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Abstract. In this paper, we study the problem of online conict-free coloring of intervals
on a line, where each newly inserted interval must be assigned a color upon insertion such
that the coloring remains conict-free, i.e. for each point p in the union of the current
intervals, there must be an interval I with a unique color among all intervals covering
p. We �rst present a simple algorithm which uses O(

p
n) colors where n is the number of

current intervals. Next, we propose an CF-coloring of intervals which uses O(log3 n) colors.

c 2014 Sharif University of Technology. All rights reserved.

1. Introduction

Background. A cellular network consists of several
base stations where each base station covers clients
within a certain distance. In general, the coverage areas
of base stations may overlap. This may lead to interfer-
ence of signals for a client who is in the coverage area
of more than one base station. Thus, one would like
to assign frequencies to the base stations such that for
each client within the coverage area of at least one base
station, there is a base station with a unique frequency
covering the client. The main goal is to do this using a
few number of distinct frequencies. Recently, Even et
al. [1] introduced conict-free colorings to model this
problem as de�ned next.

Let S be a set of n objects like points, and let R
be a (possibly in�nite) family of ranges like disks. For
a range r 2 R, let S(r) be the subset of objects in S
intersecting the range r. A conict-free coloring (CF-
coloring) of S with respect to R is a coloring of S such
that for any range r 2 R, for which S(r) 6= ;, there
is an object o 2 S(r) whose color is not used by any
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other object in S(r), i.e. its color is unique in S(r). It is
obvious that a conict-free coloring always exists: just
color objects with di�erent colors. However, one would
like to �nd a coloring with a few number of colors. This
is the conict-free coloring problem. Notice that if we
take S to be a set of disks - namely, the coverage area
of each base station - and we take R to be the set of all
points in R2 - namely, the clients - then we get exactly
the frequency-assignment problem as discussed above.
In this paper, we only consider the case where objects
are intervals in R1, and ranges are points.

Related work. The o�ine variant of the problem,
where all objects are given in advance, has attracted
a lot of attention in the last decade. Even et al. [1]
were the �rst to present a CF-coloring of points with
respect to disks using O(log n) colors, which is tight in
the worst case. Then, Har-Peled and Smorodinsky [2]
extended those results by considering other range
spaces.

The online version of the problems has been
studied in [3]. When a point is inserted, a color
is assigned to it and the color cannot be changed
since then. The coloring should remain conict-free
at all times. Chen et al. [3] considered the CF-
coloring of points on a line with respect to all intervals
on the line. They presented both deterministic and
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randomized algorithms for this problem. The best
deterministic algorithm uses O(log2 n) colors, and the
best randomized algorithm uses O(logn) colors with
high probability. The best known lower bound for
both randomized and deterministic algorithms, which
also holds for the o�ine case, is 
(log n) colors [4,5].
For other interesting variants of the online CF-coloring
problem, see [6].

Our results. In this paper, we pay our attention
to the online CF-coloring of intervals with respect to
points on a line. Here, intervals are arriving one by
one and upon arrival of an interval, we should assign
a color to this interval; this color can not be changed
later. At any time the coloring must remain conict-
free, i.e. for each point p in the union of the current
intervals, there must be an interval with a unique color
among all intervals covering p.

To warm up, we start with the o�ine version of
the CF-coloring of intervals with respect to points. We
sketch a trivial algorithm that uses only 3 colors. Then,
we explain that any online CF-coloring algorithm must
use 
(log n) colors in the worst case. We then present
two online CF-coloring algorithms: our �rst simple
algorithm uses O(

p
n) colors and our main algorithm

uses O(log3 n) colors where n is the number of the
current intervals.

The paper is organized as follows: In Section 2
we present a simple algorithm that uses 3 colors for
the o�ine version of the problem. Section 3 presents
a CF-coloring of intervals in the online model using
O(
p
n) colors. In Section 4, we present our CF-coloring

of intervals. We depart with a few concluding remarks
and open problems in Section 6.

2. From o�ine to online CF-coloring of
intervals

We start with o�ine version of the problem where a
set I of n intervals is given in advance. The main
ingredients of our simple algorithm is (i) computing a
set I 0 � I such that each point on the line is covered
by at most two intervals of I 0 and each interval in I=I 0
is covered by the union of intervals in I 0, and (ii) CF-
coloring of I 0 using 2 colors. Since the intervals in I=I 0
are useless (in the sense that each point in the coverage
area of set I is in the coverage area of set I 0), we color
all of them with color 0 and avoid using color 0 in CF-
coloring of set I 0. Next, we go into details of the two
ingredients.

To construct I 0, we process the intervals in I in
the increasing order of their left endpoints. The set
I 0 is initially empty. Let Ilast be the last interval
inserted into I 0. Upon arrival of interval I, if one of the
following conditions is satis�ed, interval I is inserted

into I 0 and recognized as the last interval (up to now)
inserted to I 0, i.e. Ilast = I:

� I does not overlap Ilast;
� I has the rightmost right endpoint among intervals

overlapping Ilast but not contained by Ilast.

Clearly the set I 0 ful�llls the following properties:
(i)

S
I2I I =

S
I2I0 I, and (ii) each point on the

line is inside at most two intervals of I 0. To color
intervals in set I 0, we color the intervals by colors 1
and 2 alternatively in the increasing order of their left
endpoints. As each point is in the coverage area of at
most two intervals in I 0, this de�nitely is a conict-
free coloring of I 0 using just two colors. This coloring
together with coloring of intervals in I=I 0 with color 0
simply gives us a CF-coloring of set I. Putting all this
together, we get the following theorem.

Theorem 1. For any set I of n intervals on R1,
there is a CF-coloring with respect to points in the
o�ine model using at most 3 colors.

Although there is a CF-coloring of intervals w.r.t
points using 3 colors in the o�ine model, it can be
easily shown [4,5] that, in the online model, any such
CF-coloring must use 
(log n) colors in the worst case.
Consider I = fI1; � � � ; Ing where Ij = [1; pj ] and pj =
j. Suppose the intervals in I arrive in the increasing
order of their indices. In this senario, it is easy to
see a CF-coloring of the intervals is equivalent to CF-
coloring of points pi, with respect to intervals which
needs 
(log n) colors [1]. Indeed, if we assign the color
of each interval Ir to its right endpoint (i.e. pr), we
can show that among points pk in any interval [i; j],
one has a unique color.

3. Simple CF-coloring using O(
p
n) colors

Suppose I is a set of n intervals arriving through time
one by one and suppose for each point p 2 R1, I(p) is
the set of all intervals containing p at the current time.
We denote colors by non-negative integer numbers and
denote the color of interval I by c(I). In this section,
we present a simple algorithm which holds the unique-
maximum invariant (UM invariant, for short): mc(p) =
maxI2I(p) c(I) is unique in the multi set fc(I) : I 2
I(p)g for all p 2 R1. If this holds, the coloring is a
CF-coloring. Indeed, the interval with the maximum
color among intervals containing p has a unique color.
Next, we explain the algorithm.

Algorithm. We maintain the maximum color used
so far in a variable, say m; at the beginning m = 1.
We assign a color upon arrival of I, as follows. Let
SI � f1; � � � ;mg be a set of forbidden colors for I in the
sense that if we assign one of them to I, then the UM
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invariant does not hold any more. If SI = f1; � � � ;mg,
we increase m by 1 and assign it to I. Otherwise, one
arbitrary unforbidden color from the set f1; � � � ;mg is
assigned to I.

Analysis. Imagine we know all n intervals in ad-
vance. Let p1; p2; � � � ; pm be the list of distinct interval
endpoints, sorted from left to right (m � 2n as some
endpoints may coincide). Consider the partitioning
of R1 into the elementary intervals (1 : p1); [p1 :
p1]; (p1 : p2); [p2 : p2]; � � � ; (pm1 : pm); [pm : pm]; (pm :
+1). The list of elementary intervals consists of open
intervals between two consecutive endpoints pi and
pi+1, alternated with closed intervals consisting of a
single endpoint. The reason that we treat the points
pi themselves as intervals is, of course, that the set of
intervals covering pi is not necessarily the same at the
set of intervals covering p where p can be any point
close to pi. For an elementary interval e, let mc(e) be
the maximum color covering e. At the beginning when
no interval has arrived, mc(e) = 0 for all (at most)
4n+1 elementary intervals. It is clear that mc(e) is not
decreasing through time for each elementary interval
e. If after getting all intervals, mc � pn=2, we are
done. Otherwise, consider the �rst time an interval,
say �i, gets color

p
n=2 + i. Assigning

p
n=2 + i to

�i implies that assigning any color less than
p
n=2 + 1

would not hold the UM invariant. Therefore, there
must be

p
n=2 elementary intervals, denoted by the

set E(�i), whose colors are f1; 2; � � � ;pn=2g. After
assigning

p
n=2 + i to �i, the maximum color of all

intervals in E(�i) is increased to
p
n=2 + i which is

greater than
p
n=2. Therefore, sets E(�1); E(�2); � � �

are disjoint. Since the total number of these sets is
m�pn=2 and their union is a subset of all elementary
intervals, we have (m �pn=2)

p
n=2 � 4n + 1 which

simply implies m = O(
p
n).

Theorem 2. There is an online CF-coloring algo-
rithm for a set of n intervals in the online model that
uses O(

p
n) colors.

4. CF-coloring using O(log3 n) colors

We �rst start with a special case where we know that all
intervals cover a speci�c point x. For this special case,
we present a CF-coloring using O(log n) color while
holding the UM invariant. Then, we exploit this as
the main ingredient of our CF-coloring algorithm for
the general case.

The special case. If the new interval I is a subset
of the union of the current intervals, we assign 0 to
I. Otherwise, I extends the coverage area from left,
right, or both sides. Based on this fact, we categorize

intervals into three sets S`; Sr, and Sr;`, respectively.
we use three disjoint groups of colors - each group
contains at most O(log n) colors - for CF-coloring of
S`; Sr, and Sr;`. CF-coloring of these three sets is
simply reduced to the problem of online CF-coloring of
points with respect to intervals (as explained in Section
2) where the arrival time of points is in either the
increased or decreased order of their coordinates. This
is known to be CF-colorable using O(log n) colors [3].
Since we use three disjoint sets of colors for sets S`; Sr,
and Sr;`, the whole coloring remains CF-coloring.

Lemma 1. For a special case where all intervals
cover a speci�c point, there is an online CF-coloring
of intervals using O(log n) colors.

We now turn our attention to the general case.
Suppose that we partition intervals received so far into
sets S1; � � � ; Sm in such a way that for every 1 � i � m
all the intervals in Si have a common point, say xi.
Also suppose points in X = fx1; � � � ; xmg have been
CF-colored by the online algorithm given in [3] using
O(log2m) colors (note that in this coloring, the color of
each point, xi, c(xi), is a pair (a; b) and the maximum
color inside each interval is unique where the order of
colors is de�ned as follows: (a1; b1) < (a2; b2)$ (a1 <
b1) _ (a1 = b1 ^ a2 < b2):) At the beginning when we
receive the �rst interval I1, the set S1 is set to be fI1g
and x1 is set to be any arbitrary point inside I1. Next,
we go into details of the algorithm upon arrival of Ij ,
the jth interval.

Coloring algorithm. If Ij is a subset of
Sj�1
i=1 Ii, we

assign 0 to Ij , and it is considered as a useless interval.
Otherwise, we distinguish two cases: (i) There is a
point of X inside Ij , (ii) There is not such a point.
In case (i), we select the point with the maximum
color (which is unique) among points of X inside Ij ,
say xr, and insert Ij into Sr. We assign the color
(c(xr); cSr (Ij)) to Ij where cSr (Ij) is the color assigned
to Ij when inserted into Sr as explained in the special
case. In case (ii) we select a point, say xm+1, inside Ij
which is not covered by any other Ii (1 � i � j � 1).
Point xm+1 exists, as Ij is not a subset of

Sj�1
i=1 Ii. We

add xm+1 into X and assign a color to it such that
the coloring of X remains conict free with respect to
intervals. We also create the set Sm+1 = fIjg and we
assign a color to Ij in set Sm+1 as explained in the
special case.

The number of colors. Each color is a pair of colors
whose �rst entry is O(log2 j) (note m � j) and whose
second entry is O(log j) (by Lemma 1). Therefore, after
getting n intervals, we use at most O(log3 n) colors.

In the following lemma, we show the algorithm
produces a CF-coloring.
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Lemma 2. After getting Ij, the coloring remains
conict free.

Proof. Suppose Ij is inserted into Sr. For the sake
of contradiction, assume the coloring is not conict
free after insertion of Ij . Therefore, there is a point
p inside Ij such that mc(p) = (c(xr); cSr (Ij)) and
there is another interval Ii (i � j) covering p with
c(Ii) = c(Ij). Suppose Ii is inserted into Sk and its
color is (c(xk); cSk(Ii)). If xk = xr, the coloring of Sr
is not conict free which is a contradiction. Therefore,
we have xk 6= xr. Without loss of generality, we assume
xk < xr. Due to the UM invariant, there is a point x
inside [xk; xr] whose color is unique and maximum. x
di�ers from xr and xk as c(xk) = c(xr). Since x is
covered by the union of Ii and Ij and it was created
before receiving Ii and Ij (note that when a new point
is inserted into X , at that time no interval contains it),
one of these two intervals must be assigned to xh which
is a contradiction.

Putting all this together, we get our main result.

Theorem 3. There is an online CF-coloring algo-
rithm for a set of n intervals in the online model that
uses O(log3 n) colors.

5. Conclusion

We studied the problem of online conict-free coloring
of intervals on a line, where each newly inserted interval
must be assigned a color upon insertion such that the
coloring remains conict-free. We �rst presented a
simple algorithm which uses O(

p
n) colors where n is

the number of current intervals. Next, we proposed an
CF-coloring of intervals which uses O(log3 n) colors.
It is interesting to see whether there is a CF-coloring
algorithm using o(log3 n) colors.

References

1. Even, G., Lotker, Z., Ron, D. and Smorodinsky, S.
\Conict-freee colorings of simple geometric regions
with applications to frequency assignment in cellular
networks", SIAM J. Comput., 33(1), pp. 94-136 (2003).

2. Har-Peled, S. and Smorodinsky, S. \Conict-free color-
ing of points and simple regions in the plane", Discr.
Comput. Geom., 34(1), pp. 47-70 (2005).

3. Chen, K., Fiat, A., Kaplan, H., Levy, M., Matousek,
J., Mossel, E., Pach, J., Sharir, M., Smorodinsky, S.,
Wagner, U. and Welzl, E. \Online conict-free coloring
for intervals", SIAM J. Comput., 36(5), pp. 1342-1359
(2007).

4. Pach, J. and Toth, G. \Conict-free colorings", Discrete
and Computational Geometry, The Goodman-Pollack
Festschrift, B. Aronov, S. Basu, J. Pach and M. Sharir,
Eds., Springer Verlag, Heidelberg, pp. 665-671 (2003).

5. Smorodinsky, S. \Combinatorial problems in computa-
tional geometry", Ph.D. Thesis, School of Computer
Science, Tel-Aviv University (2003).

6. Bar-Noy, A., Cheilaris, P. and Smorodinsky, S.
\Conict-free coloring for intervals: from o�ine to on-
line", In Proc. 18th Annu. ACM Sympos. on Parallelism
Algorithms Architectures, pp. 128-137 (2006).

Biographies

Mohammad Ali Abam received the BSc and MSc
degrees in Computer Engineering in 1999 and 2001
from Sharif University of Technology (SUT), and PhD
degree in Computer Science in 2007 from Eindhoven
University of Technology. He is currently an assis-
tant professor in Computer Engineering department at
SUT.

Mohammad Javad Rezaei Seraj received the BSc
degree in Computer Engineering in 2011 from Amirk-
abir University of Technology and MSc degree in
Computer Engineering in 2013 from Sharif University
of Technology (SUT). He is currently a PhD student at
SUT.

Mohammad Shadravan received the BSc degree in
Computer Engineering in 2011 from Sharif University
of Technology. He is currently a Master student at
the Department of Combinatorics and Optimization at
University of Waterloo.




