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Abstract. In this paper, the problem of optimal tracking control for a container ship
is addressed. The multi-input-multi-output nonlinear model of the S175 container ship is
well established in the literature and represents a challenging problem for control design,
where the design requirement is to follow a commanded maneuver at a desired speed. To
satisfy the constraints on the states and control inputs of the vessel nonlinear dynamics
and minimize the heading error, a nonlinear optimal controller is formed. To solve the
resulted nonlinear constrained optimal control problem, the Gauss Pseudospectral Method
(GPM) is used to transcribe the optimal control problem into a Nonlinear Programming
Problem (NLP) by discretization of states and controls. The resulted NLP is then solved by
a well-developed algorithm known as SNOPT. The results for course-keeping and course-
changing autopilots illustrate the e�ectiveness of the proposed approach in dealing with
vessel tracking control.

© 2014 Sharif University of Technology. All rights reserved.

1. Introduction

The problem of the tracking control of marine vehicles
is a highly important issue, especially for autopilot de-
sign. There are some challenges in this area. The �rst
is that the vessels are often underactuated. Advanced
techniques in the �eld of control of underactuated
systems [1-3] have been suggested for path planning
of a 3-DoF vessel (surge, sway and yaw motion) with
two independent inputs.

Another di�culty for the tracking control of
marine surface vessels is the intrinsic physical lim-
itations in the control inputs. The rudder deec-
tion angle and its rate have operating limits which
should be considered. In addition, the controller must
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consider safety constraints. Since the roll motion
of the marine vehicle is the principal cause for the
probabilities of slamming and deck wetness [4], en-
forcing roll constraints while maneuvering in seaways
becomes an important designation in surface vessel
control.

To overcome the mentioned challenges, some
control design methods have been developed. Li et
al. (2009) used Model Predictive Control (MPC) to
control both the cross tracking and heading error by the
rudder angle for an underactuated surface vessel while
considering rudder limitation and roll constraints [5].
MPC can handle underactuated problems by combin-
ing all the objectives into a single objective function.
However, due to computational complexity, the MPC
applications for systems with fast dynamics are not
very common [6]. In addition, Li et al. (2009) used a
reduced order linear model for MPC implementation.
In general, the linear models result in the loss of vital
mathematical information from the dynamics of the
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physical systems, and their valid range of operation is
small. A better choice to tackle tracking control prob-
lems, while satisfying the input and state constraints,
is nonlinear optimal control. Nonlinear optimal control
satis�es any of the desirable constraints, and is also
suitable for nonlinear systems [7]. In an optimal control
problem, the goal is determination of the states and
controls that minimize a cost functional subject to
nonlinear dynamic constraints, boundary conditions
and inequality path constraints. There are two meth-
ods for resolving optimal control problems: direct
and indirect [8]. In an indirect method, �rst-order
necessary conditions for optimality are derived from the
optimal control problem via the calculus of variations
and Pontryagin's minimum principle [9]. These neces-
sary conditions form a Hamiltonian Boundary-Value
Problem (HBVP), which is then solved numerically
for extremal trajectories. The optimal solution is
then found by choosing the extremal trajectory with
the lowest cost. The primary advantages of indirect
methods are high accuracy in the solution and the
assurance that the solution satis�es the �rst-order
optimality conditions. However, indirect methods have
several disadvantages. First, the solution of HBVP
must be usually derived analytically, which can be often
non-trivial. Second, if one wishes to obtain the solution
numerically, as numerical techniques used in indirect
methods typically have small radii of convergence, an
extremely good initial guess of the unknown solution
or boundary conditions is generally required. Finally,
for problems with path constraints, it is necessary
to have a priori knowledge about the constrained
and unconstrained arcs or switching structure [10].
C� imen and Banks (2004) used the indirect method
to solve nonlinear optimal tracking control of an oil
tanker [7].

On the other hand, the direct methods trans-
form the optimal control problem into a nonlinear
programming problem (NLP). Direct methods have
the advantage that the �rst-order necessary condi-
tions do not need to be derived. Furthermore, they
have much larger radii of convergence than indirect
methods and, thus, do not require as good an initial
guess. Lastly, the switching structure does not need
to be known a priori [10]. In this paper, to solve
a nonlinear 4-DoF tracking control problem for an
underactuated container ship, we address a kind of
direct method, known as the Gauss Pseudospectral
Method (GPM), to transform the optimal control
problem into an NLP by parameterization of the states
and the controls. These parameterization techniques
have an important role to play in the convergence
and accuracy of the solution, and low computation
time [11]. The resulted NLP is then solved by a
well-developed algorithm called SNOPT. The proposed
method is suitable for autopilot design and provides

tracking of a commanded course heading at a desired
shaft velocity, while satisfying the roll and rudder
constraints.

This paper is organized as follows: First, the
Gauss pseudospectral method is presented in its most
current form, and a complete NLP is provided which
includes both path constraints and di�erential equa-
tions in the optimal control problem formulation.
Afterwards, the vessel dynamical model adopted in
the controller design is presented. Section 4 presents
the simulation results, together with some discussions,
and the last section provides some concluding re-
marks.

2. Gauss pseudospectral method

Consider the following general optimal control prob-
lem. The objective is to determine the state, x(t),
and control, u(t), that minimize the given cost func-
tional:

Minimize:

J = �(x(t0); t0;x(tf ); tf ) +

tfZ
t0

g(x(t);u(t); t)dt:

s.t.:8>>>>>>>>>><>>>>>>>>>>:

The dynamic constraints:
_x(t) = f(x(t);u(t); t); t 2 [t0; tf ]

The boundary conditions:
h(x(�0); t0;x(�f ); tf ) = 0

The inequality path constraints:
C(x(t);u(t); t) � 0;

(1)

where t0 is the �xed or free initial time, tf is the
�xed or free �nal time, and t 2 [t0; tf ]. The terms,
� and g, are called the endpoint cost and Lagrangian,
respectively. The functions, f , h and C, are known and
smooth functions which denote the dynamical system,
boundary conditions, and inequality constraints on
the path, respectively. Eq. (1) is referred to as the
continuous Bolza problem [10]. The GPM method
requires a �xed time interval, such as [�1; 1]. So,
the time variable is mapped to the general interval,
� 2 [�1; 1], via the a�ne transformation:

� =
2t

tf � t0 �
tf + t0
tf � t0 :

Now, the optimal control problem is rewritten as:

J =�(x(�0); �0;x(�f ); tf )

+
tf � t0

2

�fZ
�0

g(x(�);u(�); t0; tf )d�;
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s.t.:8>>>>>>>>>><>>>>>>>>>>:

The dynamic constraints:
dx
d� = tf�t0

2 f(x(�);u(�); � ; t0; tf )

The boundary conditions:
h(x(�0); t0;x(�f ); tf ) = 0

The inequality path constraints :
C(x(�);u(�); � ; t0; tf ) � 0:

(2)

In the GPM, this optimal control problem is dis-
cretized at some speci�c discretization points, called
the Legendre-Gauss (LG) points, and then transcribed
into a nonlinear program (NLP) by approximating
the states and controls using Lagrange interpolating
polynomials [8]. The set of N discretization points
includes K = N � 2 interior LG collocation points,
de�ned as the roots of the Kth-degree Legendre poly-
nomial, the initial point, �0 = �1, and the �nal point,
�f = 1. An approximation to the state, X(�), is
formed with a basis of K + 1 Lagrange interpolating
polynomials. The control is approximated using a
basis of K Lagrange interpolating polynomials; namely
U(�). The continuous dynamics are then transcribed
into a set of K algebraic constraints via orthogonal
collocation. In addition, the integral term in the
cost functional can be approximated with a Gauss
quadrature.

The resulted NLP are �nally found as:

Minimize:

J
X(�k);U(�k)

=�(X(�0); t0;X(�f ); tf )

+
tf � t0

2

KX
i=1

!ig(X(�i);U(�i); �i);

s.t.:8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

X(�f )�X(�0)

� tf � t0
2

KX
i=1

!if(X(�i);U(�i); �i; t0; tf = 0

KX
i=0

KX̀
=0

KQ
j=0;j 6=i;`

(�k � �j)
KQ

j=0;j 6=i
(�i � �j)

X(�i)

� t0 � tf
2

f(X(�k);U(�k); �k; t0; tf ) = 0

h(X(�0); t0;X(�f ); tf ) = 0

C(X(�k);U(�k); �k; t0; tf )�0; (k=1; � � � ;K)

(3)

In Eq. (3), !i are the Gauss weights [10].

The solution of Eq. (3) is an approximate solution
to the continuous Bolza problem. In this paper, to
solve this NLP, the SNOPT solver is used. SNOPT is
a software package for solving large-scale optimization
problems. It has been designed for problems with
many thousands of constraints and variables, however,
it is best suited for problems with a moderate number
of degrees of freedom (up to 2000) [12]. It helps us
to solve the resulted non-convex optimization prob-
lem.

SNOPT uses a Sequential Quadratic Program-
ming (SQP) algorithm. SNOPT makes use of a
nonlinear function and gradient values. If some of the
gradients are unknown, they will be estimated by �nite
di�erences. SNOPT allows the nonlinear constraints
to be violated (if necessary) and minimizes the sum
of such violations. The main steps of the SNOPT
algorithm can be found in [12]. In this paper, we
used the SNOPT solver embedded in PROPT software
without having to worry about the mathematics of the
solver. Once the problem has been properly de�ned,
PROPT takes care of all the necessary steps in order
to return a solution.

In order to obtain a solution for the optimal
control problem of Eq. (3) as e�ciently as possible,
while obtaining an accurate solution, 90 Legendre-
Gauss collocation points are chosen. While it is
beyond the scope of this paper to provide a detailed
explanation of various pseudospectral methods and
their accuracy, more detailed information can be found
in [9,10,13,14].

3. Description of container ship model

A mathematical model for a single-screw, high-speed
container ship (often referred to as S175 in the marine
engineering community) in surge, sway, roll and yaw,
has been presented in [15]. This 4-DoF dynamical
ship model is highly nonlinear with 10 states: x =
[u; v; r; x; y;  ; p; �; n; �]T and 2 control inputs: u =
[nc; �c]T . u, v, r and p are the surge velocity, sway
velocity, yaw rate and roll rate, with respect to the ship-
�xed frame, respectively. The corresponding displace-
ments, with respect to the inertial frame, are denoted
by x, y.  and � are the yaw and roll Euler angles.
The other two states are the propeller shaft speed, n,
and the rudder angle, �. The inputs to the model are
the commanded propeller speed, nc, and commanded
rudder angle, �c, respectively. The actuator input
saturation and rate limits are also incorporated in
this model, so that j�j � 35 deg and j _�j � 5 deg/s
and 0 < n � 160 rpm. The 4-DoF nonlinear
model of the vessel is one of the most comprehensive
ship models available in open literature. It captures
the fundamental characteristics of ship dynamics and
covers a wide range of operating conditions. The
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nonlinearequations of motion in 4-DoF are given by:

(m0 +m0x) _u0 � (m0 +m0y)v0r0 = X 0;

(m0+m0y) _v0+(m0+m0x)u0r0+m0y�0y _r0�m0yl0y _p0=Y 0;

(I 0x+J 0x) _p0�m0yl0y _v0�m0xl0xu0r0+W 0GM 0�0=K 0;

(I 0z + J 0z) _r0 +m0y�0yv0 = N 0 � Y 0x0G: (4)

Here, m0 denotes the ship mass, and m0x and m0y denote
the added mass in the x and y directions, respectively.
I 0x and I 0z denote the moment of inertia, and J 0x and
J 0z denote the added moment of inertia about the x
(roll) and z (yaw) axes, respectively. Furthermore,
�0y denotes the x-coordinate of the center of m0y. l0x
and l0y are the z-coordinates of the centers of m0x and
m0y, respectively. W 0 is the ship displacement, GM 0 is
the metacentric height, and x0G is the location of the
center of gravity in the x-axis. All the primes mean
the corresponding dimensionless terms (see Appendix
E.1.3 in [15] for details).

The hydrodynamic forces, X 0 and Y 0, and mo-
ments, K 0 and N 0, are given by:

X 0 =X 0uuu02 + (1� tt)T 0(JJ) +X 0vrv0r0 +X 0vvv02

+X 0rrr02 +X 0���02 + cRXF 0N sin �0;

Y 0 =Y 0vv0 + Y 0rr0 + Y 0��0 + Y 0vvvv03 + Y 0rrrr03

+ Y 0vvrv02r0 + Y 0vrrv0r02 + Y 0vv�v02�0

+ Y 0v��v0�02 + Y 0rr�r02�0 + Y 0r��r0�02

+ (1 + aH)F 0N cos �0;

K 0 =K 0vv0 +K 0rr0 +K 0pp0 +K 0��0 +K 0vvvv03

+K 0rrrr03 +K 0vvrv02r0 +K 0vrrv0r02

+K 0vv�v02�0 +K 0v��v0�02 +K 0rr�r02�0

+K 0r��r0�02 � (1 + aH)z0RF 0N cos �0;

N 0 =N 0vv0 +N 0rr0 +N 0pp0 +N 0��0 +N 0vvvv03

+N 0rrrr03 +N 0vvrv02r0 +N 0vrrv0r02

+N 0vv�v02�0 +N 0v��v0�02 +N 0vv�v02�0

+N 0rr�r02�0 +N 0r��r0�02

+ (x0R + aHx0H)F 0N cos �0; (5)

where, tt is the thrust deduction factor, cRx , aH and
aHx0H are interactive forces and moment coe�cients

between the hull and rudder, and x0R and z0R are
the location of the rudder center of e�ort in x and
z directions, respectively. All the coe�cients in X 0,
Y 0, K 0 and N 0 are the corresponding hydrodynamic
derivatives, and their values for S175 are given in
Appendix E.1.3 in [15].

The rudder force, F 0N , can be resolved as [15]:

F 0N = � 6:13�
� + 2:25

AR
L2 (u02R + v02R) sin�R;

�R = �0 + tan�1
�
v02R
u02R

�
;

u0R = u0P "
p

1 + 8kKT =(�JJ2);

v0R = v0 + cRrr0 + cRrrrr03 + cRrrvr02v; (6)

where, � is the rudder aspect ratio and AR is rudder
area, and L is the ship length. u0R and v0R are
inow velocities of the rudder in x and y directions,
respectively, and �R is the relative angle between the
rudder and its inow. �0 is the rudder angle, and u0P is
the advance speed. " and k are adjustment constants,
and KT is the propeller thrust coe�cient. JJ is the
open water advanced coe�cient, and , cRr, cRrrr and
cRrrv are the corresponding hydrodynamic derivatives.
Furthermore, the propeller force, T 0, in Eq. (5) can
be expressed as T 0 = 2�D4KTn0jn0j, where D is the
propeller diameter and � is the water density. Also, the
dynamics of the rudder and propeller are incorporated
by:

_� = (�c � �)=T�; _n = (nc � n)=Tn: (7)

T� and Tn are time constants.
The motion equations can be transformed into

control-oriented dynamics equations as follows:

[ _u; _v; _r; _x; _y; _ ; _p; _�; _�; _n]T

=

26666666666666666666666664

X0
m011

U2=L

�(�m033m
0
44Y

0+m032m
0
44K

0+m042m
0
33N

0)
detM 0

U2

L

�m042m
0
33Y

0+m032m
0
42K

0+m022m
0
33N

0�m0222N
0

detM 0
U2

L

(u0 cos 0 � v0 sin 0 cos�0)U
(u0 sin 0 � v0 cos 0 cos�0)U

(r0 cos�0)UL
�m032m

0
44Y

0+m022m
0
44K

0+m0242K
0+m032m

0
42N

0
detM 0

U2

L

p0U=L
(�c � �)=T�
(nc � n)=Tn

37777777777777777777777775

; (8)
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where, U =
p
u2 + v2, m011 = m0+m0x, m022 = m0+m0y,

m032 = �m0yl0y, m042 = �m0y�0y, m033 = I 0x + J 0x, m044 =
I 0z+J 0z and detM 0 = m022m033m044�m0232m044�m0242m032.

4. Simulations and results

4.1. Nonlinear optimal tracking
Economy (minimum fuel usage), safety (related to
accuracy and maneuverability), and user preferences
are three major factors that should be considered in
path tracking [16].

These demands should be translated into a perfor-
mance criterion function to be minimized by an optimal
control system. Since the ship control con�guration is
required to minimize the heading error for a desired
heading,  d, minimize the propeller shaft speed, nc, for
minimum fuel cost, and minimize the rudder deection
angle �c, the cost function to be minimized is chosen
as:

J =

tfZ
0

�
P ( �  d)2 +Qn2

c +R�2
c
�
dt: (9)

The above cost function balances accurate tracking
against reduced actuator usage, because they are both
dependent on each other. P , Q and R are the
corresponding weighting coe�cients. The more the
value of P , the more accurate tracking is achieved. On
the other hand, if the value of Q in the cost function
is increased, the shaft speed and fuel consumption
will be decreased. By increasing the value of R, the
rudder deection will be decreased. Note that the
vessel roll angle, rudder angle and its rate limits are
considered as inequality constraints ensured us from
their satisfaction.

4.1.1. E�ects of weighting matrices P , Q and R
The weighting matrices, P , Q and R, are used as
the main tuning parameters to shape the closed-loop
response for the desired performance [17]. Assume that
the vessel initial state is zero and the desired heading,
 d, should be reached at 95 degrees.

Figure 1 depicts the states of container ship
dynamics, together with actuator dynamics of the
vessel, for P = 102, Q = 0 and R = 0. The heading
angle of the vessel reaches the desired value. The
container starts the mission with maximum propeller
shaft speed. There is no limit of fuel usage in the cost
functional in this scenario, so, maximum shaft speed is
expected. The values of roll and rudder angle do not
exceed their limits.

Another simulation with di�erent gains of P =
102, Q = 103 and R = 103 is performed and its results
are shown in Figures 2. As seen in Figure 2, increasing
the value of the propeller shaft speed gain in the cost
functional of Eq. (9) results in a reduction in fuel cost.

Figure 1. The states of container ship dynamics for
P = 102, Q = 0 and R = 0.

Figure 2. The states of container ship dynamics for
P = 102, Q = 103 and R = 103.



1978 M.T. Ghorbani and H. Salarieh/Scientia Iranica, Transactions B: Mechanical Engineering 21 (2014) 1973{1980

The heading angle does not reach the desired value of
95 degrees, because its gain in the cost function is much
less than the gain of the propeller shaft speed.

The results of two simulations indicate that, if the
controller minimizes heading error too much, this, in
turn, would require an extreme control e�ort, resulting
in unnecessary extra costs, such as fuel consumption.
On the other hand, if the actuator usage is kept to a
minimum, the heading error will be too large, since the
control e�ort would be insu�cient to keep the desired
response.

These simulations were run on a laptop with a
Windows 7 Operating System (OS), an Intel Core i5
2.27 GHz processor, and 4 GB of Random Access
Memory (RAM). The mean computation time for a
90-node solution is approximately 45 seconds, meaning
that the computational time is low.

4.1.2. Enforcing roll constraints
Generally, a trade-o� exists between the tracking
performance and the roll minimization, namely, im-
posing roll constraints will deteriorate the tracking
performance of vessels. To understand this trade-o�,
assuming that the initial state of the vessel is chosen
to be x0 = [6ms ; 0; 0; 0; 0; 0; 0; 0; 66 rpm; 0]T and the
propeller shaft speed is to be constant at 90 rpm, sim-
ulations are performed with di�erent roll constraints
imposed, and the results are summarized in Figure 3.
From Figure 3, we can see that, the more the roll
constraint is tightened, the less tracking performance
is achieved. This is because the large rudder action
is not permissible due to the roll constraints. When
there is no roll constraint, the vessel reaches the desired
heading, but, for roll constraint of 7 deg, the desired
heading is not achieved. For roll constraint of 3 deg, the
heading error is high, needing more time to converge

Figure 3. Simulation results of the ship response with
di�erent roll constraints.

to zero. However, since the roll angle of the vessels
seriously increase in the presence of wave loads [18],
enforcing roll constraints while maneuvering in seaways
should be considered.

4.2. Course-changing autopilot
During course-changing maneuvers (path tracking), it
is desirable to specify the dynamics of the desired
heading instead of using a constant reference signal
presented in the course-keeping mode. The amount
of change in the heading angle is determined from
the desired heading the controller needs to track,
which is commanded either by a helmsman/pilot or an
autopilot [19].

In the simulations performed in this section, the
desired heading response has been commanded by
 c = 0:0025��t, which makes the ship track a circular
path [20]. The initial state of the vessel is chosen
to be x0 = [6ms ; 0; 0; 0; 0; 0; 0; 0; 66 rpm; 0]T and it is
assumed that the propeller shaft speed is to be constant
at 66 rpm. The roll angle limit is j�j � 20 deg.

To track the mentioned pilot input, a quadratic
cost functional is de�ned as follows:

J =

tfZ
0

�
P ( �  c)2 +R�2

c
�
dt: (10)

Figure 4 shows the vessel course in the earth-�xed
coordinate for P = 103 and R = 10. The vessel
starts to move from the origin and track the reference
heading.

Figure 5 depicts the states of the ship dynamic
model. The motion of the rudder produces drag forces
that slow down the vessel during turning. The values of
roll and rudder angles do not exceed their limits. The
rudder system of the vessel is a �rst order system with
a one second delay time (Eq. (7)). So there is a little

Figure 4. The vessel course in the earth-�xed coordinate
for course changing maneuver.
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Figure 5. The states of ship dynamic model for course
changing maneuver.

di�erence between the commanded and actual rudder
angles. As seen in Figure 4, the vessel exactly tracks
the commanded heading of the helmsman or autopilot
system.

5. Conclusion

In this paper, an optimal control approach, addressing
the tracking control of underactuated marine surface
vessels, is presented. The detailed optimal controller
formulation and its transcription to NLP via direct
GPM is described. The simulation results for course-
keeping and course-changing maneuvers show that
GPM can achieve precise tracking control of marine
surface vessels, while satisfying the prescribed input
and state constraints, without needing to linearize their
dynamical models.
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