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Abstract. Recently, it has been shown that applying MIMO technology, i.e. using
multiple antennas at the transmit side and multiple antennas at the receive side, improves
the performance of object detection and localization. In such scenarios, the spatial diversity
speci�cally helps overcome the fading of the cross section of the object, leading to reduced
probability of missed detection. Such a phenomenon is, in fact, the dual of probability of bit
error reduction in communication systems due to diversity gain. Despite the importance
of such performance enhancement, this subject has not been su�ciently investigated in
the PCL (Passive Coherent Location) schemes, where the transmitters (or illuminators
of opportunity) used for localization are already present in the environment. Especially,
in cases where the transmitters are working in a SFN (Single Frequency Network), such
as the DVB-T (Digital Video Broadcasting-Terrestrial) signal, and all are transmitting
the same signal, the situation becomes of higher importance. Obviously, the e�ect of the
SFN environment invalidates the assumption of sending orthogonal waveforms traditionally
used in localization schemes. In this paper, we design the Neyman-Pearson detector for a
PCL scheme and show that we can achieve the desired diversity gain for such a design as
well.
c 2014 Sharif University of Technology. All rights reserved.

1. Introduction

1.1. Passive coherent location
PCL has attracted much attention due to its advan-
tages over active detection schemes. Low-cost passive
localization, which requires no frequency allocation,
is a good solution for increased localization at a
lower cost [1]. The feasibility of di�erent kinds of
opportunistic signal used for this application has been
investigated earlier, for example, in the case of FM [2],
analogue TV [3,4], DTV (Digital TV) [5-7], satellite
systems [8], and GSM [9,10]. New digital signals, such
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as Digital Audio/Video Broadcast (DAB/DVB), are
also excellent candidates [11-13], as they are widely
available and can be easily decoded.

In traditional active systems, the object's range
is de�ned by comparing the time of the transmitted
and received pulses. However, such information is not
directly available in the case of the PCL. Instead, two
antennas are used: one for receiving the signal directly
from its main source without reections from objects of
interest (reference antenna) and the other for collecting
the reections from objects in the environment (reec-
tion antenna). Figure 1 depicts the overall structure of
the PCL.

Detection is done through computation of CAF
(Cross Ambiguity Function) computed according to
Eq. (1). It is a criterion of how much correlation exists
between the reference and the reection signal. A given
CAF's peak in a range-Doppler cell is a representative
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Figure 1. Structure of a passive scheme.

of a target in that range and Doppler frequency.

j�(�; �)j2 = j 1
N

NX
n=1

x(n)r�(n� �)e�j 2�
N �nj2; (1)

where x[n] is the signal at the target channel, r[n] is the
reference signal, � is the Doppler shift, � is the sample
shift and N is the number of samples collected.

1.2. Multi-Input Multi-Output (MIMO), an
upcoming technology for localization

Recently, use of MIMO techniques for improving
the performance of localization schemes has attracted
much attention. Generally, such MIMO schemes are
divided into two categories: widely separated [14] and
colocated antennas [15]. In the former case, multiple
transmitters and receivers that are widely separated are
used. The main advantage of such con�guration is that
by obtaining signals from di�erent angles, the probabil-
ity of missed detection decreases; a concept also known
as spatial diversity in MIMO communication. In fact,
as shown in [14] the concepts of spatial diversity and
multiplexing gain emerge in a manner dual to the ideas
in traditional MIMO communication. On the other
hand, in the case of colocated antennas, transmitters
and receivers are located at nearby positions. Such con-
�guration is similar to phased array systems, with the
di�erence that signals emitted by each antenna can be
totally uncorrelated with the other antennas. Recent
studies have shown that the widely separated antenna
con�guration leads to enhanced detection performance
(Diversity Gain) [16-18], better tracking [19], and
higher resolution (spatial multiplexing gain) [20]. On
the other hand, improved parameter identi�ability [21],
better target identi�cation and classi�cation [22], di-
rect applicability of adaptive arrays for detection and
parameter estimation [23,24], and enhanced exibility
for transmit beam-pattern design [25,26] are achieved
by the colocated antennas con�guration.

1.3. MIMO passive coherent location, a new
concept

By combining the ideas of passive and MIMO localiza-
tion, one can achieve the bene�ts of both schemes by
using multiple receivers to detect objects illuminated
by multiple noncooperative transmitters. In general,
the transmitters may be sending di�erent signals (e.g.
a broadcasting FM radio with a GSM base station).
One case of high interest is the DVB-T SFN (Single
Frequency Network), in which all TV transmitters are
broadcasting the same data at the same frequency
band.

1.4. Diversity gain in MIMO PCL
Multipath fading is one of the most fundamental
features of wireless channels. Because multiple received
replicas of the transmitted signal sometimes combine
destructively, there is a signi�cant probability of severe
fading. Without proper means to mitigate such fading
scenarios, ensuring reasonable reliability requires large
power margins [27]. One of the most powerful tech-
niques to mitigate the e�ects of fading is to use the di-
versity combining of independently fading signal paths.
Diversity-combining uses the fact that independent
signal paths have a low probability of experiencing deep
fades simultaneously. Thus, the idea behind diversity
is to send the same data over independent fading paths.
These independent paths are combined in such way
that the fading e�ect on the resulting signal is reduced.
There are many ways of achieving independent fading
paths in a wireless system. One method is to use
multiple transmit or receive antennas in an antenna
array con�guration, where array elements are separated
enough in space [28]. Therefore, rather than making
the success of a transmission entirely dependent on a
single fading realization, the probability of failure is
reduced by exploiting multiple such realizations [27],
leading to spatial diversity.

Mathematically, in MIMO communication, diver-
sity gain is de�ned at high SNR values as [29]:

lim
SNR!1

log Pe
log SNR

= �d; (2)

where Pe is the error probability and d denotes diversity
gain. It should be noted that in MIMO detection, Pe
is replaced by Pmiss (missed detection probability).

It is well known that if the object to be localized
is much greater than the wavelength of a transmitted
signal, the received signal will be random and uctu-
ating in time. Signal uctuations deteriorate detection
performance [30], as the object's cross section parallels
the role of the random wireless channel. The reason
is that if an object's size is much greater than the
wavelength of a transmitting signal, the di�erence in
distances from scatterers to receiver antennas signif-
icantly exceeds the wavelength. Consequently, the
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phase of signals arriving from di�erent scatterers may
uctuate signi�cantly. Even small random rotations of
a real object about its center of mass lead to signi�cant
changes in distance, and hence, sharp phase variations
of signals received from di�erent scatterers [30]. Cor-
respondingly, parallel to MIMO communication, it is
possible to obtain diversity by looking at an object from
di�erent angles.

Obtaining diversity gain in MIMO detection has
recently been highly investigated, [17,31,32]. But,
such analysis has not yet been performed in the case
of applying MIMO to PCL. The main di�erence is
that here, we use noncooperative transmitters whose
transmitted signal is not under control. Especially in
a DVB-T network of transmitters, all the transmitters
send the same signal in the same frequency.

In previous works on MIMO detection, it is
assumed to have active transmit antennas. Mostly,
it is assumed that the transmitted waveforms are
orthogonal [33-38], so that they can be separated at
the receiver side, a property that is not true in the case
of MIMO PCL (especially DVB-T, which is almost the
focus of PCL because of its unique properties for radar
application and also being broadcasted in a network,
making it quite suitable for MIMO application). For
example, in [31], it is assumed that:Z 1
�1

sk(t)s�k0(t)dt �
8<:1 if k = k0

0 if k 6= k0
(3)

Also, in [32], the authors want to obtain the diversity
gain when the waveforms are not orthogonal (but not
fully correlated). They use an orthogonal basis to show
the non-orthogonal transmitted waveforms, where the
dimension of this basis is Mn, which is less or equal
to the number of transmitters (being equal in the case
of transmitting orthogonal signals). Finally, they have
concluded that:

d = minfNMn; Qg;
where Q is the number of scatterers. However, in our
case (MIMO SFN PCL e.g. DVB-T), Mn = 1 (all
of the transmitters are sending the same signal) and,
therefore, the diversity gain is not proportional to the
number of transmitters, according to the results of the
aforementioned paper.

In addition, in [39], the optimal test statistics
for a statistical MIMO radar (or equivlently a MIMO
radar with widely separated antennas) using non-
orthogonal signals are derived. However, the authors
in [39] have not considered the fact that di�erent paths
experience di�erent loss paths from the transmitter
to the target to the receiver. Indeed, in a MIMO
radar with widely separated antennas, the transmitted
signals arrive at the receiver with di�erent delays and

di�erent path losses, which is ignored in the signal
model of [39].

In this paper, we want to see if we can obtain the
main advantage of the MIMO technique (i.e. diversity
gain) in MIMO DVB-T based passive radar (PCL).
In Section 2, we will design the detector structure for
a MIMO PCL in a single frequency network. Pmiss
will be derived in a closed form, and obtaining a
spatial diversity gain proportional to the product of
the number of the transmit and receive antennas will
be proved. Simulations for di�erent environments are
included in Section 3. Finally, Section 4 concludes the
paper.

2. Detection in the MIMO SFN PCL

Assume that there are M illuminators of opportunity
(e.g. broadcasting DVB-T signals in a Single Frequency
Network), N receive sensors and an object to be
localized. For simpli�cation, we have assumed that
the object to be localized has no Doppler, although
such an assumption is not critical in our derivations.
The reection antenna is assumed to be omnidirec-
tional, collecting signals arriving from all directions.
An important obstacle in passive coherent location is
the Direct Path Interference (DPI), which should be
rejected from the reection channel. Di�erent schemes
to overcome such an e�ect have been recently presented
for PCL systems, where satisfying practical results have
been achieved [2,7,40]. Therefore, in this paper, we
assume that such schemes have been incorporated and
the remaining DPI e�ect is negligible.

At the receiver side, after DPI cancellation, the
signal is passed through a CAF processor to obtain
the delays and Doppler frequencies of di�erent echoes
collected from the object to be localized. The threshold
at the output of the CAF processor for declaring that
an object is detected is determined by the desired false
alarm rate (Pfa). In the case of MIMO PCL, the signal
received at the n'th receive antenna is presented by
Eq. (4):

rn(t) =
r
Et
L

MX
i=1

�ni
r1ir2i

s(t� �i) + n(t); (4)

where s(t) is the transmitted signal (the same for all
transmitters), r1i and r2i are the distance from the
transmitter to the target and the distance from the
target to the receiver, respectively, M is the number of
transmitters, �i is the cross-section gain of the object
illuminated by the signal transmitted from the ith
transmitter, Et is the energy of the transmitted signal,
L is the channel loss, and �i denotes its delay.

We de�ne the probability of missed detection
(Pmiss) as the probability that we miss all echoes of
the desired object (similar to [41]).
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Pmiss =
MY
m=1

NY
n=1

Pmnmiss; (5)

where Pmnmiss is the probability of missing the object's
echo from the m'th transmitter at the n'th receiver.

The reason for considering the case of missing all
echoes of the object as missed detection is that we can
design the detector such that after detecting one or
two echoes, the threshold can be reduced adaptively in
order to detect a su�cient number of echoes (e.g. in the
case of one receiver three echoes). Although, by such
an approach Pfa would increase, the data association
algorithm we have developed in [42], used to associate
these echoes to objects, will eliminate such false echoes.
In fact, the target localization schemes developed for
MIMO DVB-T based PCL, such as [42], assume that
each object's echo is detected with a given probability
of detection. So, even if some (but not all) echoes are
missed, it might still be possible to localize the object
using the remaining echoes' TDoAs (Time Di�erence
of Arrival). Such algorithms would de�nitely fail if
no echo from the object is detected at the receiver.
However, as the number of detected echoes decreases,
the probability of correct localization decreases as well.
Another reason is that we can localize the object by
other techniques, such as Direction-Of-Arrival (DOA)
estimation, after detecting it at an acceptable Pmiss
level. In addition, the reason for multiplying the
missed detection probabilities comes from the fact
that the antennas are widely separated, resulting in
decorrelated echoes [14].

2.1. Problem formulation
Next, we explore the probability of missed detection
in the MIMO PCL. The existence of a target in a
speci�c bistatic range cell is a random process with
unknown probability. We use a Neyman-Pearson
detector because a priori probabilities are unknown.
Consequently, we compare the likelihood ratio, L(y),
with threshold � to derive the false alarm probability.
So, at the n'th receiver, for a speci�c bistatic range cell,
we have:
H0 : y = n;

H1 : y = n + ls; (6)

where y, s and n are discrete samples of signals,
rn(t), s(t� �m) and n(t), with length NT , respectively.
Consequently, y is the received signal vector at the n'th
receiver and s is the signal from the m'th transmitter.

In general, the signal is complex, i.e. s = s0ej�,
where s0 = jsj is real. Multiplying e�j� by both sides
of Eq. (6), we have:

H0 : e�j�y = y0 = e�j�n = n0;

H1 : e�j�y = y0 = e�j�n + ls0 = n0 + ls0; (7)

where n0 denotes complex noise with the same proper-
ties of n. As ls0 is real, only the real part of noise is
important. As a result, the hypothesis test is simpli�ed
as below:

H0 : y = n; H1 : y = n + ls; (8)

where, for simpli�cation, we have denoted Re(y0) by y,
s0 by s, and Re(n0) by n. Therefore, in the rest of the
equations, the signals are real.

It should be noted that the signals presented in
other bistatic range cells that make interference in this
range cell, are included in n. For example, for the
DVB-T signal, which is the case of interest, due to its
highly randomized nature, it can be considered as white
noise [6,43]. Consequently, the signals of other cells
constitute a white noise component for n. Here, we
assume the general case of n � N (0;R). In subsequent
sections, we will consider four di�erent cases for R to
represent di�erent situations of considering noise and
clutter.

For H1, where we assume the target is present,
we assume its RCS follows the Swerling I model (also
called Rayleigh scatter). If �2 represents RCS, the
distribution function of � is:

f�(�) =
�
�2

0
e
� �2

2�2
0 ; (9)

where �2
0 is the RCS average value.

In Eq. (8), the coe�cient l (the gain experienced
by the signal from the transmitter to the receiver) is:

l =
�v
r1ir2i

; (10)

where:

v =

s
PtGtGrIp�2

(4�)3LcLr
: (11)

In the above equation, Pt is the transmitted power,
Gt and Gr are the transmitting and receiving antenna
gains, respectively, Ip is the processing gain at the
receiver, Lc is the scattering loss, and Lr is the receiver
loss. Therefore, the distribution function of l is:

fL(l) =
�
�2
t
e
� �2

2�2
t ; (12)

where:

�2
t =

PtGtGrIp�2
0�2

(4�)3r2
1ir2

2iLcLr
: (13)

Now, considering the above equations:
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fY(yjH0) = fn(y) =
1

(2�)
NT
2 jRj 12 e

� yTR�1y
2 ; (14)

fY(yjH1; l) = fn(y� ls)

=
1

(2�)
NT
2 jRj 12 e

� (y�ls)TR�1(y�ls)
2 ; (15)

fY(yjH1) =
Z 1

0
fY(yjH1; l)fL(l)dl

=
Z 1

0

1

(2�)
NT
2 jRj 12 e

� (y�ls)TR�1(y�ls)
2

l
�2
t
e
� l2

2�2
t dl

=
e� 1

2 yTR�1y

(2�)
NT
2 jRj 12�2

t

�
Z 1

0
e
� 1

2 l
2sTR�1s+ 1

2 l(s
TR�1y+yTR�1s)� l2

2�2
t ldl

=
e� 1

2 yTR�1y

(2�)
NT
2 jRj 12�2

t

�
Z 1

0
e
� 1

2 l
2(sTR�1s+ 1

�2
t

)+ 1
2 l(s

TR�1y+yTR�1s)
ldl

=
e� 1

2 yTR�1y

(2�)
NT
2 jRj 12�2

t

Z 1
0

e�C2
1 l

2+C2lldl;
(16)

where:

C2
1 =

1
2

(sTR�1s +
1
�2
t

); (17)

C2 =
1
2

(sTR�1y + yTR�1s); (18)

so:

fY(yjH1)=
e� 1

2 yTR�1y

(2�)
NT
2 jRj 12�2

t

Z 1
0
le
�(C1l� C2

2C1
)2+ C2

2
4C2

1 dl

=
e
� 1

2 yTR�1y+ C2
2

4C2
1

(2�)
NT
2 jRj 12�2

t

Z 1
0

le�(C1l� C2
2C1

)2
dl

=
e
� 1

2 yTR�1y+ C2
2

4C2
1

(2�)
NT
2 jRj 12�2

tC2
1

�
 Z 1
� C2

2C1

xe�x2
dx+

Z 1
� C2

2C1

C2

2C1
e�x2

dx

!

=
e
� 1

2 yTR�1y+ C2
2

4C2
1

(2�)
NT
2 jRj 12�2

tC2
1

�
 
�1

2
e�x2 j1� C2

2C1

+
p

2�C2

2
p

2C1
Q

 
�
p

2C2

2C1

!!
; (19)

where:

Q(x)=
Z 1
x

1p
2�
e�u

2
2 du; (20)

fY(yjH1) =
e
� 1

2 yTR�1y+ C2
2

4C2
1

(2�)
NT
2 jRj 12�2

tC2
1

�
�
�1

2
e�( C2

2C1
)2

+
p
�C2

2C1
Q(� C2p

2C1
)
�

=
e� 1

2 yTR�1y

2(2�)
NT
2 jRj 12�2

tC2
1

�
 

1 +
p
�C2

C1
e
C2

2
4C2

1 Q(� C2p
2C1

)

!
:

(21)

The likelihood ratio is de�ned as below. The detection
is done by comparing this ratio with a determined
threshold:

L(y) =
fY(yjH1)
fY(yjH0)

=
1

2�2
tC2

1 
1 +
p
�C2

C1
e
C2

2
4C2

1 Q(� C2p
2C1

)

!
: (22)

If L(y) is greater than the threshold, hypothesis H1 is
chosen, otherwise H0:

L(y) ? �1: (23)

Since L(y) is a monotonically increasing function of
C2, the previous comparison can be replaced by the
following comparison:

C2 ? �: (24)

Here, we assume R is symmetric (it is a simpli�cation
assumption that is consistent with the situations we
will consider in the simulations section), i.e.:

RT = R: (25)

Therefore, we have:

C2 = sTR�1y ? �: (26)

Subsequently, we de�ne:

v , R�1s: (27)

As a result:

C2 = vTy = �NTi=1viyi ? �: (28)

This is the structure of a �lter (similar to the matched
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�lter) matched to v. Now, we can compute Pfa:

T , �NTi=1viyi = vTy: (29)

Under the assumption of H0, T is a linear combination
of NT Gaussian variables. Therefore, it is Gaussian too
and its mean and variance can be obtained as follows:

EfT jH0g = EfvTyjH0g = vTEfyjH0g
= Efng = 0; (30)

varfT jH0g = EfT 2jH0g = EfvTy yTvjH0g
= vTEfyyT jH0gv = vTRv

= (R�1s)TR(R�1s) = sTR�1RR�1 s

= sTR�1s: (31)

So under the assumption of the hypothesis H0, T has
the following distribution:

T jH0 � N (0; sTR�1s): (32)

The probability of a false alarm can be computed as:

Pfa = PrfT > �jH0g = Q(
�p

sTR�1s
): (33)

If:

Pfa = �; (34)

then:

� =
p

sTR�1sQ�1(�); (35)

where � is the detector's threshold, which is determined
according to the desired Pfa from the above equation.

Now, the probability of detection is computed
under the assumption of H1:

T jH1 = vTyjH1 = vT (n + ls) = vTn + lvT s: (36)

For this n'th receiver, the probability of detecting
the signal emitted by the m'th transmitter and then
reected by the target can be computed as follows:

Pmnd = PrfT > �jH1g = PrfvTn + lvT s > �g

=
Z 1

0
PrfvTn > � � vT sxgfL(x)dx: (37)

From Eq. (27), we have:

PrfvTn > � � vT sxg = Q(
� � vT sxp

sTR�1s
); (38)

vT s = sTR�1s; (39)

PrfvTn > � � vT sxg = Q(
� � sTR�1sxp

sTR �1s
): (40)

From Eqs. (37) and (39), we can write:

Pmnd =
Z 1

0
Q
�
� � sTR�1sxp

sTR�1s

�
x
�2
t
e
� x2

2�2
t dx: (41)

Substituting the threshold from Eq. (35):

Pmnd =
Z 1

0
Q(Q�1(�)�psTR�1sx)

x
�2
t
e
� x2

2�2
t dx

=
Z 1

0

�
1�Q(

p
sTR�1sx�Q�1(�))

� x
�2
t
e
� x2

2�2
t dx

=
Z 1

0

x
�2
t
e
� x2

2�2
t dx

�
Z 1

0
Q
�p

sTR�1sx�Q�1(�)
� x
�2
t
e
� x2

2�2
t dx

=1�
Z 1

0
Q(
p

sTR�1sx�Q�1(�))
x
�2
t
e
� x2

2�2
t dx;
(42)

Pmnmiss =1� Pmnd =
Z 1

0
Q
�p

sTR�1sx�Q�1(�)
�

� x
�2
t
e
� x2

2�2
t dx; (43)

u , x2

2�2
t
; (44)

Pmnmiss =
Z 1

0
Q(
p

sTR�1s�t
p

2u�Q�1(�))e�udu;
(45)

A , �t
p

2sTR�1s; (46)

B , Q�1(�); (47)

Pmnmiss =
Z 1

0
Q(A
p
u�B)e�udu

=
Z 1

0

�Z 1
A
p
u�B

1p
2�
e� t

2
2 dt
�
e�udu; (48)

t > A
p
u�B ) t+B

A
>
p
u) (

t+B
A

)2 > u: (49)

We can rewrite the probability of missed detection by
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displacing the bounds of the two integrals as:

Pmnmiss =
1p
2�

Z 1
�B

e� t
2
2 dt

Z ( t+BA )2

0
e�udu

=
1p
2�

Z 1
�B

e� t
2
2 (1� e�( t+BA )2

)dt

= Q(�B)� 1p
2�
e�B

2

A2

Z 1
�B

e�
t2(A2+2)

2A2 � 2tB
A2 dt

= Q(�B)� 1p
2�
e�

B2

A2 + 2B2

A2(A2+2)

�
Z 1
�B

e
�( tA

q
A2+2

2 + B
p

2
A
p
A2+2

)2

dt

= Q(�B)� 1p
2�
e�

B2

A2 + 2B2

A2(A2+2)

r
A2

A2 + 2

�
Z 1
�BA
p
A2+2+ 2B

A
p
A2+2

e� t
02
2 dt0

= Q(�B)�
r

A2

A2 + 2
e
�B2

A2+2

�Q
 
B
A

 r
4

A2 + 2
�pA2 + 2

!!
:

(50)

Here, we have substituted B and have used the prop-
erty of the Q-function:

Q(�B) = 1�Q(B) = 1�Q(Q�1(�)) = 1� �; (51)

Pmnmiss = 1� ��
r

k2

k2 + 1
e�

(Q�1(�))2

2(k2+1)

�Q
 
Q�1(�)p

2k

 r
2

k2 + 1
�p2(k2 + 1)

!!
= 1� ��

r
k2

k2 + 1
e�

(Q�1(�))2

2(k2+1)

�Q
�
Q�1(�)
k
p
k2 + 1

(1� (k2 + 1))
�

= 1� ��
r

k2

k2 + 1
e�

(Q�1(�))2

2(k2+1)

�Q
� �kp

k2 + 1
Q�1(�)

�
;

(52)

where:

k2 =
A2

2
= �2

t s
TR�1s: (53)

If we de�ne:

dmn , � lim
SNR!1

logPmnmiss
log SNR

; (54)

we will deduce (from Eqs. (2) and (5)):

dtotal = �Mm=1�Nn=1d
mn: (55)

Here, by de�ning the SNR as the ratio of the detector's
output in the case of H1 to the detector's output in the
case of H0, we have:

SNR =
EfT 2jy = lsg
EfT 2jy = ng =

Ef(lvT s)2g
EfvTnnTvg

=
(vT s)2Efl2g

vTRv
=

(sTR�1s)2�2
t

sTR�1s
= �2

t s
TR�1s;

(56)

k2 = SNR; (57)

lim
SNR!1P

mn
miss = lim

k!1P
mn
miss = lim

k!1 1� �

�
r

k2

k2 + 1
e�

(Q�1(�))2

2(k2+1) Q
� �kp

k2 + 1
Q�1(�)

�
;
(58)

lim
k!1

r
k2

k2 + 1
= lim
k!1 1� 1

2k2 + o(
1
k2 ); (59)

where the de�nition of o(:) comes from:

f(x) = o(g(x)), lim
x!1

f(x)
g(x)

= 0; (60)

lim
k!1 e

� (Q�1(�))2

2(k2+1) = lim
k!1 1� (Q�1(�))2

2k2 + o(
1
k2 ):

(61)

Using the Taylor series of the Q-function, we have:

Q(x0 + �) = Q(x0) + �Q0(x0) + o(�); (62)

Q0(x0) =
d
dx

Z 1
x

1p
2�
e� t

2
2 dtjx=x0

= � 1p
2�
e� x

2
2 jx=x0 = � 1p

2�
e�

x2
0
2 ; (63)

Q(x0 + �) = Q(x0)� � 1p
2�
e�

x2
0
2 + o(�); (64)
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From Eq. (64), we can write:

lim
k!1Q

� �kp
k2 + 1

Q�1(�)
�

= Q

 
�
r

k2

k2 + 1
Q�1(�)

!
= Q(�Q�1(�)(1� 1

2k2 + o(
1
k2 )))

=Q(�Q�1(�))� 1
2k2Q

�1(�)
1p
2�
e� (Q�1(�))2

2

+ o(
1
k2 ) = 1� �� 1

2k2Q
�1(�)

1p
2�
e� (Q�1(�))2

2

+ o(
1
k2 ): (65)

Using Eqs. (59), (61) and (65), we can write the
following for the probability of missed detection:

lim
k!1P

mn
miss = 1� ��

�
1� 1

2k2 + o(
1
k2 )
�

�
�

1� (Q�1(�))2

2k2 + o(
1
k2 )
�

�
�

1��� 1
2k2Q

�1(�)
1p
2�
e� (Q�1(�))2

2 +o(
1
k2 )
�

= 1� ��
�

1� 1 + (Q�1(�))2

2k2

�
�
�

1��� 1
2k2Q

�1(�)
1p
2�
e� (Q�1(�))2

2 + o(
1
k2 )
�

= (1� �)
1 + (Q�1(�))2

2k2

+
1

2k2Q
�1(�)

1p
2�
e� (Q�1(�))2

2 + o(
1
k2 )

=
1

2k2 ((1� �)(1 + (Q�1(�))2)

+
1p
2�
Q�1(�)e� (Q�1(�))2

2 ); (66)

lim
SNR!1 logPmnmiss = log

�
1
2

�
(1� �)(1 + (Q�1(�))2)

+
1p
2�
Q�1(�)e� (Q�1(�))2

2

��
� log(SNR); (67)

dmn = � lim
SNR!1

logPmnmiss
log SNR

= 1: (68)

Therefore:

dtotal = �Mm=1�Nn=1d
mn = MN: (69)

As can be observed, in the MIMO passive coherent
location, speci�cally in a single frequency network, the
spatial diversity gain is proportional to the product
of the number of transmit antennas and the receive
antennas.

3. Simulations

In this section, DVB-T stations are used as the non-
cooperative illuminators of opportunity, and the DVB-
T signal has the same properties as those used in [6].
Also, four di�erent cases for the covariance matrix (R)
are assumed:

1. White gaussian noise;
2. Colored noise;
3. Clutter;
4. Clutter plus white noise.

In order to verify the results of the previous
section, for each case, Pmiss vs SNR is depicted for dif-
ferent numbers of antennas at the receive and transmit
sides using the Monte-Carlo method.

3.1. White Gaussian noise
When the only interference is white noise, we have:

R = �2
nI: (70)

For this case, the detector structure is:

T = sTR�1y ? �; (71)

sTy ? �0 = ��2
n; (72)

which is the structure of a matched �lter:

Pfa = Q(
�p

sTR�1s
) = Q(

�n�p
sT s

); (73)

Pfa = �; (74)

� =
p

sT s
�n

Q�1(�); (75)

�0 = �n
p

sT sQ�1(�); (76)

k2 = �2
t s
TR�1s =

�2
t
�2
n

sT s: (77)

The resulting Pmiss is shown in Figure 2. The diversity
gain achieved by increasing the number of antennas of
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Figure 2. Detection performance for the case of white
noise.

the MIMO con�guration is obvious. Also, as expected
from the theoretical results of the previous section,
the diversity gain of the two con�gurations of `two
transmitters and two receivers' (2� 2) should be equal
to the diversity gain of the case of `four transmitters
and one receiver' (4 � 1). This fact is veri�ed in
Figure 2, where the slope of the two lines corresponding
to the two aforementioned cases are the same at high
SNRs.

3.2. Colored noise
In the case of colored noise that we assume here,
the noise samples are independent but have di�erent
energies. So:

R = diag
�
�2

1 ; �
2
2 ; : : : ; �

2
NT

�
;

R�1 = diag
�

1
�2

1
;

1
�2

2
; : : : ;

1
�2
NT

�
;

sTR�1 =
�
s1

�2
1
;
s2

�2
2
; : : : ;

sNT
�2
NT

�
; (78)

T = �NTi=1
1
�2
i
siyi ? �; (79)

which is a �lter matched to v =
�
s1
�2

1
; s2�2

2
; : : : ; sNT�2

NT

�T
:

p
sTR�1s =

s
�NTi=1

s2
i
�2
i
; (80)

Pfa = Q(
�q

�NTi=1
s2i
�2
i

); (81)

Pfa = �; (82)

Figure 3. Detection performance for the case of colored
noise.

� = Q�1(�)

s
�NTi=1

s2
i
�2
i
; (83)

k2 = �2
t s
TR�1s = �2

t�NTi=1
s2
i
�2
i
: (84)

The results are depicted in Figure 3. As can be
easily veri�ed, they are consistent with the expected
theoretical results.

3.3. Clutter
In this case, the covariance matrix is as given below:

R = �2
c

26666666664

1 � : : : �NT�1 �NT

� 1 : : : �NT�2 �NT�1

: : : : : : :
: : : : : : :

�NT�1 �NT�2 : : : 1 �
�NT �NT�1 : : : � 1

37777777775
;
(85)

where �c is the power of the clutter.
The interpretation of the above formula is that the

correlation between the samples reduces proportional
to � (0 < � < 1) as their distance increases. As �
becomes smaller, the signal becomes more stochastic
(becomes more similar to white noise, e.g. � =
0 corresponds to the white noise case), and, as it
grows, the signal becomes more similar to clutter only
(� = 1 corresponds to the covariance matrix of the
clutter).

Here, the covariance matrix (R) is Toeplitz, which
results in:

R�1 =
1

�2
c (1� �2)
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�

2666666664
1 �� 0 : : : 0 0
�� 1 + �2 �� : : : 0 0
0 �� 1 + �2 : : : 0 0
: : : : : : : :
: : : : : : : :
0 0 0 : : : 1 + �2 ��
0 0 0 : : : �� 1

3777777775 :(86)

After suppressing the energy of clutter using the can-
celler at the input of the detector, its power (�c) will
be comparable to the noise power. In the simulations,
�c is chosen 1.5 times the power of noise. Also, we have
chosen � = 0:9 for the clutter.

v = R�1s =
1

�2
c (1� �2)2666666664

s1 � �s2��s1 + (1 + �2)s2 � �s3
:
:
:

��sNT�2 + (1 + �2)sNT�1 � �sNT��sNT�1 + sNT

3777777775 : (87)

Therefore, the �lter should be matched to the v of
Eq. (87):

T =vTy =
1

�2
c (1� �2)

�
(s1 � �s2)y1

+
NT�2X
i=1

���si + (1 + �2)si+1 � �si+2
�
yi+1

+ (��sNT�1 + sNT ) yNT

�
? �: (88)

It can be shown that:

T =
NTX
k=1

bkzk ? �; (89)

where:

b1 =
s1

�c
; bk =

sk � �sk�1

�c
p

1� �2
;

z1 =
y1

�c
; zk =

yk � �yk�1

�c
p

1� �2
: (90)

In order to compute Pfa, we have:

sTR�1s =
NTX
k=1

b2k = (
s1

�c
)2 +

NTX
k=2

(sk � �sk�1)2

�2
c (1� �2)

; (91)

Pfa = Q(
�PNT
k=1 b2k

)) � = Q�1(�)
NTX
k=1

b2k

Figure 4. Detection performance for the case of clutter.

= Q�1(�)

24(
s1

�c
)2 +

NTX
k=2

 
sk � �sk�1

�c
p

1� �2

!2
35 ; (92)

k2 =�2
t s
TR�1s = �2

t�NTi=1b
2
i = �2

t

�
(
s1

�c
)2

+ �NTi=2
(si � �si�1)2

�2
c (1� �2)

�
: (93)

Figure 4 shows the detector's probability of missed
detection for this case. Again, the expected diversity
gain is achieved by using multiple antennas in a MIMO
con�guration.

3.4. Clutter plus white noise
In this case:

R = �2
nI + �2

c

�

26666664
1 � : : : �NT�1 �NT
� 1 : : : �NT�2 �NT�1

: : : : : : :
: : : : : : :

�NT�1 �NT�2 : : : 1 �
�NT �NT�1 : : : � 1

37777775 ;(94)

R =26666664
�2
n + �2

c �2
c� : : : �2

c�NT�1 �2
c�NT

�2
c� �2

n + �2
c : : : �2

c�NT�2 �2
c�NT�1

: : : : : : :
: : : : : : :

�2
c�NT�1 �2

c�NT�2 : : : �2
n + �2

c �2
c�

�2
c�NT �2

c�NT�1 : : : �2
c� �2

n + �2
c

37777775 :(95)

The earlier assumptions are considered for �c, but,
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R�1 =
1

�2
c (a2 + (NT � 2)a� (NT � 1)

)

26666664
a+NT � 2 �1 : : : �1 �1
�1 a+NT � 2 : : : �1 �1
: : : : : : :
: : : : : : :
�1 �1 : : : a+NT � 2 �1
�1 �1 : : : �1 a+NT � 2

37777775 ; (96)

where:

a =
�2
n + �2

c
�2
c

; (97)

�2
c (a2 + (NT � 2)a� (NT � 1))vi = (a+NT � 2)si �

NTX
j=1;i 6=j

si = (a+NT � 1)si �
NTX
j=1

sj : (98)

Box I

here, by setting � to 1, we will have Eq. (96) shown
in Box I.

The �lter should be matched to v, where it is
computed as below:

v =

0@(a+NT � 1)s� �1 1 ::: 1
�T NTX

j=1

sj

1A
� 1
�2
c (a2 + (NT � 2)a� (NT � 1))

: (99)

If we de�ne:

G2 ,sTR�1s =

0@(a+NT � 1)sT s� (
NTX
j=1

sj)2

1A
� 1
�2
c (a2 + (NT � 2)a� (NT � 1))

;
(100)

we will have:

Pfa = Q(
�
G

)) � = GQ�1(�)

) � =

s
(a+NT � 1)sT s� (

PNT
j=1 sj)2

�2
c (a2 + (NT � 2)a� (NT � 1))

;
(101)

k2 = �2
t s
TR�1s = �2

tG
2: (102)

The detector's performance for di�erent numbers of
antenna at the transmit and receive sides is shown in
Figure 5. It veri�es that using more antennas gives
better performance at high SNRs. In addition, in
order to verify the theoretical results derived in the
previous section, we have compared the Monte-Carlo
simulations with the theoretical results of Pmiss for the
case of 2� 2 and 4� 4 con�gurations in Figure 6.

Figure 5. Detection performance for the case of clutter
plus white noise.

Figure 6. The theoretical results vs the simulation's
results.
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4. Conclusion

In the Passive Coherent Location (PCL), the objects
are detected and localized by the illuminators of op-
portunity already present in the environment. The idea
of using multiples of these noncooperative transmitters
and doing the detection by multiple receive antennas
is expected to bring us the advantages of the so-called
MIMO systems. An important aspect of such systems
is obtaining a spatial diversity gain proportional to
the product of the number of transmit and receive
antennas. Obtaining this gain was already shown in re-
cent research for the case of active transmitters, where
the transmit antennas are under control. However,
this is not the case when using the illuminators of
opportunity of a single frequency network, such as
DVB-T. Although such a network is quite interesting
for use in a MIMO con�guration, transmission of the
same signal from all transmitters can degrade the
e�ciency of the MIMO system. The concern arises
from recent observations on active transmitters, in
which the assumption of sending orthogonal signals,
in order to separate them at the receive side, plays a
fundamental role in obtaining spatial diversity. In this
paper, we show that even in a MIMO PCL working
under SFN conditions, the diversity gain of other
common MIMO systems can still be obtained.
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