
and undertaking the solutions of each separately [1].
This method is not applicable for complex systems such
as large power systems. Complex systems can show
catastrophic behavior, where one part of the system can
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a�ect many others in a domino-like fashion [2]. Com-
plexity has been used to understand and describe the
dynamic characteristics of systems in di�erent �elds [3].
The fact that large events follow the same path as
small ones indicates that the consequences of those
events are disastrous [2]. Accordingly, complex system
concepts have signi�cant usages in power systems, such
as assessing the risk of blackouts [4].

SOC is a feature of complex systems used to de-
scribe rare events. It shows that despite a large number
of small events, the consequences associated with large
events are extremely high. Therefore, SOC can be a
theoretical justi�cation for catastrophism. As Bak, the
pioneer of SOC, discussed in his book [2], by following
traditional scienti�c methods and concentrating on an
accurate description of detail, perspective may be lost.
The theory of SOC must be statistical and, accordingly,
cannot produce speci�c or deterministic details. The
power-law, which occurs in an extraordinarily diverse
range of phenomena, is a �ngerprint of the SOC. Power-
law, called heavy-tailed, means that large events (the
events at the tail of distributions) are more likely to



E. Karimi et al./Scientia Iranica, Transactions D: Computer Science & ... 21 (2014) 2264{2272 2265

happen in a power-law distribution than in a Gaussian
distribution [5]. Exponents of power-law, in di�erent
power transmission systems with diverse properties, are
presented in [6], which indicates that blackouts follow
a similar trend.

The similarity between power system behavior
and a classical paradigm of SOC, known as sandpile,
has been shown in [7]. Some indistinguishable statis-
tics, such as the size of avalanches of the sandpile model
and blackout size in a power system, demonstrate
that SOC-like dynamics lead to correlation between
events in power systems rather than power system
dynamics [7]. Carreras and his coworkers argued that
competitive interactions in power systems are customer
load growth and engineering responses to that via
planning and operating policies [3]. This idea has been
the kernel of the proposed models, such as OPA, in
investigating power system blackouts [8-11].

The complex behavior of a blackout time series
has been studied in a considerable number of research
projects. First Carreras et al. [12] showed a power-
law tail for 15-year power system blackouts by means
of R=S and SWV and, subsequently, the correctness
of applying the SWV method to detect long term
memory in a blackout time series was challenged in [13].
Reference [14] shows that a good estimate in SWV will
be obtained for a series of N � 29 points. Therefore,
in [7], only the R=S method was used for 15-year
North American blackouts to demonstrate the power-
law and SOC in power systems. As power system
structures change with time to meet increasing energy
consumption, Hines et al. [15] proposed a scaling
method to adjust all blackout quantities, in order
to avoid underestimating the importance of earlier
blackouts. Also, statistical assessment of [15] on North
American blackouts supports the power-law of previ-
ously observed blackouts. More investigations have
been reported for the USA power system in [12,16,17].

Further analyses on other power systems have
been undertaken to illustrate power-law. SWV and
R=S methods were used in [18] to con�rm the autocor-
relation and power-1aw of blackout events in the time
series of the Chinese power grid. Casals and Sol�e ana-
lyzed European power system disturbances for 7 years
in [19]. Statistical analysis of Swedish power system
disturbance data demonstrated that the size of large
disturbances follows a power-law, and a Poisson process
can be used to model such disturbances [20]. The
power-law for blackouts in the Norwegian power grid
was shown in [21], which proposed a model that could
reproduce the power-law with global redistribution of
the load, with the failure of a link in the system.

Time series analysis of four Chinese transmission
and distribution systems for evidence of SOC was
presented in [22]. It showed that faults in transmis-
sion systems derive their SOC from cascading outages

within a power system and the SOC of atmospheric
systems, while the time series of faults in distribution
systems derive their SOC from that of the atmospheric
system.

To continue exploring the existence of SOC in
power systems, this paper investigates SOC in the
Iranian bulk power system. The paper is organized
as follows. The system description and classi�cation
of 4-year disturbances are presented in Section 2.
SOC conditions, including power-law tail and waiting
time distribution, are investigated and con�rmed in
Section 3. Two methods for determining the power-
law are used:

i) The proposed method in [23], which is a combina-
tion of the maximum likelihood �tting method and
goodness-of-�t tests based on the KS statistic and
likelihood ratios,

ii) Persistent long-term correlation in disturbance
data using the Hurst coe�cient calculation from
R=S and SWV statistical analysis.

Moreover, the exponential distribution of waiting time
between disturbances is investigated in part 3 to prove
SOC in the Iranian bulk power system. A discussion on
results is presented in Section 4. Finally, conclusions
are presented in Section 5.

2. Disturbance classi�cation

2.1. System description
The Iranian power grid is a network with 61.5 GW
of installed capacity and 45 GW of summer peak
demand. IGMC as ISO is responsible for its reliability,
and gathers the related data from 16 regional electric
companies.

2.2. Disturbance time series
Considerable e�orts have recently been undertaken in
data documentation of power disturbances in Iran.
Each event report includes initiating event, partic-
ipating elements, starting and ending time, total
lost power, operator actions, geographical area, and
weather conditions. Three quantities of disturbance
size for investigating power-law are: energy not sup-
plied (MWh), load curtailed (MW), and restoration
time (hrs). Unfortunately, the restoration time of some
disturbances has not been recorded. Figure 1 illustrates
the time series of blackouts for load curtailment in the
Iranian power grid from 2008-2011.

The NERC de�nition for a blackout is the uncon-
trolled loss of more than 300 MW, taking more than 15
minutes, or load shedding of more than 100 MW under
emergency conditions [24]. But, in this paper, we use
disturbances instead of blackouts, which is referred to
as an unplanned interruption of any size taking more
than 5 minutes. Based on this de�nition, there were
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Figure 1. Time series of disturbances for Iran power grid
in 2008-2011 with the resolution of a day.

935 disturbances in 4 years with curtailed load ranging
from 1 to 2800 MW in the period of 2008-2011 and
19.48 disturbances per month.

According to time series de�nition, data points
are measured at sequential time instants at uniform
time intervals. Because of their stochastic charac-
teristic, power system disturbances are scattered at
non-uniform time intervals. Thus, a new time series
is constructed with the resolution of a day, whose
magnitude is zero, except during those instances when
disturbances occur. This is the reason for using any
recorded events of any size.

2.3. Types of initiating events
Initiating events of disturbances are documented in �ve
groups, as follows:

� Protection system malfunctions;

� Weather-related events, including tornados, snow,
rain, lightning, and pollution;

� Operator errors;

� Equipment failure;

� Others, including earthquakes, �res, supply short-
ages, external objects, and bad design.

Figure 2 summarizes the number of each category
per year and total disturbances.

3. Exploring SOC in disturbance time series

Necessary and (perhaps) su�cient criteria for deter-
mining a SOC system are [25]:

� Statistical independency events in time series;

� Nonlinear coherent growth;

� Random duration of rise times.

Figure 2. Initiating events of disturbances in Iran bulk
power system for 4 years.

The �rst and second criteria lead to a power-law
distribution as a necessary, but not su�cient, condition
for SOC processes, while the third criterion is used to
verify or disprove SOC in a system. In this section,
these conditions for three quantities of disturbances in
the Iranian bulk transmission system are investigated.

3.1. Existence of power-law
Detection of a power-law is complicated because there
are large 
uctuations occurring at the tail of the
distribution. It is worth noting that simply plotting a
simple histogram on log scales and �tting a straight line
is not an appropriate method. Power-law distribution
is not easily realized on a logarithmic curve. In [23], a
principled statistical framework for quantifying power-
law behavior in empirical data is presented. The ap-
proach combines maximum-likelihood �tting methods
with goodness-of-�t tests based on the KS statistic and
likelihood ratios. This method is used in this section.

Suppose that x represents a quantity of time
series. The �rst tool needed for investigating power-
law distribution in a time series is a histogram, which
can be constructed easily by means of the following
equation:

p(X = x)dx = Pr(x � X � x+ dx) = Cx��;

x � xmin; (1)

where, X is the observed value, C is normalization
constant, and � is a scaling parameter. There are
also some occasional exceptions, �, typically, lies in
the range [23]. Moreover, xmin is the lower bound of
the power-law region.

When dx! 0, p(X) will be the PDF of the time
series. However, analyses of blackout size in North
America show that the probability distribution has a
power-law tail with an exponent between -2 and -1 [26].

The following three steps are appropriate for
determining the parameters of power-law distribution.
More details can be found in [23]:
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1. Estimating the parameters, � and xmin, using a
maximum likelihood estimator.

Assume that the PDF for x � xmin exactly
follows power-law distribution. Then, maximum
likelihood estimators can be used for estimating the
scaling parameter, as follows:

�̂ = 1 + n

"
nX
i=1

ln
xi
xmin

#�1

; (2)

where, xi for i = 1; 2; � � � ; n are the empirical data,
which are greater than xmin, and �̂ denotes the
estimated �, which is derived from data.

Now, the best �tted power-law is derived from
the following optimization:

min KS; (3)

where, KS is the maximum distance between two
time series, namely; the original data (D(x)) and
the �tted power-law (F (x)), as follows:

KS = max
x�xmin

jF (x)�D(x)j: (4)

2. Calculating the goodness-of-�t between the original
data and the �tted power-law using p-value.

For calculating the p-value, numerous syn-
thetic data sets, according to the desired distribu-
tion, are generated, and the KS criterion for each of
them is calculated. Then, the p-value is the fraction
of the synthetic data sets for which KS is larger than
that of empirical data.

The power-law is rejected if the p-value is
smaller than 0.1. Parameters of the �tted power-
law for the aforementioned quantities are listed in
Table 1. It contains xmin, �, KS, and p-value for
2500 synthetic sets. As seen in this table, all data
sets are consistent with power-law distribution.

3. Comparing the power-law with alternative distribu-
tions, which might give a better �t for the present
time series, via a likelihood ratio test.

The principal of a likelihood ratio test is to
calculate the likelihood of two alternative distributions.
The higher likelihood shows the better �t. It is possible
to calculate the logarithm of the ratio of these two
likelihoods, which may be positive or negative. Positive
likelihood values support the power law hypothesis, and
p-values lower than 0.1 indicate no signi�cant e�ect
on results [19]. This step strengthens the power-law
hypothesis. There are more descriptions in [23].

Numerous synthetic data from exponential and
Weibull distributions were generated using appropriate
parameters for each quantity. Table 2 shows the p-
value and the likelihood ratio for these distributions.
Therefore, these distributions are ruled out.

The CDF is more robust than PDF against

uctuations. Therefore, Figure 3 illustrates the CDF

Table 1. Parameters of �tting power-law to CDF of
disturbance time series.

Quantity xmin

(MW)
� KS p-value

Load curtailed 89 2.46 0.0322 0.5623
Energy not supplied 251 2.04 0.0273 0.9412
Restoration time 6.1 2.91 0.0621 0.8318

Table 2. Likelihood ratios for other distributions.

Distribution Exponential Weibull
LR p-value LR p-value

Load curtailed -1.23 0.0185 1.23 0.4425
Energy not supplied -0.23 0.0248 3.45 0.5525
Restoration time -2.05 0.0194 1.65 0.6235

Figure 3. CDF of disturbances and its power-law tail in 2008-2011 for Iran power grid.
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of blackouts for the Iranian power grid in 2008-2011,
and its power tail for bins equals 1 MW. Power-law
distribution in power system blackout data is applied
for the tail of the distribution, which means for values
greater than xmin. Note that in a real power system,
the upper limit of the power-law region is a �nite
cuto�, which is consistent with the largest possible
blackout [17] and equal to the peak demand of the
system.

3.2. Long memory in blackouts
There are several alternative de�nitions of long memory
functions that are mathematically investigated in [27].
Generally speaking, a time series has long memory
when a past event has a decaying e�ect on future
events. Thus, some memory of past events will be for-
gotten as time di�erences increase. An autocorrelation
function is used to describe long term memory. Dobson
argued that the dependency of failures in blackouts
creates the power-law region. Thus, as a power
system experiences more stress, further failures become
more likely [17]. This means that autocorrelation and
smaller blackouts will change into larger ones.

Also, self-similarity and scale-invariance are in-
dicative of long memory. The decay of the auto
covariance function in a long memory time series
exhibits power-law, and so decays slower than exponen-
tially [27]. For large time di�erences, noise dominates
the signal. Therefore, it is di�cult to calculate the
auto covariance function. An alternative method is to
estimate H, which is a measure of the degree of long-
range dependence in a time series.

Estimation of H in the time series was originally
developed in hydrology by Harold Edwin Hurst. Since
then, H estimation has been applied to various �elds,
including biology, biophysics, computer networking,
�nancial markets, seismic activity, and climate change.
H ranges from 0 to 1 for which the closer H is to 1,
the greater the degree of persistence or long-range de-
pendence. H = 0:5 corresponds to independent events,
which is the boundary of anti-persistent and persistent
behavior [28]. Two famous statistical analysis methods
for estimating H are R=S and SWV. The following
subsections investigate these methods for the Iranian
power system blackout time series.

3.2.1. R=S Analysis
The method for analysis of long records in a time series
was �rst proposed by Harold Edwin Hurst, and named
R=S analysis, which is the range of partial sums of
deviations of a time series from its mean, rescaled by
its standard deviation. A short explanation of the
R=S method is presented in this subsection from [7].
Consider the time series:
fXt : t = 1; 2; � � � ; ng: (5)

Then, construct a new series as follows:

fYt : t = 1; 2; :::; ng; (6)

where:

Yt =
tX
i=1

Xi: (7)

Now, a new series with m elements is constructed as
follows:

Y m =
n
Y (m)
u ; 1; 2; � � � ; n

m

o
; (8)

where,

Y (m)
u = fYum�m+1; � � � ; Yumg: (9)

The range of each series (Rim) and its standard de-
viation (�im) must be calculated for the n=m series.
Accordingly, the R=S statistic is a function of (m):

R=S =
m
n

n=mX
i=1

Rim
�im

: (10)

More details can be found in [1]. A package was
developed to estimate H and tested for reliable results.
The estimated H for 1000 Brownian motion with H =
0:5 was 0.53, with standard deviation of 0.0817.

R=S analysis for curtailed load in the Iranian
power system is illustrated in Figure 4.

Table 3 demonstrates the H for blackout quan-
tities based on R=S analysis. For all quantities,
H is signi�cantly greater than 0.5, which shows its
persistent behavior.

3.2.2. SWV analysis
The SWV analysis was developed by Cannon and his
coworkers in 1997, in [14]. There are three SWV meth-
ods, namely, standard, linear regression detrended, and

Figure 4. R=S analysis for the curtailed load in
disturbances for Iran power grid.
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Table 3. Hurst exponent for disturbance quantities based
on R=S analysis.

Quantity Unit H
Load curtailed MW 0.6865
Energy not supplied MWh 0.5959
Restoration time hrs 0.5977

Figure 5. SWV analysis for the curtailed load in
disturbances for Iran power grid.

bridge detrended. For all these methods, both the bias
and standard deviation of estimates are less than 0.05
for a series havingN � 29 points [14]. In this paper, the
standard method is used. Here, a brief description of
this method is presented, which is duplicated from [3].
Consider Eqs. (5)-(9). The standard deviation series of
Y (m)
u is calculated by:

�m =

n=mP
u=1

�(u)
m

n=m
; (11)

where, the standard deviation of Y (m)
u is represented

by �(u)
m .
Reference [13] shows that if series X has a power

law tail, so does the standard deviation series, �m.
Therefore:
�m / mH : (12)

Similar to the previous section, the estimated H for
1000 Brownian motion with H = 0:5 was obtained. Its
mean value was 0.51, with standard deviation equal to
0.0963. SWV analysis for a curtailed load is illustrated
in Figure 5.

As shown in Table 4, H, for blackout quantities
based on SWV analysis, for all quantities, are signif-
icantly greater than 0.5, which shows their persistent
behavior.

3.2.3. R=S and SWV Comparison
Carreras and his colleagues did not use the SWV
method in their paper, as they believe that in this

Table 4. Hurst exponent for disturbance quantities based
on SWV analysis.

Quantity Unit Hurst exponent

Load curtailed MW 0.8958

Energy not supplied MWh 0.8644

Restoration time hrs 0.6806

method, at larger window sizes, the correlations be-
tween blackouts are a�ected by the correlations be-
tween absences of blackouts [3]. This is because a
series partitioned into large windows has fewer average
standard deviations. Thus, as proposed in [14], large
time lags can be excluded. On the other hand, Lo
pointed out that the statistical R=S test used by
Mandelbrot is too weak and is unable to distinguish
between long and short memory [29]. However, Hurst
exponents estimated in two methods are su�ciently
greater than 0.5. One could conclude that there is long-
term persistent correlation, which, therefore, con�rms
the power-law region in the Iranian disturbance time
series.

3.3. Waiting time distribution
Waiting time is the time interval between subsequent
events in a time series. It must be noted that the
duration of an event and the waiting time between
two subsequent events are di�erent. Therefore, the
statistical distribution of waiting time intervals and
event durations are not identical [25].

Events in a SOC system are unpredictable and
thus exhibit a random time scale. Waiting times
follow a straight line on a semi-log curve that means
exponential distribution. Thus, if a blackout as a catas-
trophic event has occurred, the occurrence of the next
one gradually slows down. Some physical processes
might produce similar power-law distributions to SOC
processes. However, they can be distinguished from
their di�erent waiting-time distributions. Waiting time
distributions were often used to verify or disprove a
SOC system [25]. Distribution of waiting times in a
blackout time series is presented on a semi-log curve
in Figure 6. Clearly, the waiting time distribution of
disturbances in the Iranian bulk power system obeys
exponential distribution, which con�rms SOC in this
system.

4. Discussion on the results

In this section, the importance of lower limits of
recorded data is investigated. It was shown that quan-
tities of disturbances obey the power-law for values
greater than xmin. Suppose that disturbances with
consequences smaller than a threshold are ignored.
This threshold was changed and H was estimated
for the obtained time series of disturbances using



2270 E. Karimi et al./Scientia Iranica, Transactions D: Computer Science & ... 21 (2014) 2264{2272

Figure 6. Waiting time between disturbances in hours for
Iran power grid.

Figure 7. Sensitivity analysis of H for di�erent values of
xmin in curtailed load.

R=S analysis. This sensitivity analysis for curtailed
load is undertaken and the results are illustrated in
Figure 7. As can be seen, greater thresholds lead to
underestimate H. Thus, for con�dence in results, it
is better that the time series of disturbances contains
all disturbances, as treated in this paper. It should be
noted that underestimating xmin leads to a smaller scal-
ing exponent. For instance, blackout distribution of the
North American power system, according to [23], using
maximum-likelihood �tting, obeys xmin = 1016 MW
and � = 1:19, whereas, using other methods, the
parameters of the power-law are xmin = 500 MW and
� = 0:97 [15].

5. Conclusion

Further research into other empirical data from various
power systems with di�erent properties would resolve
the present doubts on the existence of power-law

regions in blackouts. Despite the existing di�erences
between Iran and the above-mentioned countries in
culture, continent, and in the structure of the power
grids, such as dimensions and regulations, SOC is
a good universal theorem for justifying blackouts in
power systems.

This paper extends previous investigations done
on the empirical data of power system blackouts. It
demonstrates that the distribution probability for three
quantities of disturbances in the Iranian bulk power
system obeys the power-law as a �ngerprint of SOC.
Also, the estimated Hurst exponent in the disturbance
time series was signi�cantly greater than 0.5, which
indicates persistent long-term memory and, therefore,
con�rms the existence of the power-law. Exponen-
tial distribution of waiting time between disturbances
proved SOC in the Iranian bulk power system. The
power-law exponent for this system is in a typical range
between -3 and -2, which means that the occurrence of
catastrophic blackouts is more likely.

It has been shown that for assurance in esti-
mating the Hurst exponent, all disturbances should
be recorded for use in statistical analyses. Greater
thresholds lead to underestimating the Hurst exponent
and, therefore, incorrect inferences.
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