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Abstract. In this paper, a novel inverse design algorithm, called a ball spine algorithm,
is developed to design the blade to blade 
ow passage of axial-
ow compressors. The
algorithm considers the blade surfaces as a set of virtual balls that move freely along
the speci�ed directions, called `spines'. To start the solution, an initial guess for the
blade geometry is required. Then, the blade-to-blade 
ow �eld is solved using an in-
house inviscid solver. Comparing the Computed Pressure Distribution (CPD) with the
Target Pressure Distribution (TPD) over the blade surfaces gives guidelines in di�erential
movements for the balls to obtain a modi�ed geometry. For the modi�ed geometry, new
grids are automatically generated by an algebraic-elliptic grid-generator. The sequence
is repeated until the target pressure is met. An error parameter, �PD, indicating the
di�erence between CPD and TPD along the suction and pressure surfaces, is computed,
while the blade geometry evolves toward the target geometry. For the initial guess, �PD
is obtained as 13700 Pa, while, after 100 generations, �PD is reduced to 222 Pa.
© 2014 Sharif University of Technology. All rights reserved.

1. Introduction

The design of hardware involving 
uid 
ow or heat
transfer, such as intakes, manifolds, compressors and
turbine blades, etc., is de�ned as the shape deter-
mination of solid elements, so that the 
ow or heat
transfer rate is optimized in some senses. Often, both
Computational Fluid Dynamics (CFD) and design
algorithms are involved in determining an optimal
shape. The computational costs in design techniques
are usually a challenge, so, an appropriate algorithm
for rapid shape determination is always of interest to
designers in the �eld.
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In general, the design problems are categorized
in two groups; optimization and inverse design. In
optimization problems, an objective function, which
could be a compound of various targets, is de�ned, and,
using optimization algorithms, the optimum values for
the design parameters are determined. Li et al. [1] de-
veloped a blading design optimization system using an
aeromechanical approach and harmonic perturbation
method. They implemented this method on a NASA
67 rotor and improved the e�ciency of the rotor by
0.4% considering stress limitations. Verstraete et al. [2]
presented a multidisciplinary optimization and applied
it to the design of a small radial compressor impeller.
In this method, a genetic algorithm and arti�cial neural
network have been used to �nd geometry with maxi-
mum e�ciency, regarding a maximum stress limitation
in the blades.

The other type of design problem is Surface Shape
Design (SSD). Surface Shape Design (SSD) in 
uid 
ow
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problems usually involves �nding a shape associated
with a prescribed distribution of surface pressure or
velocity. It should be noted that the solution of an
SSD problem is not generally an optimum solution in
a mathematical sense. It just means that the solution
satis�es a Target Pressure Distribution which resembles
a nearly optimum performance [3].

There are basically two di�erent algorithms for
solving SSD problems: decoupled (iterative) and cou-
pled (direct or non-iterative) techniques. In the cou-
pled solution approach, an alternative formulation of
the problem is used in which the surface coordinates
appear (explicitly or implicitly) as dependent variables.
In other words, the coupled methods tend to �nd
the unknown part of the boundary values and the

ow �eld unknowns simultaneously in a (theoretically)
single-pass or one-shot approach [4]. The governing
equations of coupled methods are more complicated
than the well-known 
uid dynamics equations; hence,
these methods are limited to simple 
ow regimes. In
addition, conventional 
ow �eld solvers could not be
used.

The iterative shape design approach relies on
repeated shape modi�cations, such that each iteration
consists of a 
ow �eld solution followed by a geometry
generation scheme. In other words, a series of sequen-
tial problems are solved in which the surface shape is
modi�ed (evolved) in each geometry generation so that
the desired TPD is eventually achieved [5]. In iterative
methods, the governing equations are similar to 
ow
�eld equations and conventional solvers could be used
as a black-box. Hence, iterative methods are applicable
for complicated 
ow regimes.

Iterative methods, such as optimization tech-
niques, have been, by far, the most widely used in solv-
ing practical SSD problems. The traditional iterative
methods used for SSD problems are often based on trial
and error or optimization-search algorithms. The trial
and error search process is very time-consuming and
computationally expensive, and, hence, needs designer
experience to reduce computation costs. Optimization
methods [6,7] are commonly used to automate the new
generation of geometry in each iteration cycle. In such
methods, an objective function (e.g., the di�erence
between the computed surface pressure and the target
surface pressure, �PD [8]) is minimized, subject to

ow constraints which have to be satis�ed. Although
the iterative methods are general and powerful, they
are often computationally costly and mathematically
complex [9]. These methods can utilize the method of

ow �eld analysis as a black-box.

Other iterative methods presented so far use phys-
ical instead of mathematical algorithms to automate
the geometry modi�cation in each iteration cycle. The
physical-based methods are easier and quicker than
the mathematical (or optimization based) iterative

methods. One of these physical algorithms is governed
by a transpiration model in which one can assume that
the wall is porous. Hence, the mass can be �ctitiously
injected through the wall in such a way that the new
wall satis�es the no 
ow through the wall boundary
condition [10]. This method is aimed to remove nonzero
normal velocity on the boundary. A geometry update
is determined by applying either the transpiration
model based on mass 
ux conservation [11-15] or the
streamline model based on alignments [16]. An alter-
native algorithm is based on the residual-correction
approach. In this method, the key problem is to
relate the computed di�erence between actual pressure
distribution on the current estimate of the geometry
and the TPD (the residual) to the required changes
in the geometry. In this method, the art in the
development of a residual-correction method is to �nd
an optimum state between the computational e�ort
(for determining the required geometry correction) and
the number of iterations needed to obtain a converged
solution. This geometry correction may be estimated
by means of a simple correction role, making use
of relations between geometry changes and pressure
di�erences known from linearized 
ow theory. The
residual-correction decoupled solution methods try to
utilize the analysis methods as a black-box.

Barger and Brooks [17] presented a streamline
curvature method in which they considered the pos-
sibility of relating a local change in surface curvature
to a change in local velocity. Since then, a large
number of methods have been developed following that
concept [18-26].

Nili et al. presented an iterative inverse design
method for internal 
ows called the Flexible String
Algorithm (FSA). They considered the duct wall as
a 
exible string, frequently deformed under the dif-
ference between TPD and CPD, �PD = TPD�CPD.
They developed this method for non-viscous compress-
ible [27,28] and viscous incompressible internal 
ow
regimes [29].

Recently, Nili et al. presented a novel inverse
design method called the Ball-Spine algorithm (BS
algorithm). They developed this method for quasi-3D
design of the meridional plane of centrifugal compres-
sors [30].

In this paper, the BS algorithm is implemented
for the design of a Double Circular Arc (DCA) pro�le.
To do so, corrected geometry for both suction and
pressure surfaces have been consecutively generated
until the target pressure distributions on both surfaces
are achieved. For the 
ow �eld solution, a recently
developed in-house code, based on the Roe scheme,
is used. After each geometry evolution step, the
domain grids have been regenerated using an in-house
algebraic-elliptic grid generation code. As an initial
guess for the geometry, a straight duct (
at plate
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airfoil) has been used, which gives the error parameter,
�PD = 13700 Pa, where �PD is the average absolute
value of the di�erence between computed and target
pressure distributions, i.e. CPD and TPD, along
the blade surfaces. After 100 geometry corrections
(evolvement) �PD is reduced to 222 Pa. To ensure the
uniqueness of the solution, the procedure is repeated
using a di�erent initial guess for the geometry, and it is
observed that the solution has converged to the same
target geometry. To present the e�ectiveness of the
design algorithm, two design problems have also been
performed. First, a pressure distribution with a higher
loading has been considered as the target pressure
distribution, and the corresponding airfoil-shape has
been determined. Then, a target pressure distribu-
tion with a lower adverse pressure gradient on the
suction surface has been used, and the corresponding
geometry which satis�es the target pressure has been
obtained. The design method has also been applied
to a transonic test case and the method is shown to
be reliable. As a sensitivity analysis, the e�ect of the
geometry correction coe�cient, C, on the stability and
convergence rate of the method has also been studied
and an optimum value for this coe�cient is obtained.

2. The Ball-Spine (BS) algorithm

In the present work, the ball-spine algorithm is applied
to the design of a 2D airfoil. At �rst, the basis
of the ball-spine algorithm is detailed. To do so,
a two dimensional internal 
ow through a duct is
considered as an example. Here, a target pressure
distribution (or pro�le) along the duct is speci�ed, and
the corresponding geometry is determined through the
BS algorithm. To start the solution, an initial guess for
the duct cross sectional pro�le is required to be made.

Here, the duct walls are considered as a set of
virtual balls (see Figure 1) that are only allowed to
freely move along speci�ed directions called spines. For
the guessed duct pro�le (or the duct geometry that does
not yet correspond to the target pressure), 
ow motion
through the duct applies a pressure to the wall of the
duct, here called computed pressure. For a 
uid tube

Figure 1. Simulation of a 2-D duct with balls and spine
directions.

(or say a control volume around the 
uid), this pressure
is applied at the outer side of the wall, as shown in
Figure 2. This pressure, in general, is di�erent from
the required target pressure. Hence, the 
exible wall
(i.e. the balls) is assumed to deform in such a way as
to reach a shape satisfying the target pressure. That
is, the force due to the di�erence between the target
and computed pressure at each point on the wall is
applied to each virtual ball and causes them to move.
As the target shape is obtained, this pressure di�erence
vanishes and the balls will stop moving.

To derive the kinematic relations of a 
exible wall,
a uniform mass distribution along the wall is assumed.
The free body diagram of the ball is shown in Figure 3.

The net force applied to the ball along the spine
direction is computed as:

FSp = �P:A: cos �; (1)

where the subscript Sp indicates the spine direction
and:

�P = PTarget � PComp.; (2)

and A is the projected area of each element and � is the
angle between the force vector and spine direction. If a
ball moves along the spine direction through a speci�ed
time step (�t), the corresponding displacement is

Figure 2. Applying the target and computed pressures
on a sample ball.

Figure 3. Free body diagram of a sample ball on the
duct wall.
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computed from the following dynamic relations:

�s =
1
2
a(�t)2; a =

FSp

m
; (3)

where m and �s are the mass and displacement of the
virtual ball, respectively. Substituting Eqs. (1) and (2)
into Eq. (3) yields:

�s =
1
2
A
m

(�t)2 (PTarget � PComp.) cos �; (4)

or:

�s = C:�P: cos �; �P = (PTarget � PComp.) ; (5)

where C = A:(�t)2=2m is a constant called the \Geom-
etry Correction Coe�cient", with a typical value within
the range of 0.0001-0.0005 (m2.s2/kg). Considering
a large value for parameter C causes the balls dis-
placements to increase and the convergence rate to be
improved. On the other hand, if parameter C exceeds a
limit, the solution becomes unstable. Although a small
value of C causes the design procedure to be stable, the
convergence rate decreases. Hence, an optimum value
for the geometry correction coe�cient, which depends
on pressure gradients, 
ow regimes, geometry etc., is
usually determined by a trial and error process.

Based on the value of for each ball (or better
to say, for each computational node along the wall),
the new geometry is determined. Then, grids for
the revised geometry are generated, and the 
ow
�eld is solved using a 
ow solver. The procedure is
continued until the computed pressure matches the
target pressure. The 
owchart of the design algorithm
is shown in Figure 4. Because, in the 
ow �eld solver,
back pressure is imposed at the outlet (which is �xed),
and the �rst point on the walls must be �xed, the target
and computed surface pressures are gauged relative to
the leading edge pressure, i.e:

Prel = P � PLE: (6)

For the geometry correction, the relative pressure, Prel,
is used in Eq. (5).

It should be noted that for supersonic 
ows, the
change of pressure with change of area di�ers from the
subsonic 
ow regime. Hence, Eq. (5) is rewritten as:(

�s = C:�P: cos � if Mach < 1
�s = �C:�P: cos � if Mach > 1

(7)

2.1. The modi�ed wall geometry
Here, the spine directions are selected along the vertical
lines, i.e. with the same x-coordinates as illustrated
earlier in Figure 1. In other words, the x-coordinates
of the balls on the top and bottom walls of Figure 1

Figure 4. The design 
owchart.

remain the same through the shape modi�cation proce-
dure. The modi�ed wall geometry, i.e. the new position
of each ball, is calculated as follows:
xnew = xold; (8)

and:
ynew = yold + �s: (9)

2.2. The wall smoothness
In this process, a wall is considered as a set of separated
balls. During the design/modi�cation procedure, the
curvature of this wall may result in discontinuous
shapes in adjacent nodes (balls), as shown in Figure 5.
To smooth out the curvature of the wall, a �ltration
scheme is applied. This process is performed after
each geometry correction step. The �ltration scheme
is formulated as follows:

y(i; j) =
y(i� 1; j) + f:y(i; j) + y(i+ 1; j)

f + 2
: (10)

Here, f is the �ltration coe�cient. Large values for
f correspond to a low degree of �ltration and small
values for f result in a greater degree of �ltration. In
the present work, f is set to 4, i.e:

y(i; j) =
y(i� 1; j) + 4y(i; j) + y(i+ 1; j)

6
: (11)

In Figure 5, the �ltered geometry is plotted using a
dashed line. A higher order of �ltration decreases
the convergence rate, but improves the stability of the
design method.
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Figure 5. Wall boundary before and after �ltration.

2.3. The compressor blades design procedure
In the design procedure of compressor blades, a target
pressure distribution is usually provided for each airfoil
surface, i.e. for the suction and pressure sides. To
enforce the target pressure distributions along the
suction and pressure surfaces, geometry correction is
done by applying pressure distributions alternatively
to the suction and pressure surfaces, in such a way
that only one boundary is corrected at each step and
the other is kept �xed. Finally, when both pressure
distributions match, the geometry is determined.

2.4. Inviscid/viscous design procedures
The ball-spine algorithm can incorporate either an in-
house code or a commercial 
ow solver for the iterative
procedure of shape determination. As the 
ow solver
is like a black-box to the BS algorithm, either inviscid
or viscous 
ow solvers can be adopted.

The prescribed BS algorithm uses pressure distri-
bution for geometry correction, by which, the separat-
ing regions within the 
ow �elds, usually appearing
in regions of large adverse pressure gradients, are
avoided. Hence, the trends of pressure distribution
determination for inviscid and viscous 
ows over the
surfaces are similar. As a result, �rst, a designer can
use an inviscid 
ow solver to obtain a primary solution
quickly. Then, using a viscous 
ow solver, the accuracy
of the solution can be either checked or improved. If
the designed geometry, obtained by the inviscid solver,
provides a mild enough adverse pressure gradient, then,
the occurrence of separating regions by the viscous 
ow
solver can be checked.

3. Flow �eld solution

The governing equations for two-dimensional, com-
pressible, unsteady, inviscid 
ow in the conservative
form are given as follows:

@Q
@t

+
@E
@x

+
@G
@y

= 0; (12)

where:

Q =

2664 �
�u
�v
�et

3775 ; E =

2664 �u
�u2 + P
�uv
�uht

3775 ; G =

2664 �v
�uv

�v2 + P
�vht

3775 :
(13)

Here, Q is the conservative vector, and E and G are
the inviscid 
ux vectors. The equations are written in
the generalized form using metrics of transformation,
as:
@Q
@t

+
@E
@x

+
@G
@y

= 0; (14)

where:

Q1 =
Q
J
;

E1 =
1
J

(�xE + �yG) ;

G1 =
1
J

(�xE + �yG) : (15)

Eq. (3) is discretized as follows:

@Q1

@t
+
E1E � E1W

��
+
G1N �G1S

��
= 0; (16)

where E1E is the inviscid numerical 
ux computed in
generalized coordinates at the east cell face, E. E1W ,
G1N and G1S are the 
ux vectors at west, north and
south faces, respectively. To solve the inviscid 
ow
�eld, a recently developed in-house code, based on the
Flux Di�erence Splitting (FDS) scheme of Roe [31],
is used. The governing equations are discretized
using formulations presented by Kermani [32]. The
inviscid numerical 
ux, E1E , is written in generalized
coordinates, according to Ref. [32], as:

E1E =
1
2

(E1L + E1R)� 1
2

4X
m=1

j�mj �WmTm; (17)

where E1L and E1R are the inner and outer value of E1
at face E, � is the eigenvalue of the Jacobian matrix
determined under Roe averaged conditions, �W is the
wave amplitude, and T is the eigenvector corresponding
to the eigenvalue, �. For a complete description of these
parameters, the reader is referred to [31,32].

The Roe scheme gives non-physical expansion
shocks in the regions where the eigenvalues of the
Jacobian matrix vanish, e.g. the sonic regions and
stagnation points. To avoid expansion shocks in
the regions where the eigenvalues vanish, an entropy
correction formula from Kermani and Plett is used
here [33]. To validate the solver, the numerical results
are compared with the experimental data of Emery et
al. for a 2-dimensional NACA65-410 cascade [34]. In
Figure 6, the pressure coe�cient on the blade surfaces
is plotted and compared with experimental data for a
cascade with a solidity of 1.0, stagger angle of 22.5�,
and 7.5� angle of attack.
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Figure 6. Comparison between numerical results and
experimental data for 2-D NACA65-410 cascade.

Figure 7. A sample of grid generated by an in-house
grid-generator code.

3.1. Grid generation
A combined algebraic-elliptic algorithm is used for
grid generation [35]. To impose grid orthogonality on
the blade surfaces and clustering near the wall, the
corresponding control functions are considered in the
elliptic algorithm. An example of a generated grid for
a blade cascade is shown in Figure 7.

3.2. Boundary conditions
For compressible 
ow in a compressor blade cascade,
the pressure inlet and pressure outlet boundary condi-
tions are applied at inlet and outlet boundaries, respec-
tively. Two periodic boundaries are considered before
and after the blade. The slip boundary conditions are
applied to the blade suction and pressure surfaces.

Figure 8. Pressure distributions for the target and the
converged geometries for the Double Circular Arc (DCA)
blade.

4. Results and discussion

The BS algorithm is applied to a Double Circular
Arc (DCA) blade to assess the applicability of this
method. In this computation, the back pressure
ratio is set to PBack=P0 = 0:843. This guarantees
a subsonic 
ow over the suction and pressure sides
of the DCA blade. The blade cascade is shown in
Figure 7. To validate the method, the 
ow �eld around
the DCA airfoil is solved, and pressure distribution
on the suction and pressure surfaces of the airfoil is
obtained. These pressure distributions are considered
as target pressure distributions, as the �rst assessment
of the BS-algorithm. Starting from a 
at plate airfoil
(straight line) as an initial guess for the geometry, the
geometry modi�cation (also called the design process)
is continued until the target pressure distribution is
reached. It is noted in this �rst study that the airfoil
geometry corresponding to the prescribed loading is
the DCA blade. As shown in Figure 8, target and
�nal (converged) pressure distributions present very
good agreement. The initial, target and converged
geometries are shown in Figure 9. Also shown in this
�gure are magni�cations of viewpoints near the leading
and trailing edges for better comparison. To assess the
uniqueness of the method, the procedure is repeated
using a di�erent initial guess for geometry. That is an
airfoil of zero thickness, as shown in Figure 10, which is
used as an initial guess for the geometry. This �gure
shows that for the given target pressure distribution
of Figure 8, the BS design algorithm produces the
same DCA airfoil geometry as illustrated in Figure 9.
In short, it is said that, for a given target pressure
distribution, as shown in Figure 8, the �nal converged
geometry using two di�erent initial guesses for the
geometries (i.e. a 
at-plate airfoil as shown in Figure 9,



A. Madadi et al./Scientia Iranica, Transactions B: Mechanical Engineering 21 (2014) 1981{1992 1987

�PD =

iTEP
i=iLE

��(PTarget � PComp.)i
��
Suction surface +

i=iTEP
i=iLE

��(PTarget � PComp.)i
��
Pressure surface

2� (iTE � iLE + 1)
: (18)

Box I

Figure 9. The evolution of the blade geometry for the
�rst assessment of the BS algorithm: Staring from a

at-plate airfoil as the initial guess, it is shown that the
�nal converged geometry matches very well with the DCA
airfoil.

Figure 10. Assessment of the BS-algorithm: Staring
from a di�erent initial guess for the DCA airfoil (di�erent
from the 
at-plate airfoil as noted in Figure 9), it is shown
that the BS design algorithm �nds the same DCA airfoil
geometry.

Figure 11. E�ect of geometry correction coe�cient, C,
on convergence rate of the design process; curve of �PD
with geometry generation number (here �PD represents
the di�erence between the computed and target pressure
distributions).

and a zero thickness airfoil as shown in Figure 10)
produce the same results.

To assess the convergence degree of the solution,
an error parameter, called �PD, is also de�ned in
Eq. (18) as shown in Box I.

In Figure 11, the convergence history of the
design process is shown for di�erent values of geometry
correction coe�cient, C. The convergence rate is
increased as coe�cient C is increased to an optimum
value of 0.00030 m2.s2/kg. More increase in values of
C results in divergence of the method. It is concluded
that for a design process, an optimum or critical
value of geometry correction coe�cient, C, should be
determined.

To assess the accuracy of the BS algorithm for
transonic 
ow regimes, the back pressure for the
DCA blade 
ow-�eld shown in Figure 7 is decreased
to PBack=P0 = 0:759. With reduced back pressure
value, the 
ow in the passage becomes transonic and
Mach number increases in the domain. The method
is applied, considering the mentioned pressure dis-
tribution, using a 
at plate airfoil (straight line) as
the initial guessed geometry. Comparison between
target and converged pressure distributions is shown in
Figure 12. Also Mach number distribution is presented
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Figure 12. Target and converged pressure distributions
for transonic test case.

Figure 13. Mach number distribution for the target and
the converged geometries for transonic test case.

in Figures 13 and 14. A shock is observed on the
suction surface of the blade.

The previous test cases were studied for validation
of the ball-spine algorithm. Here, as an applied exam-
ple, a new target pressure distribution is considered
and the accuracy and applicability of the method is
assessed. To do this, using the pressure distributions
of the DCA airfoil, the target pressure distribution is
suggested to have higher loading. In Figure 15, the
original, target (with higher loading) and converged
pressure distributions are compared. The area between
blade surface pressure distributions corresponds to
blade loading, which is increased in this test case. In
Figure 16, the original and new designed airfoil that
has a greater loading is illustrated.

Figure 14. Cascade 
ow �eld shown by Mach number
contours for the transonic test case.

Figure 15. Original, increased loading and converged
pressure distributions.

Figure 16. Original and new designed airfoils for
increased loading test case.
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Figure 17. Original, decreased adverse pressure gradient
and converged pressure distributions.

Figure 18. Original and new designed airfoils for
decreased adverse pressure gradient test case.

For the second applied test case, the pressure
distribution of the DCA airfoil is modi�ed to decrease
the adverse pressure gradient on the suction side
of the airfoil. If separation occurs in the domain,
using a lower adverse pressure gradient decreases the
size of the recirculating pocket. In Figure 17, the
original, target (with lower adverse pressure gradient)
and converged pressure distributions are shown. The
converged pressure distribution matches the target
pressure distribution. The original and designed airfoils
are presented in Figure 18.

5. Conclusions

A Ball-Spine (BS) algorithm has been proposed, in
this paper, in order to design a compressor blade
pro�le to match a prescribed target pressure distri-
bution. A recently developed in-house inviscid 
ow

solver has been used for this purpose. In the present
study, for mesh generation, a combined algebraic-
elliptic algorithm has been developed and used. The
proposed BS algorithm has been tested on a DCA
(target) blade pro�le, and the achieved geometry shows
a good agreement with the target geometry. Starting
from two di�erent initial geometries, the method has
been converged to a blade geometry, which satis�es
the target pressure. After 100 geometry generation
steps, the di�erence between computed and target
pressure distributions are detailed; �PD reduces from
13700 Pa to a converged value of 222 Pa. The e�ect
of geometry correction coe�cient, C, on the stability
and convergence of the design procedure has been
investigated, and the optimum correction coe�cient
has been obtained.

The method has been applied to a transonic test
case, and the accuracy of the method has been veri�ed.
As an application, the method has been applied using
two new pressure distributions. The �rst distribution
has a greater loading and the second has a lower
adverse pressure gradient on the suction side. The
corresponding airfoils satisfying the target pressure
distributions have been designed.

Finally, it should be noted that the present ball-
spine approach is not limited to application on axial

ow compressors. An identical approach can be used
for the design of turbines, centrifugal compressors,
nozzles, di�users and many more. This task can be
performed with some changes in boundary conditions,
the solver, the grid generator, and the design algorithm
steps. It is general enough to be used in both external
and internal 
ow applications.

Nomenclature

A Element area (m2)

a Acceleration of the ball (m/s2)
C Geometry correction coe�cient

(m2s2/kg)
CPD Computed Pressure Distribution (Pa)
E Inviscid 
ux vectors in x-direction
E1 Inviscid 
ux vectors in �-direction
et Total internal energy (J/kg)
F Force imposed on the ball (N)
f Filtration coe�cient
G Inviscid 
ux vectors in y-direction
G1 Inviscid 
ux vectors in �-direction
ht Total enthalpy (J/kg)
J Jacobian of transformation
m Ball mass (kg)
n Normal direction
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P Static pressure (Pa)
Q Conservative vector in physical domain
Q1 Conservative vector in computational

domain
T The eigenvector of Jacobian matrix
t Time (s), tangential direction

TPD Target Pressure Distribution (Pa)
u Velocity component in x-direction

(m/s)
v Velocity component in y-direction

(m/s)

x Position of the ball (m), x coordinate

y Position of the ball (m), y coordinate
�P Di�erence between target and

computed pressures (Pa)
�PD Di�erence between target and

computed pressure distributions (Pa)

�s Displacement of the ball (m)

�t Time step (s)
�W The wave amplitude
� �-coordinate in computational domain
� The angle between force vector and

spine direction (rad)
� The eigenvalue of Jacobian matrix
� �-coordinate in computational domain

� Density (kg/m3)

Subscripts

Back At the outlet
Comp. Computed conditions
E The East face of the control volume
L The inner side of the cell face
LE Leading Edge
N The north face of the control volume
new New conditions
old Old conditions
R The outer side of the cell face
rel Relative to the leading edge
S The South face of the control volume
Sp Projected on spine direction
Target Target conditions
TE Trailing Edge
W The West face of the control volume
x x-derivative
y y-derivative
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