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Abstract. Performability is an important parameter in safety-critical real-time systems.
This parameter is de�ned as the joint consideration of two other important parameters, i.e.,
reliability and performance. This paper proposes a schedulability condition that guarantees
a desired level of performability under various working conditions for real-time systems.
The basic idea underlining this condition is to select a subset of schedulable tasks and
manage their slack times to satisfy a desired performability level. The proposed condition
is evaluated on a hard real-time system that employs the Rate-Monotonic (RM) scheduling
algorithm and uses the re-execution mechanism to improve the reliability. Evaluation
results reveal that by employing the condition, the level of performability of the system
is always greater than the desired performability. In addition, it yields, on average,
1% improvement in system performability in comparison with traditional schedulability
conditions, while the actual failure rate is greater than the expected rate. This amount of
performability improvement is signi�cant for safety-critical real-time systems.
c
 2014 Sharif University of Technology. All rights reserved.

1. Introduction

Systems, such as brake controllers in vehicles or con-
trollers of medical embedded devices, are categorized
as safety-critical systems [1]. This means that mal-
functions in such systems may result in disastrous
consequences to human life. In such systems, the
logical accuracy of the result is not usually su�cient
and it is necessary for tasks to ful�ll several timing
constraints. These kinds of systems are categorized as
hard real-time systems.

Three attributes are frequently used in this paper;
reliability, performance and performability. Reliability
is de�ned as the conditional probability of the correct
execution of a task, provided that, at the beginning of
the task run, the system is in a fault-free state [10,19];
here, the task deadline is not considered. Performance
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is de�ned as the probability of a task execution within
its deadline, no matter if the task delivers a correct or
an incorrect result. In a hard real-time system, both
correct execution of a task in the presence of faults and
task execution within its deadline are important. In
this regard, performability is de�ned as the joint con-
sideration of performance and reliability [9,14,21,22].
For example, in [22], performability is de�ned as
the probability of completing an application correctly
within its deadline in the presence of faults.

Task scheduling determines the sequence of task
execution in a real-time system. The ways of as-
signing priorities to tasks are named scheduling al-
gorithms [6,16]. One class of these algorithms is
�xed-priority scheduling algorithms. In �xed-priority
scheduling algorithms, the number of tasks is �xed
and the tasks are periodic; here, the priorities of the
tasks are de�ned before their execution. The Rate-
Monotonic (RM) algorithm is an optimal �xed-priority
algorithm for simply periodic tasks [2,13]. It is note-
worthy that the �xed-priority scheduling algorithms



2128 M. Bashiri and S.G. Miremadi/Scientia Iranica, Transactions D: Computer Science & ... 21 (2014) 2127{2137

are usually used forscheduling tasks in hard real-time
applications [17].

It is worth mentioning that all scheduling algo-
rithms assign only priorities to tasks, without deter-
mining if they meet their deadlines or not. This means
that if there are copious numbers of tasks that are
waiting to be run on a processor, it is probable that
some tasks will miss their deadlines. To remove this
shortcoming, the schedulability conditions are used to
determine whether the assignment of a new task to the
processor is feasible or not; if it is not feasible, the
task will not be assigned to the processor at all. The
�rst schedulability condition, called the LL condition,
proposed by Liu and Layland [13], is a condition
with the worst-utilization bound that is introduced
for the RM scheduling algorithm. Several attempts
have been made to improve the utilization bound of
the LL schedulability condition [3-5,7,12,15,20]. Under
the improved conditions, the issue of performance
guarantee is the main concern, while the issue of
performability guarantee is not addressed at all.

In [8], the performability of a safety-critical real-
time embedded system is evaluated by employing �ve
di�erent schedulability conditions for the RM algo-
rithm. To the best of our knowledge, the issue of
guaranteeing the performability of a real-time system,
by employing schedulability conditions, has not been
addressed in previous work.

The present paper extends the work in [8] by
introducing an innovative schedulability condition that
guarantees performability. This condition utilizes the
task re-execution mechanism [23] to realize the guaran-
tee. The basic idea underlining the proposed condition
is to manage the slack times of tasks in order to re-
execute a task when it fails. This condition selects a
proper schedulable task-set according to an expected
failure rate and a desired performability level. To
evaluate this condition, as well as the �ve traditional
schedulability conditions, a software tool is developed
to extract the performability of a multi-processor with
m schedulable periodic tasks. Here, the tasks are
scheduled by the RM scheduling algorithm.

The rest of the paper is organized as follows:
Section 2 discusses the schedulability conditions for
the RM algorithm. The proposed schedulability con-
dition is introduced and discussed in Section 3; this
section also includes proof of the proposed condition.
The simulation method and the simulation results are
presented in Sections 4 and 5, respectively. Finally,
Section 6 concludes the paper.

2. Methods of task scheduling and
schedulability checking in real-time systems

The process of assigning priorities to tasks to determine
the sequence of their execution in a real-time system is

accomplished by scheduling algorithms [6,16]. These
algorithms are classi�ed into two classes:

1. dynamic-priority scheduling algorithms, such as
EDF;

2. �xed-priority scheduling algorithms, such as RM.
The �xed-priority scheduling algorithms may have
four main characteristics:

(a) The priority of each task is assigned before its
execution;

(b) The number of tasks is �xed;
(c) The tasks are always periodic;
(d) These algorithms are usually employed in hard

real-time applications [17].

As mentioned above, all scheduling algorithms
assign only priorities to tasks, however, they do not
check if the tasks meet their deadlines or not. This
means that some tasks may miss their deadlines due
to the processor overrun. To prevent deadline misses,
schedulability conditions are utilized. These conditions
examine the deadlines of existing tasks to determine
if the assignment of a new task to the processor is
feasible or not. If it is not feasible, the task will
not be assigned to the processor at all [2]. The �rst
condition, called the LL condition, proposed by Liu
and Layland [13], is a worst-case condition in terms of
schedulable processor utilization bound; this condition
is employed with the RM scheduling algorithm. Several
attempts have been made to improve the LL utilization
bound [3-5,7,12,15,20].

It is worth mentioning that the schedulability
conditions can also assist the task distributor in a
multiprocessor system to determine the number of
processors required to run a set of periodic tasks. In
the following, we will introduce the �ve most important
and extensively used schedulability conditions.

2.1. Schedulability conditions for RM
algorithm

Five important schedulability conditions for RM
scheduling algorithms are explained hereafter. These
conditions examine the schedulability of a new task on
a processor. If the employed condition is satis�ed, the
new task is scheduled.

1. LL condition [13]: If a set of n tasks is scheduled
according to the RM algorithm, then, the minimum
achievable CPU utilization is:

n
�

21=n � 1
�
: (1)

In Eq. (1), if n!1, then n(21=n � 1)! ln 2.
The schedulability of tasks can be checked by

Eq. (1). If the sum of utilizations of the newly
arrived task and previously accepted tasks is less
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than the value of Eq. (1), then, the newly arrived
task is accepted for scheduling. This condition is
a worst-case condition because it leads to the mini-
mum achievable utilization bound for the processor.
The next four conditions attempt to improve the
utilization bound.

2. UO condition [20]: Assume that X = f�i =
(Ci; Ti)ji = 1; 2; :::; n � 1g is a set of n � 1 tasks
and it can be scheduled by the RM algorithm. The
scheduling of a newly arrived task (n-th task) may
only be possible together with other n� 1 tasks, if:

Cn=Tn � 2
�
�n�1
i=1 (1 + ui)

��1 � 1: (2)

3. IP condition [3]: Let X = f�i = (Ci; Ti)ji =
1; 2; :::; n � 1g be a set of periodic tasks that are
sorted by their decreasing periods (highest to the
lowest period). If u =

Pn�1
i=1 Ci=Ti, then, X is

schedulable by the RM algorithm if both Eqs. (3)
and (4) are true:

u � (n� 1)
�

21=(n�1) � 1
�
; (3)

Cn=Tn � 2 (1 + u=(n� 1))�(n�1) � 1: (4)

4. PO condition [12]: Let X = f�i = (Ci; Ti)ji =
1; 2; :::; n � 1g be a set of periodic tasks that are
sorted by their decreasing periods (highest to the
lowest period). Tasks are schedulable by the RM
algorithm if Eq. (5) is true:

�n
i=1 (ui + 1) � 2: (5)

5. LC condition [15]: Let X = f�i = (Ci; Ti)ji =
1; 2; :::; n � 1g be a set of periodic tasks, which are
sorted by their increasing period. These tasks are
schedulable on the processor if Eq. (6) is true (here,
z = T1=Tn):

nX
i=1

Ci=Ti � 2z � 1 + (n� 1)
�

(1=z)1=n�1 � 1
�
:

(6)

3. The proposed schedulability condition

This section proposes a new condition to guarantee
the performability of hard real-time systems. This
condition examines if a newly arrived task can be
accepted or rejected, with respect to a desired per-
formability level. The main idea underlining this
condition is to re-execute a task when the task fails;
the re-execution is repeated until the �rst failure-free
run appears. It is important to mention that this
condition calculates the number of re-executions that
a task can execute within the slack time. Task re-
execution may improve task performability, which, in

turn, improves system performability to a desired level.
The proposed schedulability condition is a function of
four parameters: 1) The current task characterization,
i.e. the release time, the execution time, and the
period; 2) The characterizations of previously accepted
tasks; 3) The failure rate; and 4) A desired level
of performability. To show how this condition is
extracted, the condition is studied in three steps. In
the �rst step, the condition for the �rst task is derived.
In the second step, the condition for the second task is
also derived. Based on the achievements in the above
two steps, in the third step, the generalized condition
for the i-th task is derived. The proof of each step is
shown in the following. The steps are based on using
the RM algorithm. It is worth noting that the �rst task
has the highest priority and the last one has the lowest
priority.

First step. In this step, there is only one task in
the system. If this task is accepted and scheduled,
the value of system performability is equal to the
performability of this task. This means that, if the
performability of this task is greater than or equal to a
desired performability level, system performability will
also be greater than or equal to L. Theorem 1 shows
the schedulability condition for the task.

Theorem 1. In a real-time system, the task with the
highest priority is acceptable if the task characteriza-
tions satisfy Eq. (7). The lefthand side of Eq. (7) is the
performability of this task:

1� q
j
T1
C1

k
1 � L: (7)

In Eq. (7), bT1=C1c indicates the maximum possible
number of task executions (including the original run
and its re-executions) from the release time until the
absolute deadline of the task. Figure 1 illustrates
the tasks lack time, which can be used for task re-
executions until the �rst correct run, upon detection of
a failure.

Proof 1. To show task performability, we list, in
the following, all possible situations under which the
task can be executed; each situation has a certain
probability:

� The correct run of the task at the �rst attempt with
probability p1;

Figure 1. The execution and re-execution times of task 1.
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� The correct run of the task at the second attempt
(the �rst attempt fails) with probability p1 � q1;

� The correct run of the task at the third attempt
(the �rst and second attempts fail) with probability
p1 � q2

1 ;

� .....

� The correct run of the task at the i-th attempt (all
the previous (i�1)-th attempts fail) with probability
p1 � qi�1

1 ;

� .....

� The last chance for the correct run of the task
before the deadline (all the previous attempts fail)

is probability p1 � q
j
T1
C1

k�1
1 .

Since the above situations are independent, the
probability of the correct run of the task is equal to
the sum of the above probabilities, i.e.:

performability (�1) = p1 + p1 � q1 + p1 � q2
1 + :::

+ p1 � qi�1
1 + :::+ p1 � q

j
T1
C1

k�1
1 :

Substituting p1 by (1 � q1), the performability of the

task is calculated as 1� q
j
T1
C1

k
1 .

Corollary 1. Assume that E is the maximum num-
ber of executions. Substituting bT1=C1c by E, the per-
formability of the task with a given failure probability
(q) is de�ned as 1� qE .�

Second step. Assume that the �rst task is scheduled
in the �rst step. The possible scheduling of the second
task should not degrade the system performability,
which is the performability of both tasks, i.e. the
performability of each task should be greater than L.

Theorem 2. In a real-time system, the second task
(the task with the second highest priority) is acceptable
if the task characterizations satisfy Eq. (8). Note that
the �rst task was previously accepted in the �rst step.

P (�2) =
X
n

P (�2jN1 = n)P (N1 = n): (8)

Here, Eq. (8) is the probability of the correct run of
the second task, which is derived by employing the
total probability theorem presented in [18], with the
condition of the number of execution/re-executions of
the �rst task in the �rst step.

In Eq. (8), N1 is the number of execution/re-
executions of the �rst task until the correct run within
the deadline. It is obvious that the number of re-
executions of the �rst task reduces the slack time of the
second task. Figure 2 shows the relationship between
execution/re-executions of both tasks with the slack
time of the second task. It is possible that a correct
run of the �rst task needs several re-executions that
may reduce the slack time of the second task.

The two components of the right hand side of
Eq. (8) can be rewritten to Eqs. (9) and (10), respec-
tively:

P (�2jN1 = n) =

8<:1� q
j
T2�n�C1

C2

k
2 T2 � n� C1 � C2

0 otherwise (9)

Eq. (9) de�nes the probability of the correct run of the
second task when the number of executions of the �rst
task is known and is equal to n. Eq. (10) de�nes the
probability of the correct run of the �rst task within n
executions:

P (N1 = n) = p
l
T2
T1

m
1 � qn�

l
T2
T1

m
1| {z }

Part A

�
l
T2
T1

m�1X
t=0

"
(�1)t�

 l
T2
T1

m
t

!
�
 
n� t�b T1

C1
c � 1

dT2
T1
e � 1

!#
| {z }

Part B

:
(10)

Inserting Eqs. (9) and (10) into Eq. (8), Expression
(11) is derived:

P (�2) =

j
T1
C1

kX
n=1

 
1� q

j
T2�n�C1

C2

k
2

!

�
�
p
l
T2
T1

m
1 � qn�

l
T2
T1

m
1 �

l
T2
T1

m�1X
t=0

�
(�1)t

�
 l

T2
T1

m
t

!
�
 
n� t� b T1

C1
c � 1

dT2
T1
e � 1

!��
: (11)

Proof 2. According to Corollary 1, E = b(T2 �
n �C1)=C2c is the maximum number of allowable

Figure 2. The relationship between execution/
re-executions of both tasks.
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execution/re-executions of the second task. n � C1 is
the e�ect of the number of execution/re-executions for
the �rst task. So, the performability of the second task,
when the number of execution/re-executions of the �rst
task is known, can be calculated by Eq. (9).

In Eq. (10), Part A is the product of the proba-
bilities of n times run of the �rst task. T2 is the time in
which the second task has the chance to �nish its work
to avoid deadline miss. However, according to Eq. (9),
this time is a�ected by the number of execution/re-
executions of the �rst task. It is obvious that with n
times execution/re-executions of the �rst task during
T2, the �rst task is correctly executed

l
T2
T1

m
times and

is erroneously executed
�
n� lT2

T1

m�
times. So, Part A

in Eq. (10) can be written as p
l
T2
T1

m
1 � qn�

l
T2
T1

m
1 .

Part B in Eq. (10) calculates the number of
distributing these n executions into

l
T2
T1

m
sections.

Here, each section contains at least one execution
(with correct run) and, at most,

j
T1
C1

k
execution/re-

executions (
j
T1
C1

k � 1 re-executions plus the correct
run). To derive Part B, the inclusion-exclusion prin-
ciple [11] is used. Suppose that there are n executions
separated by n � 1 delimiters (see Figure 3). Using
stage 1 of the above mentioned principle, the number of
distributing the n executions into

l
T2
T1

m
sections, with

at least one execution in each part, is calculated. In
this case, there are

l
T2
T1

m� 1 delimiters to perform this

partitioning. This means that there are

 
n� 1l
T2
T1

m� 1

!
possible ways to distribute the n executions into

l
T2
T1

m
sections.

Using stage 2 of the inclusion-exclusion principle,
the number of sections in which each contains more
than

j
T1
C1

k
executions must be excluded from the

result in stage 1. Suppose that
j
T1
C1

k
executions of

the total executions are dedicated to a section, and
the remaining executions are distributed among alll
T2
T1

m
sections to ensure having at least one section

with more than
j
T1
C1

k
executions. Similar to stage

1, there are

 
n� b T1

C1
c � 1

dT2
T1
e � 1

!
possible ways to do this

Figure 3. There are n� 1 total delimiters for selectingl
T2
T1

m� 1 of them to create
l
T2
T1

m
sections.

distribution. So,
l
T2
T1

m� n� b T1
C1
c � 1

dT2
T1
e � 1

!
distributions

must be excluded from the result of stage 1.
In stage 3 of the inclusion-exclusion principle,

the number of distributions of each pair of sections
that have more than 2 � j T1

C1

k
executions in each

pair must be included in the result of the previous
stages. Suppose that for each pair of sections, 2 �j
T1
C1

k
executions from the total number of executions

are dedicated, and the remaining executions are dis-
tributed among all

l
T2
T1

m
sections to ensure having at

least two sections with more than
j
T1
C1

k
executions

in each section. Like the two aforementioned stages,

there are

 
n� 2� b T1

C1
c � 1

dT2
T1
e � 1

!
possible ways to do this

distribution in

 l
T2
T1

m
2

!
pairs of sections, So,

 l
T2
t1

m
2

!
� 

n� 2� b T1
C1
c � 1

dT2
T1
e � 1

!
distributions must be included in

the results of the two preceding stages.

By continuing these stages, multiplying

 l
T2
T1

m
0

!
to the result of the �rst stage and multiplying the
result of each stage by (�1)stage number�1 to show the
inclusion/exclusion, Eq. (10) is obtained.�

The value of Eq. (11) determines the second
task performability. If it is greater than the desired
performability level, the second task will be accepted.
Otherwise, it is rejected and should be sent to a
redundant processor.

Third step. This step tries to generalize the schedu-
lability condition for the i-th task. To guarantee the
system performability, the performability of each task
should be greater than L.

Theorem 3. In a real-time system, the i-th task (i.e.,
the task with the i-th highest priority in the task list) is
acceptable if the task characterizations satisfy Eq. (12).

Like the second step, by using the total probabil-
ity theorem and conditioning on the number of execu-
tions of already accepted periodic tasks, the probability
of the correct run of the i-th task is calculated. The
result of this calculation is shown in Eq. (12):

P (�i) =
X

n1;n2;:::;ni�1

P
�
�ijN1 = n1; N2 = n2; :::;

Ni�1 = ni�1
�� P (N1 = n1; N2 = n2; :::;

Ni�1 = ni�1): (12)
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Eq. (12) is constituted of two parts that are calculated
in Eqs. (13) and (14), respectively. Eq. (13) calculates
the probability of the correct run of the i-th task when
the number of executions of previously scheduled tasks
are known. The probability of the occurrence of a
speci�c number of task re-executions for the previously
scheduled tasks is calculated in Eq. (14):

P [�ijN1 = n1; N2 = n2; :::; Ni�1 = ni�1]

=

8><>:1� q
$
Ti�Pi�1

j=1 nj�Cj
Ci

%
i Ti �Pi�1

j=1 nj � Cj � Ci
0 otherwise (13)

P (N1 = n1; N2 = n2; :::; Ni�1 = ni�1)

= P (N1 = n1)� P (N2 = n2)� :::

�P (Ni�1 = ni�1) = �i�1
j=1

�
p
l
Ti
Tj

m
j � qnj�

l
Ti
Tj

m
j

�
l
Ti
Tj

m�1X
t=0

�
(�1)t �

 l
Ti
Tj

m
t

!
�
 
nj � tb TjCj c � 1
d TiTj e � 1

!��
: (14)

Proof 3. According to Corollary 1, E = b(Ti�Pi�1
j=1 nj � Cj)=Cic is the maximum allowable num-

ber of task execution/re-executions (including the
original run and its corresponding re-executions).
Here,

Pi�1
j=1 nj � Cj is the e�ect of the number of

execution/re-executions for the already i � 1 accepted
tasks (see Figure 4). So, the performability of the i-
th task, while the number of execution/re-executions
of the previously accepted tasks is known, can be
calculated by Eq. (13).

To show the correctness of Eq. (14), it is assumed
that the executions of tasks are independent. This
means that the probability of occurring an exact
number of executions of tasks is equal to the product of
the probability of executing each task individually. For
each task, this probability is the same as the probability
shown in Eq. (11).�

Based on Theorem 2, Eq. (12) shows the value
of performability of the i-th task when i � 1 tasks,

Figure 4. The execution and re-execution times of tasks
1 to i.

with a performability of not less than L, are previously
accepted. If the performability of the i-th task is also
not less than L, this task is able to be scheduled in the
system. This statement is shown in Eq. (15):

P (�i) � L: (15)

A case study. To clear the above condition, three
examples are presented.

Example 1. The schedulability of a sample task set,
X, is checked by a traditional schedulability checking
condition. Suppose that X = f�i = (Ci; Ti)ji =
1; 2; 3; 4; 5g is a set of periodic tasks, where �1 = (C1 =
3; T1 = 10), �2 = (C2 = 3; T2 = 12), �3 = (C3 = 3; T3 =
25), �4 = (C4 = 3; T4 = 58) and �5 = (C5 = 3; T5 =
70). According to the LL condition, the schedulability
check for task set X is shown in Table 1.

As mentioned in Section 2, the LL condition is
known as the worst-case condition because it provides
the lowest achievable utilization bound for the proces-
sor. This may result in rejecting tasks, such as the 5th
task (�5). However, the 5th task is schedulable by using
a relative optimistic condition for the RM algorithm,
or using the EDF scheduling algorithm. For example,
the schedulability check for task set X when the EDF
scheduling algorithm is used is shown in Table 2. Based
on the optimality of the EDF scheduling algorithm,
the achievable schedulable utilization for this algorithm
is 1.

Example 2. The performability of the system using
the LL condition and running the four accepted tasks,
as discussed in Table 1, is calculated as follows:

1. Performability of the 1st task=0.999999000000000;
2. Performability of the 2nd task=0.999996030000000;
3. Performability of the 3rd task=0.999996029994119;
4. Performability of the 4th task=0.999996029994120.

The above values are calculated by employing the
task re-execution mechanism, and the probability of
failure occurrence in the tasks during their run is set to
q = 0:01. In addition, the \iomanip.h" library is added
to the simulator code to increase the results accuracy.
Here, the provided accuracy is 10�15. As a result, the
average system performability is 0.999996772497059.

Example 3. Suppose that the desired level of per-
formability of the system running the task set X is L =
0:99999999, and the probability of failure occurrence
in the tasks is q = 0:01. The performabilities of tasks
using the proposed condition (Eq. (12)) are extracted
as follows:
1- Performability of the 1st task = 0.999999000000000
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Table 1. Schedulability checking for the task set X by employing LL condition.

Schedulability of
the i-th task

LL schedulability checking condition Result

1st task 1(21=1 � 1) = 1:000 > u1 = 0:300
p

Task is schedulable
2nd task 2(21=2 � 1) = 0:828 > u1 + u2 = 0:550

p
Task is schedulable

3rd task 3(21=3 � 1) = 0:780 > u1 + u2 + u3 = 0:670
p

Task is schedulable
4th task 4(21=4 � 1) = 0:757 > u1 + u2 + u3 + u4 = 0:722

p
Task is schedulable

5th task 5(21=5 � 1) = 0:743 > u1 + u2 + u3 + u4 + u5 = 0:765 ? Task is not schedulable

Table 2. Schedulability checking for the task set X by employing EDF algorithm (condition).

Schedulability of
the i-th task

EDF schedulability checking algorithm Result

1st task 1 > u1 = 0:300
p

Task is schedulable
2nd task 1 > u1 + u2 = 0:550

p
Task is schedulable

3rd task 1 > u1 + u2 + u3 = 0:670
p

Task is schedulable
4th task 1 > u1 + u2 + u3 + u4 = 0:722

p
Task is schedulable

5th task 1 > u1 + u2 + u3 + u4 + u5 = 0:765
p

Task is schedulable

? Task is not schedulable;
2- Performability of the 2nd task = 0.999999990000000p

Task is schedulable;
3- Performability of the 3rd task = 0.999999989999960
? Task is not schedulable;
4- Performability of the 4th task = 0.999999990000000p

Task is schedulable;
5- Performability of the 5th task = 0.999999990000000p

Task is schedulable.

This means that the tasks f�2; �4; �5g are de�-
nitely accepted using the proposed condition. Hence,
the proposed condition guarantees the system per-
formability above the desired level when tasks
f�2; �4; �5g are accepted.

4. Simulation method

To evaluate the proposed condition, two experiments
are carried out. In the �rst experiment, a single
processor is simulated to reveal the e�ects of using
di�erent schedulability conditions on system performa-
bility. To perform this, the �ve schedulability condi-
tions discussed in Section 2 are employed with the RM
algorithm.

For the sake of simplicity, the following notations
and de�nitions are used in this paper:
n Number of tasks;
�i The i-th task;
Ci Worst case execution time of the i-th

task;
Ti Period of the i-th task;

ri Release time of the i-th task;
di Absolute deadline of the i-th task;
ui Utilization of the i-th task that is equal

to ci=Ti;
� Failure rate;
pi The probability of the i-th task correct

run within a single execution, that is a
function of �;

qi The probability of a failure occurrence
during the run time of the i-th task,
that is equal to 1� pi;

P (�i) The probability of the i-th task �rst
correct run;

L The desired level of performability. It
is a value between 0 and 1.

The following steps are implemented for this simula-
tion:

1. An initial task set is generated randomly. In this
set, the generated tasks have su�cient slack time
for re-execution upon detecting a probable occurred
failure. Moreover, with lower task utilization,
the schedulability conditions enter their saturated
mode and reveal their utilization bounds.

2. The generated schedulable task set is simulated for
over one million cycles and random failures are
injected into the tasks. In this step, the simulator
re-executes the failed tasks. The log of system runs
and the probability of task completion before the
deadline are checked to measure the performability.
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Figure 5. Pseudo-code for the implemented algorithm.

In the second experiment, the proposed condition
is applied to the simulator to evaluate its e�ects on
performability. Figure 5 demonstrates the algorithm
of the second experiment.

The following models are considered in the two
aforementioned experiments:

1) Task model. a set of n tasks
P

= f�1; �2; :::; �ng
are given, where f�i = (Ci; ri; di; Ti)ji = 1; 2; 3; :::; ng
and ci is the required execution time of task �i. In
addition, ri, di and Ti are designated as the release
time, deadline and period of �i, respectively.

The following assumptions are used in the task
model:

a) The arrivals of all tasks are periodic with constant
intervals between arrivals.

b) It is assumed that the relative deadline and period
of each task are equal (di = Ti).

c) It is assumed that the tasks are independent. They
are preemptable as well.

d) The tasks execution times are constant.
e) There are su�cient resources in the system to avoid

resource con
ict between tasks.
f) It has been proven that the release times of tasks

do not a�ect the schedulability of the tasks [13].
Therefore, the tasks release times are ignored.

2) System model. Figure 6 shows the system
model. In this system, the tasks distributer utilizes
the proposed condition for assigning the maximum
available tasks to a processor and then assigns the
rejected tasks to other processors.

3) Scheduling model. The processor has a queue
for scheduled tasks and the RM scheduling algorithm

Figure 6. The system model (Si is the name of i-th
processor).

works on the accepted tasks in this queue. The
acceptance or rejection of tasks is performed by one
of the �ve aforementioned traditional conditions in the
�rst experiment and by the proposed condition in the
second experiment.

In these experiments, task assignment overheads
and context switching overheads for the RM scheduling
algorithm are ignored.

Failure model. The following assumptions are used
in the experiments:

a) In the current experiments, the system malfunc-
tions are considered as processor failure or task
failure. Thus, the causes of failures are not
important in this paper.

b) The failures are independent, i.e. the correlated
failures are not considered.

c) The failures do not occur in the scheduler, there-
fore, the scheduler is failure free.

d) The failure-detection coverage is 100% and the
failure detection latency is assumed as zero.

5. Simulation results

In this section, the simulation results of studying
�ve schedulability conditions for the RM scheduling
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algorithm are presented. The results are derived from
two experiments: Experiment A and Experiment B.

In Experiment A, the performability of a real-time
single processor system is evaluated. Table 3 shows the
e�ects of di�erent schedulability conditions on system
performability. It is important to note that a small
di�erence between the performabilities of the condi-
tions may have signi�cant e�ects on overall system
performability and reliability [22]. This happens in a
safety-critical real-time system, such as the controller
of an avionic system, when system reliability and
performability are calculated serially by multiplying
the performabilities of system components.

According to the simulation results, the UO and
the PO conditions have the same and the highest
performability among the �ve simulated conditions.
This can be motivated by the maximum utilization
bound in both UO and PO conditions. For example,
the LC condition, which is an improved version of
the LL condition, provides a higher utilization bound;
therefore, the re-execution method has less chance to
re-execute the failed tasks using the LC condition.

In Figure 7(a) and (b), performabilities of the LL
and the LC conditions are evaluated, with respect to
the failure rate. These �gures show that performability
decreases rapidly when the failure rates increase. This
means that the conditions are not aware of the environ-
mental failure rates. In this case, the conditions cannot
guarantee the performability of the system at the
desired level. These �gures also demonstrate that these
two conditions have an upper bound of performability
for each failure rate. Experiment A is also applied to
UO, IP, and PO conditions; the simulation results are
similar to the results shown in Figure 7(a) and (b).

Experiment B evaluates the proposed condition.
In this Experiment, the system model shown in Fig-
ure 6 is evaluated to determine the e�ects of the
proposed condition on system performability. In this
experiment, the performability of this condition is
compared with the highest performability that was
achieved in Experiment A, i.e. the performability of the
PO condition (see Table 3). The evaluation results of
Experiment B are shown in Figure 8(a) and (b). These
�gures show the ability of the proposed condition to
guarantee or improve the performability of the system
in comparison with the PO condition.

In Figure 8(a), the proposed condition is com-

Figure 7. The upper bound of performability for two
conditions in the presence of failures.

pared with the PO condition. Here, system per-
formability is measured with respect to failure rate,
when the performability level (L) is 0.9999 and the
probability of the correct run of task (Pi) is 0.9. In
Figure 8(b), this experiment is repeated when L =
0:999999999 and Pi = 0:99. These �gures demonstrate
that by employing the proposed condition, the level of
system performability is at a higher level than the PO
condition. These �gures also show that the proposed
condition provides a signi�cant improvement in system
performability, even when the failure rate is higher than
the expected failure rate. On average, 1% improvement
in system performability is achieved in comparison
with the PO condition. This amount of performability
improvement is important for safety-critical real-time
systems.

Experiment B also shows that when actual failure

Table 3. System performability in case of using �ve di�erent schedulability conditions.

Schedulability checking conditions
LL

condition [13]
UO

condition [20]
IP

condition [3]
PO

condition [12]
LC

condition [15]
Measured

performability
0.892789 0.892803 0.892422 0.892803 0.881547
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Figure 8. The performability of the proposed condition in
comparison with the PO condition in di�erent situations.

rate is less than or equal to an expected rate, the per-
formability of the system, which employs the proposed
condition, is greater than the desired level. This means
that the condition can guarantee system performability
at a desired level speci�ed by the system designers.

6. Conclusions

In this study, the performabilities of �ve schedulability
conditions in the presence of di�erent failure rates have
been measured by Experiment A. The measurement
results show that the upper bound of performability
of each condition is limited, and the conditions are
not aware of the environmental failure rates. Based
on these results, a new schedulability condition for
real-time systems has been proposed that guarantees
a desired level of performability under various working
situations. This condition gets three user-de�ned
parameters, i.e. a set of tasks, a failure rate, and
a performability level, and then gives a subset of
the task set, which are schedulable on the processor.
This condition has been proved mathematically in
Section 3. To con�rm the proof, Experiment B has
been done by simulation of a typical hard real-time
system, by employing the RM algorithm and the re-
execution mechanism. In Experiment B, the proposed
condition is compared to the PO condition, because
the PO condition showed the highest performability
in Experiment A. The simulation results using the

proposed condition showed that the level of system
performability was constantly greater than the user-
de�ned performability level, when the actual failure
rate was less than or equal to the given failure rate.
In addition, the results of Experiment B show that the
proposed condition gives, on average, 1% improvement
in system performability, in comparison to traditional
conditions. This improvement has been achieved,
while the actual failure rate was greater than the
initially given failure rate. In conclusion, based on
the results of Experiment B, the proposed condition
works better than other conditions in various working
situations.
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