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Abstract. The purpose of this paper is the use of a proposed two-step method to impose
essential boundary conditions for improving the accuracy of the solution �eld. In the
proposed approach, imposing essential boundary conditions in transient heat ow within
a two-dimensional region is extended in two steps. The essential boundary conditions
are de�ned on the Dirichlet boundary as determined temperatures and independent of
time. In the �rst step, Dirichlet boundary conditions are weakly built into the variational
formulation, choosing the weight function appropriately. In the second step, with a �xed
condition, the system of equations is appropriately adjusted. For investigation of the
e�ciency of the proposed approach, several 2D numerical examples have been performed.
The results demonstrate signi�cant improvement in the accuracy and rates of convergence
in comparison with direct imposition of essential boundary conditions.
© 2014 Sharif University of Technology. All rights reserved.

1. Introduction

Isogeometric analysis (IGA) is a recently developed
computational approach that o�ers the possibility of
integrating NURBS-based Computer Aided Design
(CAD) tools into conventional �nite element analy-
sis. The concept of IGA in mechanical problems is
pioneered by Hughes and his co-workers as a novel
technique for discretization of partial di�erential equa-
tions [1]. The basic idea and the core of IGA are to
utilize basis functions that are able to model geometry
exactly, from the CAD point of view, for numeri-
cal simulation of physical phenomena. This can be
achieved using B-splines or Non Uniform Rational B-
Splines (NURBS) for the geometrical description, and
to invoke isoparametric concepts to de�ne unknown
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�eld variables. The IGA-based approaches have been
constantly developed and show many great advantages
for solving a variety of problems in a wide range
of research areas, such as uid-structure interaction,
shells, structural analysis, and so on [2-9].

In spite of these advantages, the IGA method
su�ers from some de�ciencies. One of the most sig-
ni�cant drawbacks arises from imposition of essential
boundary conditions. Due to the non-interpolating
nature of NURBS basis functions, the Kronecker Delta
properties are not satis�ed, and, as a consequence,
the imposition of essential boundary conditions needs
special treatment. In considering this, several methods
have been proposed for imposing essential boundary
conditions in IGA. This issue regarding NURBS-based
isogeometric analysis was �rst discussed by Hughes
et al. [1]. In their research, the essential boundary
conditions were imposed on the control variables by
evaluating the function of the boundary condition at
the spatial locations of the control points. In the
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current study, this approach is referred to as the Direct
Method (DM), mentioned by Wang and Xuan [10].
This method is e�cient for homogenous boundary
conditions, but is not reliable for non-homogenous
boundary conditions. In addition, when the position of
boundary control points is not located on the desired
boundary, it is not even reasonable to enforce the given
boundary values onto the corresponding boundary
control variables [10]. Therefore, the enhancement
of essential boundary conditions in IGA needs to be
researched more thoroughly [1]. Wang and Xuan [10]
have proposed an improved method for imposition of
essential boundary conditions in IGA, which is based
on concepts within the mixed transformation method
originated by Chen and Wang [11]. In their work,
instead of evaluating the function of the boundary on
special locations of control points, the boundary values
of control points were calculated by interpolation on
the Dirichlet boundary. This method produces more
accurate results and convergence rates in comparison
with DM [10]. Although Wang and Xuan [11] men-
tioned that a set of boundary interpolation points can
be selected to construct the appropriate transformation
matrix, it should be considered that selected boundary
points can result in a singular transformation ma-
trix [12].

Imposing essential boundary conditions in time
dependent problems is applied in IGA by Hughes
et al. [5]. They applied a direct method to struc-
tural vibrations and wave propagation problems. As
mentioned above, DM is able to impose homogenous
essential boundary conditions accurately. Bazilevs and
Hughes [13] weakly enforced Dirichlet boundary condi-
tions and compared with strongly enforced conditions
for boundary layer solutions of the advection-di�usion
equation and incompressible Navier-Stokes equations.
In their proposed method, they developed stabilized
formulations, incorporating the weak enforcement of
Dirichlet boundary conditions. They also applied this
method in computation of ows about rotating compo-
nents [2]. Cottrell et al. [7] applied the direct method in
structural vibrations and learned that inhomogeneous
boundary conditions and boundary values must be
approximated by functions lying within the NURBS
space. This resulted in a strong, but approximated,
satisfaction of boundary conditions.

In this paper, imposing essential boundary con-
ditions in transient heat ow within a two-dimensional
region is extended in two steps. The essential boundary
conditions are de�ned on the Dirichlet boundary as
determined temperatures and independent of time. In
the �rst step, Dirichlet boundary conditions are weakly
built into the variational formulation, choosing the
weight function, appropriately. In the second step,
with a �xed condition, the system of equations is
appropriately adjusted.

This paper is organized as follows: First, the
NURBS-based IGA is briey reviewed. Then, the
framework of isogeometric analysis, dealing with tran-
sient heat conduction is discussed. The two steps of the
proposed approach used in transient heat conduction
are described and the formulation of such a process is
presented. Subsequently, several numerical simulations
are illustrated to demonstrate the robustness and
e�cacy of the present method.

2. Isogeometric analysis based on the NURBS
basis functions

Traditional �nite element formulations are based on
interpolation schemes with Lagrange or Hermit poly-
nomials to approximate the geometry, the physical
�eld and its derivatives. This approach often re-
quires a substantial simpli�cation of the geometry,
particularly in the case of curved boundaries of the
analysis domain. Generally, adaptive re�nement of the
discretized domain is applied to better approximate
the boundary and to achieve su�cient convergence.
The concept of IGA is based on applying the NURBS
basis functions in accurate modeling of the geometry
and approximation of the solution space. The NURBS
basis functions are weighted functions which originate
from B-spline interpolation. The B-spline functions are
generated from a knot vector, which is a non-decreasing
sequence of coordinates in the parameter space, written
as:

� = f�1; �2; :::; �n+p+1g ; (1)

where �i is the ith knot value, and n and p are the
number and order of the basis functions de�ned on
the knot vector, respectively. The half open interval,
[�i; �i+1), is called the knot interval. If �i = �i+1,
then, the length of the knot interval is equal to zero.
If �1 and �n+p+1 are repeated p + 1 times in a knot
vector, the resulting knot vector is called an open knot
vector. B-spline basis functions start from piecewise
constants:

Ni;0(�) =

8<:1 if �i � � � �i+1

0 otherwise
(2)

and the arbitrary polynomial degree, j, can be
generated recursively with:

Ni;j(�)=
���i
�i+j��iNi;j�1(�)+

�i+j+1 � �
�i+j+1��i+1

Ni+1;j�1(�)

j = 1; 2; :::; p; i = 1; 2; :::; n+ p+ 1� j; (3)

in which Ni;j is the ith basis function with a j order.
The �rst order derivative of the B-spline is:
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Figure 1. Cubic basis functions for an open knot vector
� = f0; 0; 0; 0; 0; 25; 0:5; 0:75; 1; 1; 1; 1g.
d
d�
Ni;j(�) =

j
�i+j � �iNi;j�1(�)

� j
�i+j+1 � �i+1

Ni+1;j�1(�): (4)

The B-spline basis functions, which are constructed
from open knot vectors, have the interpolation feature
at the ends of the parametric space. Cubic B-spline
basis functions with the interpolation feature at the
ends of the parametric space are shown in Figure 1.

The NURBS basis functions are made from B-
spline functions using the following equation:

Ri;p(�) =
Ni;pwi
W (�)

; (5)

in which wi is the weight corresponding to the ith
control point andW (�) is the weight function as de�ned
by:

W (�) =
nX
i=1

Ni;pwi: (6)

The bivariate NURBS functions on the � � � knot
surface are de�ned by:

Rp;qi;j (�; �) =
Ni;p(�)Mj;q(�)wi;j

W (�; �)
;

i = 1; 2; :::; n; j = 1; 2; :::;m; (7)

in which Mj;q and Ni;p(�) are, respectively, the ith
p-order and the jth q-order functions on � and �
knot vectors. wi;j is the weight corresponding to the
ij control point and W (�; �) is the bivariate weight
function, which is given by:

W (�; �) =
nX
i=1

mX
j=1

Ni;p(�)Mj;q(�)wi;j : (8)

2.1. Knot insertion
Simple and straightforward re�nement is one of the
great advantages of IGA in comparison to the classical

�nite element method. It is very straightforward for
increasing the number of elements and elevating the
degree of NURBS basis functions. In this paper,
knot-insertion or h-re�nement is employed for the
convergence study. In each re�nement step, knots are
added to the knot spans. Knot insertion is a procedure
wherein arbitrary new knots are added to a knot vector
without any change in the shape of the B-spline curve.
If there are m = n+p+1 knots in the knot vector of the
B-spline curve, where n is the number of control points
and p is the order of the B-spline curve, by adding a
new knot, a new control point must be added. Also,
some current control points must be rede�ned.

Consider a knot vector, � = f�1; �2; :::; �m=n+p+1g,
with control points, P1; P2; :::; Pn, and the order of p.
Let �̂ 2 [�k; �k+1] be a desired new knot. The knot
insertion procedure has the following 3 steps [14]:

1. Find k, such that �̂ belongs to [�k; �k+1].
2. Find p+ 1 control points, Pk�p; Pk�p+1; :::; Pk.
3. Compute p new control points, Qi, from the above

p+ 1 control points using Eq. (9):

Qi = (1� �i)Pi�1 + �iPi; (9)

where �i is obtained from:

�i =
�̂ � �i

�i+p � �i for k � p+ 1 � i � k: (10)

By performing the above procedure, the new knot
vector and control points are obtained by:n

�1; �2; :::; �k; �̂; �k+1; :::; �m
o
; (11)

fP1; P2; :::; Pk�p; Qk�p+1; Qk�p+2; :::; Qk; Pk;

Pk+1; :::; Png : (12)

Now, this knot insertion algorithm is extended to a
NURBS curve. For this purpose, a given NURBS curve
in d-dimensional space is converted into a B-spline
curve in (d+ 1)-dimensional space. Then, by applying
the knot insertion algorithm in this B-spline curve, the
new control points are obtained. These new control
points should then be projected to d-dimensional space
to obtain the new control points of the NURBS curve.
Consider control points, Pi = (xi; yi), with correspond-
ing weights of wi, by converting these control points to
3-dimensional space, Pwi = (wixi; wiyi; wi). The new
control points are then computed from Eq. (13):

Qwi = (1� �i)Pwi�1 + �iPwi : (13)

The location of control points in 2D are obtained by
the following projection technique:

Qi =
(1� �i)Pwi�1 + �iPwi
(1� �i)wi�1 + �iwi

; (14)
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and the weights are:

wQi = (1� �i)wi�1 + �iwi: (15)

3. Governing equations and discretization

In this section, the governing and discretized equations
for the transient heat conduction are briey presented.

3.1. Transient heat conduction
Consider the time dependent equation governing
the transient heat transfer in a homogeneous two-
dimensional region, 
, with total boundary, �:

@u
@t

= c2r2u; c2 =
k
��
; (16)

with boundary conditions:8<:u = g on �D
@u
@n = h on rN

(17)

Here k denotes the heat transfer coe�cient, � is the
speci�c heat of the material, and � is its density
(mass per unit volume). As shown in Eq. (17),
essential and natural boundary conditions are de�ned
as speci�ed time independent temperature and heat
ux, respectively. It is assumed that the boundary,
�, of an admissible region, 
, can satisfy the following
conditions:

�D [ �N = @


�D \ �N = ?; (18)

where �D is the admissible Dirichlet boundary and
�N is the Neumann boundary. It is assumed that the
materials are homogenous and time independent.

3.2. Variational approximation
Several well-established weighted residual methods,
such as the Galerkin method, the method of least
square, and collocation and subdomain methods, can
be used to approximate the solution. Here, we consider
the Galerkin method to seek an approximate solution
to the transient heat transfer equation. Assume S and
V to be the subspaces of the function space with a
continuous second derivative:

S =
�
f jf 2 H1(
); f j�D = g

	
V =

�
rjr 2 H1(
); rj�D = 0

	
(19)

where H1(
) is Sobolev space, which can be de�ned
as:

H1(
) =
�
ujD�u 2 L2(
); j�j � 1

	
: (20)

The semi discrete weak variational formulation of

Eq. (16) over 
 is given by:Z
w
@u
@t
d
 = c2

�Z
�N

whd��
Z



rw:rud


�
: (21)

The main di�erence between the proposed method and
the other methods is in the choosing of W (i.e. the
weight function). In the conventional method, the
weight function is considered from V , but, in the
proposed two-step method, it is considered from S
space. In this subsection, the conventional method
is discussed, initially. Considering u = v + g and
@u
@t � �u

�t , and substituting in Eq. (21):Z


w�vd
 +

Z


w�gd
 = c2�t�Z

�N
whd��

Z


rw:rvd
�

Z


rw:rgd


�
;
(22)

where g is the prescribed temperature on �D, and v
belongs to V . The NURBS approximation of v, g, �v,
�fb and w are given by:

v � Ri�v; (23a)

g � Rb�g; (23b)

�v � Ridi; (23c)

�g � Rbdb; (23d)

w � Ri �w; (23e)

where Ri and Rb are interior and boundary basis
function matrices, respectively (see [10,12] for more
details); �v and �g are vectors of the interior and
boundary control point temperatures, respectively; di
and db are vectors of the interior and boundary control
point temperature gradients; �w is the weight vector of
the interior control points, and �t is the time interval.
The temperature is assumed to be constant by the time
on �D, which means �g = db = 0. The matrix form of
the equations can be obtained by substituting Eqs. (23)
into Eq. (22):

Kdn+1
i = FN + FD + Fn
 ; (24)

and:

K =
Z



RTi :Rid
; (25a)

FN = c2�t
Z

�N
RTi hd
; (25b)

FD = �c2�t
Z



rRTi :rRbd
�g; (25c)

Fn
 = �c2�t
Z



rRTi :rRid
�vn; (25d)
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where n shows the nth time interval. We can use two
approaches to estimate �g. In the �rst approach, the
temperature of the boundary control points is imposed
by evaluating the function of the boundary condition
at the spatial locations of the control points. This
method su�ers from two essential drawbacks: When
the position of the boundary control points is not lo-
cated on the desired boundary and it is not reasonable
to enforce the given boundary temperatures to the
corresponding boundary control variables. In addition,
the non-interpolating nature of NURBS basis functions
does not allow for the satisfaction of inhomogeneous
boundaries in a straightforward approach, and o�ers a
lower rate of convergence. In the second approach, the
vector, �g, is obtained by interpolation of the function on
the boundary. It o�ers a far higher rate of convergence
in comparison with the �rst approach. However, it
should be considered that selected boundary points can
result in a singular transformation matrix. This draw-
back is more signi�cant when there are many active
control points on the desired boundary, which requires
a more precise selection procedure. As mentioned by
Wang and Xuan [10], a set of boundary interpolation
points can be selected to construct the appropriate
transformation matrix.

3.3. Proposed method
3.3.1. Step1
As discussed earlier, for the conventional methods,
since W 2 V , integration on the Dirichlet boundary
becomes zero and the usual weak formulation (Eq. (15))
can be obtained. In the proposed method, the weight
function, W , belongs to S, and a change in the
weight function causes a corresponding change in weak
formulation as:Z

w
@u
@t
d
 =c2

�Z
�N

whd� +
Z

�D
w
@u
@n

d�

�
Z



rw:rud


�
: (26)

The functions, w and u, are approximated by total
NURBS functions:

u � R�u; (27a)

w � R �w; (27b)

where R is the total basis function matrix. Comparing
Eq. (27b) and Eq. (23e) shows the main di�erence
between conventional and proposed methods, that is,
the space of the w function. In other words, if you
choose w 2 V , it leads to strong imposition of the
essential boundary condition. On the other hand,
selecting w 2 S leads to weak imposition of the
essential boundary condition. The second term on the

Figure 2. Outward unit normal vector on Dirichlet
boundary: (a) Correct direction of n; and (b) incorrect
direction of n.

Figure 3. Direction of Dirichlet boundaries in parametric
space.

right side of Eq. (25) is the integration on the Dirichlet
boundary, where n is the outward unit normal to the
Dirichlet boundary.Z

�D
w
@u
@n

d� =
Z

�D
w
�
nx ny

�rud�: (28)

One of the problems in the proposed method is the
characteristic determination of vector n. Vector n is
formed by a cross product of ~t and ~s, where these
vectors are perpendicular to the plane of the problem
and tangent to the surface, respectively.

The correct direction of vector n depends on the
exact choice of the direction of ~t. As shown in Figure 2,
if the given direction of ~t is changed, the direction of
n is changed. The exact selection of ~t is de�ned as the
cross product of vectors ~s and ~m. ~m is a vector from
the boundary to the region and de�ned through pb and
pi points. pb is a point on the Dirichlet boundary and
pi is a point in 
 space, near to pb:

~t = ~s� ~m =

"@x
@l
@y
@l

#
� (pi � pb) ; (29)

where l is the direction of the Dirichlet boundary in
parametric space (see Figure 3).

It is worthwhile noting that if pi is selected
inappropriately, an incorrect direction of ~t shall be
obtained. Two situations may occur;

1. pi may be placed along the ~s vector, which results
in ~t = 0 (see Figure 4(a)).

2. Incorrect placement of pi leads to the incorrect
direction of ~t (see Figure 4(b)).
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Figure 4. Incorrect placements of pi.

It is clear that the appropriate selection of pi
in the physical space is not simple and, therefore,
it is selected in the parametric space. Assume that
p̂b(�b; �b) and p̂i(�i; �i) are images of pb(xb; yb) and
pi(xi; yi) in the parametric space, respectively. The
appropriate placement of pi, p̂i(�i; �i) is selected as
follows:

fl = � ! �i = �b; �i = �b � �L�;
f l = � ! �i = �b; �i = �b � �L�; (30)

where L� and L� are the lengths of parametric space
in � and � directions. Parameter � is a constant that
belongs to (0; 1]. Finally, vector n can be obtained by:

n = yl (xlyib � ylxib)~i� xl (xlyib � ylxib)~j; (31)

where ()l denotes @()
@l and ()ib denotes ()i � ()b. Ac-

cordingly, the variational statement of Eq. (25) leads
to the matrix form as:

Kdn+1 = FN + FnD + Fn
 ; (32)

where matrix K, and vectors FN and Fn
 are de�ned
in Eq. (24). The evaluation of these parameters can be
performed using the complete NURBS basis functions.
The vector FnD is de�ned as:

FnD = c2�t
Z

�D

~RT �rRd��un: (33)

Here, R is the matrix of the NURBS basic functions,
�un is the control point temperature vector in the nth
time step, and ~R is de�ned as:

~R = (xlyib � ylxib)
"
yl
�xl

#
R: (34)

�t is the time step size and should be su�ciently small
to achieve numerical stability, due to the Courant-
Friedrichs-Lewy (CFL) condition.

3.3.2. Step2
As discussed above, in this paper, the essential bound-
ary conditions are imposed in two steps. In the

previous subsection, the �rst step is described and, in
this subsection, the second step is explained completely.
In this paper, the essential boundary conditions are
time independent. So, we must modify the system
of equations to enforce this condition. According to
Eq. (24), it can be done if the temperature variation of
the boundary control points is equal to zero.

3.4. Initial condition
Solving the transient heat transfer requires seeing how
the temperature changes from the initial state (i.e. t =
0) to the �nal steady state, as a function of time. In the
�nite element method, the initial temperature at each
node is equal to the temperature distribution function
at the node. But, in IGA, the non-interpolating nature
of NURBS does not allow for determining the initial
temperature of control points at the spatial locations.
Here, using interpolation inside the physical region, the
initial temperature of the control points is evaluated.

Assume H(
) to be the initial temperature func-
tion and m to be the number of NURBS functions on
the domain. Appropriate choice of m interpolation
points leads to the initial temperature of the control
points, which is given by:

T �u0 = �H; Tij = Rj(�i; �i); �Hi = H(xi; yi); (35)

where (�i; �i) is the ith interpolation point in the para-
metric space and (xi; yi) is the projection of this point
in the physical space. A set of interpolation points can
be selected to construct the solution. An appropriate
selection procedure is required to prevent singularity in
the transformation matrix. For appropriate placement,
a set of interpolation points in the maximum points of
NURBS functions can be selected.

4. Numerical examples

In this section, the accuracy and convergence of the
proposed method through several numerical examples
are veri�ed. The results obtained by the proposed
method are also compared with direct and �nite el-
ement methods. Third order NURBS is used in all
examples. For numerical integration, a 3 � 3 Gauss
quadrature rule is applied in the domain and a 5 Gauss
quadrature rule on the boundaries. The material is
aluminum, k (heat transfer coe�cient), � (the speci�c
heat of the material) and � (density or mass per unit
volume) are considered as � = 2:7 ( g

cm3 ), � = 0:9 ( J
g.K ),

k = 2:37 ( J
cm.s.K ).

4.1. Heat conduction in annulus disk
In this example, the heat conduction in the annulus
disk is modeled. The geometry and boundary condi-
tions are shown in Figure 5.

As shown in Figure 5, heat transfer is prevented
between disk boundaries and other domains, and �D =
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Figure 5. Geometry and boundary conditions of annulus
disk @u

@n = 0 on �N1 and �N2.

Figure 6. Temperature distribution on annulus disk at
t = 0.

Table 1. Re�nement procedure of annulus disk problem
in IGA and FEM.

Number of elements

IGA 60 200 240 360
FEM 52 172 503 1008

? is assumed. The initial temperature in the entire
domain, as shown in Figure 6, is considered as:

H(
) = 50x2; (23)

H(
) is used to approximate the function, ~H(
),
and this is obtained by calculating the initial tem-
perature at the control points. Figure 7 illustrates
the percentages of the error distribution for ~H(
).
For the convergence study, the h-re�nement strategy
is employed, and meshes with 60, 200, 240 and 360
(Figure 8) elements in IGA, and 52, 172, 503 and 1008
in FEM are investigated (see Table 1).

As shown in Figure 9(a), the two-step and direct
methods have a similar convergence rate, where no

Figure 7. Error distribution of approximated
temperature at t = 0.

Figure 8. Final mesh of annulus disk problem with 360
elements in IGA.

essential boundary conditions are de�ned. In other
words, when there are no essential boundary condi-
tions, the direct and proposed methods have the same
accuracy. Further, it is shown that the convergence
rate of the proposed and direct methods is better than
that of the classic �nite element method. The di�erence
between the results of each step and the result of the
�nal step are shown in Figure 9(b). Parameter � is
de�ned as �i =

���Ti�T4
T4

���� 100, for i = 1 to 4. It is clear
that the proposed and direct methods converge faster
than FEM.

Temperature distribution at t = 3 sec and tem-
perature variation within time at p = (1:5; 0) are shown
in Figures 10 and 11, respectively.

4.2. Heat conduction on square plate with
circular hole

The next example refers to a situation, wherein the
initial temperature is de�ned by multi functions. Here,
the multi patch technique is used to divide a square
plate into four patches, having a hole in the cen-
ter, as shown in Figure 12. The particular initial
temperatures considered for each patch are listed in
Table 2.
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Figure 9. Convergence procedure of two-step, direct and �nite element methods for annulus disk problem: (a) Absolute
temperature; and (b) relative temperature with respect to �nal meshing.

Figure 10. Temperature distribution on disk at t = 3 sec.

Figure 11. Temperature variation within time at
p = (1:5; 0).

The outer boundary of the plate is insulated.
The essential boundary conditions are de�ned on
the boundary of the hole as a speci�ed and time-
independent temperature. Figure 13(a) shows the
initial temperature distribution on the domain.

Figure 13(b) con�rms that the approximated

Table 2. Initial temperature and boundary conditions in
each patch.

Initial
temperature

Essential
B.C

Natural
B.C

Patch 1 H(
) = 50y2 g1 = 50y2 h1 = 0
Patch 2 H(
)=50(y2�x2) g2 =50(y2�x2) h2 = 0
Patch 3 H(
) = �50x2 g3 = �50x2 h3 = 0
Patch 4 H(
) = 0 g4 = 0 h4 = 0

Table 3. Re�nement procedure of square plate problem
in IGA and FEM.

Number of elements

IGA 64 120 400 720
FEM 100 657 1258 4913

Figure 12. Square plate with circular hole in center.

initial temperature is very close to the exact one.
Similar to the previous example, the convergence study
is carried out increasing the number of elements and
cells listed in Table 3, in four steps.

The �nal meshing includes 720 elements with 880



1970 S. Shojaee et al./Scientia Iranica, Transactions B: Mechanical Engineering 21 (2014) 1962{1972

Figure 13. (a) Temperature distribution on square plate with circular hole at t = 0. (b) Error distribution of
approximated temperature at t = 0.

Figure 14. Final meshing of example 4.2 with 720
elements in IGA.

degrees of freedom in IGA (see Figure 14), and 4913
elements with 5131 degrees of freedom in FEM.

As shown in Figure 15(a), the two-step and �nite
element methods converge to the same temperature.
However, the result of the direct method in the �nal
meshing is a little di�erent. The reason is the essen-
tial boundary conditions. Since the function on the
Dirichlet boundary is not constant or linear, imposing
essential boundary conditions through a direct method
is not accurate. It also can be found that in coarse
meshing, DM is more accurate than FEM, but, when
the number of elements is increased, the result of
FEM is more accurate. Figure 15(b) con�rms that the
proposed method converges much faster than the other
two methods. It is clear that the result of the two-step
method in the �rst step is very close to the �nal step
result.

The temperature distribution at t = 3 sec and
temperature variations within time at p = (1:5; 0) are
plotted in Figures 16 and 17, respectively.

Figure 15. Convergence procedure of two-step, direct
and �nite element methods for example 4.2: (a) Absolute
temperature; and (b) relative temperature with respect to
�nal meshing.

5. Conclusion

In this paper, a new method is proposed for imposition
of essential boundary conditions in a transient heat
conduction problem based on isogeometric analysis.
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Figure 16. Temperature distribution on annulus disk at
t = 3 sec.

Figure 17. Temperature variation within time at
p = (1:5; 0).

This method is named the two-step method, because
the essential boundary conditions are imposed in two
steps. The �rst step includes calculating the force
vector corresponding to the Dirichlet boundaries, and
the system of linear equations is modi�ed in the second
step. This method is classi�ed as the \weak imposition
of the essential boundary condition". The numerical
examples con�rm that the two-step and the direct
methods are similar, when there are no essential bound-
ary conditions. However, in a situation where essential
boundary conditions are more complex, the results for
the proposed method o�er a more accurate solution
in comparison with the direct method. Furthermore,
comparing the results of the two-step, direct, and
classic �nite element methods, it can be demonstrated
that convergence of the proposed method is faster
than that of two other methods. Also, the numerical
examples show that using the two-step method for
imposition of the essential boundary conditions enables
us to use coarse meshing and to obtain a very accurate
result.
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