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systems [1-9]. Although these simple models may
lead to reasonable and satisfactory results for some
special cases, they cannot correctly describe the two-
dimensional behavior of moving structures. Therefore,
many researchers have employed the plate model to
examine the dynamic behavior of such structures [10-
19]. However, most studies on moving plate problems
involve either isotropic plates or moving plates sub-
jected to uniform tension. Such idealizations are not
quite true because most structures that are moving
axially are orthotropic in nature and the in
uences of
non-uniform in-plane loading cannot be ignored in the
analysis of such structures. On the other hand, to the
authors' best knowledge, the information regarding the
free vibration of axially moving multi-span orthotropic
plates subjected to linearly varying in-plane stresses is
rare, and this is the reason why this paper tries to study
the title problem.

Two kinds of methods, i.e. analytical and numer-
ical, have been widely used over the past few decades
to tackle the problem. As analytical methods are
often limited to simple moving beam or plate problems,
many researchers have resorted to various numerical
methods. The Finite Element Method (FEM) is one
of the most versatile numerical methods used by many
researchers to handle the problem. Although the FEM
is especially powerful, due to its versatility in spa-
tial discretization, the number of unknowns involved
and the amount of input data are very large. To
overcome this di�culty, higher order methods can be
employed. Among them, the di�erential quadrature
method [20-23], the Kantorovich method [24], the
Discrete Singular Convolution (DSC) method [25,26],
the di�erential transform method [27] and, recently, the
di�erential quadrature �nite element method [28,29]
have been successfully applied to various plate prob-
lems.

Alternatively, in a series of papers, the present
authors proposed a number of mixed methodologies
where the number of unknowns is substantially re-
duced [30-33]. In these mixed methods, the Ritz
method or the FEM is �rst employed to discretize
the spatial partial derivatives, with respect to the
coordinate direction of the plate. The Di�erential
Quadrature Method (DQM) is then used to discretize
the resulting system of ordinary di�erential equations.
The proposed mixed methods claim to enjoy the ad-
vantages of both component methods, and overcome
some of their limitations. Although highly accu-
rate solutions were obtained using the mixed Ritz-
DQM [30,31] and mixed DQ-Ritz method [32] for
vibration and buckling problems of rectangular plates,
the application of these methods are limited to the
plate problems where the geometry and material prop-
erties do not vary along two coordinate directions (due
to the use of continuous smooth functions in both

coordinate directions of the plate). This limitation
can be overcome using the mixed FE-DQM [33]. Due
to the use of piecewise discontinuous functions on
the coordinate direction of the plate, the method
can easily handle plate problems with varying geom-
etry, material properties, and loading in that direc-
tion.

The capability of the mixed FE-DQM for free and
forced vibration, and buckling analysis of rectangular
plates was well studied in [33]. Although the method
was shown to work well for the problems considered,
the accuracy and convergence rates were not very
satisfactory due to the use of Hermite interpolation
functions in the mixed method. In fact, the accuracy
and convergence rates of the numerical mixed method
were more signi�cantly in
uenced by the relative low
accuracy of the FEM and could not explain the higher
accuracy of the mixed FE-DQM. To tackle the above-
mentioned di�culties, this paper presents a high order
accurate mixed FE-DQM in which the accuracy and
convergence rates are signi�cantly improved. The pro-
posed mixed method uses the FEM with higher order
interpolation functions in one coordinate direction of
the plate and the DQM in the other. Thus, the
accuracy and convergence rates can be easily improved
by increasing the order of FEM interpolation functions.
Its stability, rate of convergence and accuracy are
challenged through the solution of some benchmark
vibration and buckling problems. It is shown that by
using the higher order interpolation functions in the
mixed FE-DQ formulation, highly accurate solutions
can be achieved using a small number of �nite elements
(in most cases using only one �nite element). This
requires less computational e�ort compared to the
formulation presented in [33], where cubic interpolation
functions were employed in one coordinate direction of
the plate.

2. Governing equation and FEM formulation

The physical system analyzed is an elastic orthotropic
rectangular plate of N spans with thickness h, length a,
width b, and mass density �, subjected to initial stresses
due to a non-uniform edge force, Nx, and moving with
a constant speed, v, along the x-direction, as shown
in Figure 1. The plate is assumed to be orthotropic
with the principal material direction coinciding with
the x and y axes (0 � x, y � a, b). The governing
di�erential equation for the motion of the axially
moving orthotropic plate based on the Love-Kirchho�
theory is:

D11w;xxxx + 2D33w;xxyy +D22w;yyyy

+ �h(w;tt + 2vw;xt + v2w;xx) = Nxw;xx; (1)

where a subscript comma denotes di�erentiation, w is
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Figure 1. Geometry and coordinate system for an axially
moving orthotropic plate with (N � 1) internal line
supports subjected to a non-uniform in-plane axial force
(tension).

Figure 2. A single span rectangular plate under di�erent
types of edge loading: (a) � = 0; (b) � = 1; and (c) � = 2.

the transverse displacement of the plate, and:

D11 =
E1h3

12(1� �12�21)
; D22 =

E2h3

12(1� �12�21)
;

D33 = D12 + 2D66; D12 = �12D22 = �21D11;

D66 =
G12h3

12
; (2)

where the expressions for D11, D22 and D12 represent

exural rigidities and D66 represent the torsional rigid-
ity of the orthotropic plate, respectively. Moreover, E1,
E2, and G12 are orthotropic plate moduli, and �12 and
�21 are Poisson ratios.

In this study, the in-plane force, Nx is assumed
to be a linear function of y (i.e., Nx = Nx(y)). For
convenience, let Nx = N0f(y) = N0j1�� yb j, where � is
a parameter that de�nes the relative tension. Figure 2
shows a rectangular plate under di�erent types of edge
loading. The boundary conditions of the orthotropic
plate are:

(I) Simply-supported edge (S):

w = D11w;xx +D12w;yy = 0

at x = 0 or a; (3)

w = D22w;yy +D12w;xx = 0

at y = 0 or b: (4)

(II) Clamped edge (C):

w = w;x = 0 at x = 0 or a; (5)

w = w;y = 0 at y = 0 or b: (6)

(III) Free edge (F ):

D11w;xx +D12w;yy = D11w;xxx

+ (2D33 �D12)w;xyy = 0

at x = 0 or a; (7)

D22w;yy +D12w;xx = D22w;yyy

+ (2D33 �D12)w;yxx = 0

at y = 0 or b: (8)

It is convenient to introduce the following dimension-
less parameters and variables:

�x = x=a; �y = y=b;

�D11 = D11=D33; �D22 = D22=D33;

�v = va:
�
�h
D33

�1=2

; �t =
t
a2

�
D33

�h

�1=2

;

�Nx = Nxa2=D33; � = a=b; (9)

where �t is non-dimensional time. Substituting the
above dimensionless parameters and variables into the
governing equation of motion of the axially moving
orthotropic plate yields:

D11w;xxxx + 2�2w;xxyy + �4D22w;yyyy + w;tt

+ 2vw;xt + v2w;xx = Nxw;xx;

Nx = N0f(y) = N0j1� �yj; (10)

where the over bar of the symbols are omitted for
simplicity of notation, while causing no confusion.

The free vibration response of the moving or-
thotropic rectangular plate can be expressed as:

w(x; y; t) = W (x; y) exp(
t): (11)

Substituting Eq. (11) into Eq. (10) gives:

D11W;xxxx + 2�2W;xxyy + �4D22W;yyyy + 
2W

+ 2v
W;x + v2W;xx = NxW;xx: (12)
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The domain of the problem along the x-axis is �rst
discretized into n number of �nite elements. The
polynomial approximation of the solution within a
typical �nite element is then assumed as:

W e(x; y) =c1(y) + c2(y)�x+ c3(y)�x2 + � � �

+ cp+1(y)�xp =
p+1X
j=1

cj(y)�xj�1;

�x = x� xe; (13)

where �x is the local coordinate of the eth �nite element
with the origin �xed at the left end of the element, xe is
the global coordinate of the �rst node of the eth �nite
element, p is the order of interpolation functions, and
c1; c2; c3; � � � ; cp+1 are unknown coe�cients (that are
functions of y). To ensure the continuity conditions
between adjacent elements, these coe�cients should
be expressed in terms of the displacement parame-
ters. Let the (p + 1)-parameter polynomial, given in
Eq. (13), ensure only the compatibility of de
ection
and transverse slope at the element boundaries (i.e.,
each node is assumed to have only two degrees of
freedom). Thus, the local coordinates of the element
nodes become �x1; �x2; �x3; � � � ; �x(p+1)=2. (Note that, in
this case, the order of interpolation functions (p) must
be an odd number, i.e. p = 3; 5; 7; 9; � � � ) Now,
satisfying the essential boundary conditions of the
element (de
ections and transverse slopes at the nodes)
gives Eqs. (14) and (15) shown in Box I. Inverting this
matrix equation to express ci (i = 1; 2; � � � ; p + 1), in
terms of nodal displacements W e

i (i = 1; 2; � � � ; p+ 1),

and substituting the result into Eq. (13), one obtains:

W e(x; y) =
p+1X
j=1

W e
j (y)�ej(x); (16)

where W e
j (y) are nodal values of the eth �nite element,

and �ej(x) are the interpolation functions of degree p.
Now, by substitution of Eq. (16) into Eq. (12),

multiplying both sides of the resulting equation by
�ei (x), and performing the integration over the length
of the eth �nite element (xe � x � xe+1), we obtain:
D11[Ae]fW eg+ 2�2[Ce]fW e

;yyg
+ �4D22[Be]fW e

;yyyyg+ 
2[Be]fW eg
+ 2v
[De]fW eg+v2[Ce]fW eg=Nx[Ce]fW eg;

(17)

where:

Aeij =

xe+1Z
xe

�ei;xx�
e
j;xxdx+ [�ei�

e
j;xxx � �ei;x�ej;xx]xe+1

xe ;

Beij =

xe+1Z
xe

�ei�
e
jdx;

Ceij = �
xe+1Z
xe

�ei;x�
e
j;xdx+ [�ei�

e
j;x]xe+1

xe ;

De
ij =

xe+1Z
xe

�ei�
e
j;xdx; i; j = 1; 2; � � � ; p+ 1: (18)

8>>>>>>>>><>>>>>>>>>:

W e
1

W e
2

W e
3

W e
4

...
W e
p

W e
p+1

9>>>>>>>>>=>>>>>>>>>;
=

266666666666666666666664

1 �x1 �x2
1 �x3

1 � � � �xp�1
1 �xp1

0 1 2�x1 3�x2
1 � � � (p� 1)�xp�2

1 pxp�1
1

1 �x2 �x2
2 �x3

2 � � � �xp�1
2 �xp2

0 1 2�x2 3�x2
2 � � � (p� 1)xp�2

2 p�xp�1
2

...
...

...
... � � � ...

...

1 �x(p+1)=2 �x2
(p+1)=2 �x3

(p+1)=2 � � � �xp�1
(p+1)=2 �xp(p+1)=2

0 1 2�x(p+1)=2 3�x2
(p+1)=2 � � � (p� 1)�xp�2

(p+1)=2 p�xp�1
(p+1)=2

377777777777777777777775

8>>>>>>>>><>>>>>>>>>:

c1
c2
c3
c4
...
cp
cp+1

9>>>>>>>>>=>>>>>>>>>;
; (14)

or:

fW eg = [X]fcg: (15)

Box I
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It is noted that the elements of the above matrices can
be exactly computed without any di�culty; however,
for large values of p, it is better to use the integral
quadrature rule to reduce the computational time.

The assembly of �nite element equations (17) and
implementation of boundary conditions are similar to
those of one-dimensional beam element equations (see
Ref. [34] for details). By doing so, we obtain the
following assembled equation:

D11[A]fWg+ 2�2[C]fW;yyg+ �4D22[B]fW;yyyyg
+ 
2[B]fWg+ 2v
[D]fWg+ v2[C]fWg
= Nx[C]fWg: (19)

Mathematically, Eq. (19) represents a system of linear
coupled ordinary di�erential equations of fourth-order.
In this study, System (19) will be reduced to a set of
algebraic equations by application of the DQ method.

3. DQ analogues of resulting system of
ordinary di�erential equations

The DQM is a numerical solution technique for initial
and/or boundary value problems [35]. It was �rst
developed by Richard Bellman and his associates in the
early 1970's [36]. The DQM is originated from the idea
of conventional integral quadrature and approximates
the derivative of a function with respect to a space
variable at a given discrete point by a weighted linear
sum of the function values at all of the discrete points
in the domain of that variable [37]. Let f(y) be a
solution of a di�erential equation and y1; y2; � � � ; ym be
a set of sample points in the y-direction. According to
the DQM, the second- and fourth-order derivatives of
function f(y) at any sample point can be expressed by
the following formulations [35-37]:

f;yy(yi) =
mX
j=1

E(2)
ij f(yj);

f;yyyy(yi) =
mX
j=1

E(4)
ij f(yj); (20)

where f(yj) represents the function value at the dis-
crete point yj , f;yy(yi) and f;yyyy(yi) indicate the
second- and fourth-order derivatives of f(y; t) at the
discrete point yi, and E(r)

ij (r = 2; 4) are the weighting
coe�cients of the rth-order derivative.

The DQ rules for the second- and fourth-order
derivatives of vector fW (y)g can be expressed as [30-
33,38-43]:

fW;yy(yi)g =
mX
j=1

E(2)
ij fW (yj)g;

fW;yyyy(yi)g =
mX
j=1

E(4)
ij fW (yj)g: (21)

Satisfying Eq. (19) at any sample point, yi, one has:

D11[A]fW (yi)g+ 2�2[C]fW;yy(yi)g
+ �4D22[B]fW;yyyy(yi)g+ 
2[B]fW (yi)g
+ 2v
[D]fW (yi)g+ v2[C]fW (yi)g
= Nx(yi)[C]fW (yi)g;

i = 1; 2; � � � ;m: (22)

Let the size of the matrices appeared in Eq. (22) be q�
q. Substituting the quadrature rules, given in Eq. (21)
into Eq. (22), yields:

D11[A]fW (yi)g+ 2�2[C]
mX
j=1

E(2)
ij fW (yi)g

+ �4D22[B]
mX
j=1

E(4)
ij fW (yi)g

+ 
2[B]fW (yi)g+ 2v
[D]fW (yi)g
+ v2[C]fW (yi)g = Nx(yi)[C]fW (yi)g;

i = 1; 2; � � � ;m: (23)

Eq. (23) may be written in compact form as:�h
~K
i

+ 

h

~C
i

+ 
2
h

~M
i� f ~Wg = f~0g; (24)

where the q � q sub-matrices [ ~Mij ], [ ~Kij ], and [ ~Cij ],
and, also, the q � 1 sub-vector, f ~Wig, are given by:h

~Mij

i
= Iij [B]; i; j = 1; 2; � � � ;m; (25)h

~Kij

i
=D11Iij [A] + 2�2E(2)

ij [C] + �4D22E
(4)
ij [B]

+ v2Iij [C]�Nx(yi)Iij [C]; (26)h
~Cij
i

= 2vIij [D]; (27)n
~Wi

o
= fW (yi)g; (28)

wherein Iij are the elements of the m � m identity
matrix. After applying the boundary conditions to
Eq. (24), one can solve the resulting generalized eigen-
value problem for the eigenvalues, 
. It is noted
that the implementation of boundary conditions is
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similar to that of one-dimensional beam governing
discretized equations (see Refs. [35,37] and Appendix
A for details).

The vibration and stability characteristics of ax-
ially moving orthotropic plates can be investigated
from the eigenvalues, 
, of the generalized eigenvalue
problem (24). The eigenvalues, 
, of the matrix
equations (24) are complex in general, and can be
expressed in the form:


 = Re(
)� Im(
): (29)

The types of instabilities of a moving plate can then be
determined from the eigenvalues, 
, as follows [1-19]:

Stable if Re(
) � 0;

Divergence instability if Re(
)>0 and Im(
)=0;

Flutter instability if Re(
) > 0 and Im(
) 6= 0: (30)

4. Numerical results and discussion

To demonstrate the stability, rate of convergence and
accuracy of the proposed formulation, two numerical
examples are �rst presented. The numerical examples
are of the vibration and buckling problems of isotropic
and orthotropic rectangular plates for which accurate
analytical or numerical solutions are available in the
literature. Therefore, these two examples serve well to
assess the numerical accuracy of the proposed method.
In order to simplify the notations, the boundary con-
ditions for plates are denoted by a four-letter symbol.
For convenience, S, C and F in a four-letter symbol
are denoted as simply supported, clamped and a free
edge supports, respectively. For instance, the symbol
CFCF denotes that the plate is clamped at x = 0 and
x = a, and free at y = 0 and y = b.

In the third and fourth examples, the dynamic
behavior of axially moving single-span and multi-span
orthotropic plates subjected to linearly varying in-
plane stresses is investigated, and the e�ects of the
following factors having something to do with the title
problem are studied: the moving speed, the variation
of in-plane stresses, and the material properties of the
orthotropic plate.

In solving the test problems, the problem domain
along the x-direction is divided into n number of equal
length �nite elements with pth order interpolation
functions, and m number of DQM sampling points
are considered in the y-direction. Moreover, the DQM
sampling points are taken non-uniformly spaced and
are given by the following equations [35]:

y1 = 0; y2 = � � b;

yi = b=2
�
1� cos

�
(i� 2)�
m� 3

��
; i = 3; 4; � � � ;m� 2;

ym�1 = (1� �)� b; ym = b; (31)

where y2 and ym�1 are discrete points very close to the
boundary points (adjacent �-points), and b is the plate
dimension in the y direction. This type of sampling
point was �rst introduced by Bert and Malik [35].
In solving the free vibration and buckling problems
of orthotropic rectangular plates, the present authors
show that the DQ solutions with this type of sample
point produce better accuracy than the commonly
used uniform and non-uniform sample points [30]. In
this work, the DQ results are obtained using � =
10�3.

4.1. Example 1: Free vibration and buckling of
an isotropic rectangular plate

The �rst six frequency parameters for an isotropic
square clamped plate are calculated using di�erent
values of n (number of �nite elements), p (order of
interpolation functions), and m (number of DQM
sampling points). Table 1 demonstrates the converging
trend of solutions with increasing p and m. Only one
�nite element is considered in the x-direction. The
results of mixed Ritz-DQM [32], Ritz method [44],
Discrete Singular Convolution (DSC) method [45], and
di�erential quadrature method [45] are also shown for
comparison. It can be seen that the present results
converge very quickly and agree very well with existing
literature data. It can also be seen that reasonably
accurate results are obtained by the present method
when m � 15. Table 2 presents the convergence
behavior of solutions with respect to p and n. It can be
seen that the convergence rate of the present method
is not very satisfactory when Hermite interpolation
functions are used in the algorithm (i.e., when p = 3).
Therefore, to accelerate the convergence rate of the
method, one should use at least p = 5 in the algorithm.
It has also to be pointed out that no numerical
di�culties are encountered in the present formulation,
even when a large number of �nite elements with high-
order interpolating functions are considered. This is
very advantageous compared to the conventional DQ-
Ritz methodology (see Refs. [31-33]), wherein, simple
polynomial functions with large arguments (directly
proportional to p) result in a very ill-posed problem.
In Table 3, the results of the proposed formulation
are compared with the Ritz-DQM solutions [32], and
the Ritz solutions of Leissa [44] for di�erent boundary
conditions of the plate. It can be seen that the
natural frequencies are in close agreement with those
of Leissa [44], however, slightly smaller, which should
be so as the Ritz method essentially represents upper
bound limits. Moreover, the present results for CCSF
and CFSF plates are smaller than the corresponding
ones by the mixed Ritz-DQM, which means the present
method is more accurate than the mixed Ritz-DQM.
On the other hand, the rate of convergence of the
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Table 1. Convergence of natural frequencies (
i = !ia2p�h=D) of an isotropic CCCC square plate (n = 1).

p 
 m=11 m=13 m=15 m=17 m=19 m=21 Ritz-DQ
[32]

Ritz
[44]

DSC-LK
[45]

GDQ
[45]

5

1 35.9995 35.9995 35.9995 35.9995 35.9995 35.9995
2 73.5388 73.5346 73.5345 73.5345 73.5345 73.5345
3 74.1799 74.1797 74.1797 74.1797 74.1797 74.1797
4 108.4156 108.4112 108.4111 108.4111 108.4111 108.4111
5 131.6220 132.2532 132.2604 132.2604 132.2604 132.2604

7

1 35.9882 35.9881 35.9881 35.9881 35.9881 35.9881
2 73.4082 73.4037 73.4037 73.4037 73.4037 73.4037
3 73.4122 73.4118 73.4118 73.4118 73.4118 73.4118
4 108.2436 108.2388 108.2386 108.2386 108.2386 108.2386
5 131.2626 131.8946 131.9018 131.9019 131.9019 131.9019

9

1 35.9855 35.9854 35.9854 35.9854 35.9854 35.9854
2 73.3946 73.3941 73.3941 73.3941 73.3941 73.3941
3 73.3992 73.3947 73.3946 73.3946 73.3946 73.3946
4 108.2222 108.2177 108.2175 108.2174 108.2174 108.2174
5 131.1522 131.6599 131.6645 131.6646 131.6646 131.6646
6 132.1960 132.3207 132.3232 132.3232 132.3232 132.3232

11

1 35.9853 35.9852 35.9852 35.9852 35.9852 35.9852
2 73.3943 73.3939 73.3939 73.3939 73.3939 73.3939
3 73.3984 73.3940 73.3939 73.3939 73.3939 73.3939
4 108.2209 108.2170 108.2167 108.2166 108.2166 108.2166
5 131.1293 131.5780 131.5815 131.5816 131.5816 131.5816
6 132.0197 132.2024 132.2060 132.2060 132.2060 132.2060

13

1 35.9853 35.9852 35.9852 35.9852 35.9852 35.9852
2 73.3943 73.3939 73.3939 73.3938 73.3938 73.3938
3 73.3982 73.3940 73.3939 73.3939 73.3939 73.3939
4 108.2207 108.2168 108.2166 108.2165 108.2165 108.2165
5 131.1293 131.5772 131.5807 131.5808 131.5808 131.5808
6 132.0182 132.2012 132.2049 132.2049 132.2049 132.2049

15

1 35.9853 35.9852 35.9852 35.9852 35.9852 35.9852 35.9852 35.992 35.989 35.985
2 73.3943 73.3939 73.3939 73.3938 73.3938 73.3938 73.3939 73.413 73.407 73.394
3 73.3982 73.3939 73.3939 73.3939 73.3939 73.3939 73.3939 73.413 73.407 73.394
4 108.2207 108.2168 108.2165 108.2165 108.2165 108.2165 108.216 108.27 108.249 108.210
5 131.1293 131.5772 131.5807 131.5808 131.5808 131.5808 131.581 131.64 131.622 131.580
6 132.0181 132.2011 132.2048 132.2048 132.2048 132.2048 132.205 132.24 132.244 132.200

present method for plates with free edges is not as
high as that for plates without free edges, as to be
expected.

To demonstrate the capability of the proposed
mixed methodology in prediction of high-order eigen-
modes of rectangular plates, the �rst 100 eigenfre-
quencies of a SSSS square plate are calculated by the

present method. The application is made only to SSSS
square plates, since the explicit exact solution exists
only for this case. The numerical results for the 10th,
20th, 30th, 40th, 50th, 60th, 70th, 80th, 90th and
100th eigenfrequencies are tabulated in Tables 4 and 5.
The corresponding analytical values of eigenfrequencies
are also shown for comparison. It can be observed



1940 S.A. Eftekhari and A.A. Jafari/Scientia Iranica, Transactions B: Mechanical Engineering 21 (2014) 1933{1954

Table 2. Convergence of natural frequencies (
i = !ia2p�h=D) of an isotropic CCCC square plate (m = 17).

p 
 n=1 n=2 n=3 n=4 n=5 n=10 Ritz-DQ
[32]

Ritz
[44]

DSC-LK
[45]

GDQ
[45]

3

1 | 36.4831 36.0924 36.0219 36.0014 35.9864 35.9852 35.992 35.989 35.985

2 | 74.1918 73.6141 73.4826 73.4367 73.3976 73.3939 73.413 73.407 73.394

3 | 92.3989 74.7826 73.9463 73.6267 73.4090 73.3939 73.413 73.407 73.394

4 | 124.8356 109.9967 108.8522 108.4893 108.2365 108.216 108.27 108.249 108.210

5 | 132.9960 132.2569 132.0293 131.9227 131.6376 131.581 131.64 131.622 131.580

6 | 179.8715 156.3730 134.6547 133.5760 132.2694 132.205 132.24 132.244 132.200

5

1 35.9995 35.9870 35.9855 35.9853 35.9852 35.9852

2 73.5345 73.4019 73.3947 73.3942 73.3940 73.3938

3 74.1797 73.4286 73.3952 73.3942 73.3940 73.3938

4 108.4111 108.2275 108.2202 108.2177 108.2169 108.2165

5 132.2604 131.8262 131.6122 131.5816 131.5812 131.5808

6 165.0573 133.0578 132.2411 132.2063 132.2055 132.2048

7

1 35.9881 35.9852 35.9852 35.9852 35.9852 35.9852

2 73.4037 73.3941 73.3939 73.3938 73.3938 73.3938

3 73.4118 73.3941 73.3939 73.3938 73.3938 73.3938

4 108.2386 108.2175 108.2166 108.2165 108.2165 108.2165

5 131.9019 131.5852 131.5808 131.5808 131.5808 131.5808

6 137.6816 132.2100 132.2050 132.2048 132.2048 132.2048

9

1 35.9854 35.9852 35.9852 35.9852 35.9852 35.9852

2 73.3941 73.3939 73.3938 73.3938 73.3938 73.3938

3 73.3946 73.3939 73.3938 73.3938 73.3938 73.3938

4 108.2174 108.2166 108.2165 108.2165 108.2165 108.2165

5 131.6646 131.5808 131.5808 131.5808 131.5808 131.5808

6 131.3232 132.2049 132.2048 132.2048 132.2048 132.2048

11

1 35.9852 35.9852 35.9852 35.9852 35.9852 35.9852

2 73.3939 73.3938 73.3938 73.3938 73.3938 73.3938

3 73.3939 73.3938 73.3938 73.3938 73.3938 73.3938

4 108.2166 108.2165 108.2165 108.2165 108.2165 108.2165

5 131.5816 131.5808 131.5808 131.5808 131.5808 131.5808

6 132.2060 132.2048 132.2048 132.2048 132.2048 132.2048

from Tables 4 and 5 that the present results agree
well with analytical solutions for all modes. Besides,
larger values of n, m and p are required to be used
to accurately compute the higher order eigenmodes.
To validate the present formulation for the buckling
analysis of plates subjected to non-uniform distributed
in-plane loadings, application is made to a numerical
example given by Civalek et al. [46]. The plate is
isotropic and subjected to a distributed load in the

form:

Nx = N0f(y) = N0

�
1� �y

b

�
: (32)

Tables 6 and 7 show the converging trend of the nor-
malized critical compressive loads, with increasing n, p
and m, for SSSS and SCSC square plates, respectively.
The results are compared with the Ritz-DQM solutions
of Jafari and Eftekhari [30] and the DSC results of
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Table 3. Convergence of natural frequencies (
i = !ia2p�h=D) of square isotropic plates with di�erent boundary
conditions (n = 1, m = 19).

Plate 
 p=5 p=7 p=9 p=11 p=13 p=15 Ritz-DQ [32] Ritz [44]

CCCS

1 31.834 31.827 31.826 31.826 31.826 31.826 31.826 31.829
2 63.467 63.338 63.331 63.331 63.331 63.331 63.331 63.347
3 71.897 71.093 71.076 71.076 71.076 71.076 71.076 71.084
4 101.010 100.811 100.792 100.792 100.792 100.792 100.793 100.83
5 116.737 116.385 116.358 116.357 116.357 116.357 116.357 116.40
6 151.940 136.202 130.553 130.353 130.351 130.351 130.353 130.37

CCSS

1 27.057 27.054 27.054 27.054 27.054 27.054 27.054 27.056
2 60.656 60.545 60.538 60.538 60.538 60.538 60.538 60.544
3 61.146 60.793 60.786 60.786 60.786 60.786 60.786 60.791
4 92.963 92.853 92.836 92.836 92.836 92.836 92.836 92.865
5 114.725 114.634 114.580 114.556 114.556 114.556 114.556 114.57
6 146.039 117.241 114.740 114.704 114.704 114.704 114.704 114.72

CCSF

1 17.565 17.545 17.541 17.539 17.538 17.537 17.550 17.615
2 36.045 36.028 36.025 36.024 36.023 36.023 36.034 36.046
3 52.538 51.844 51.821 51.816 51.813 51.811 52.238 52.065
4 71.357 71.101 71.083 71.079 71.077 71.076 71.307 71.194
5 74.409 74.333 74.327 74.327 74.326 74.326 74.355 74.349
6 109.477 108.652 105.866 105.794 105.789 105.786 | 106.28

CFSF

1 15.227 15.199 15.195 15.193 15.192 15.192 15.204 15.285
2 20.609 20.596 20.590 20.586 20.585 20.584 20.601 20.673
3 39.780 39.744 39.739 39.737 39.736 39.735 39.755 39.775
4 50.267 49.480 49.456 49.452 49.449 49.448 49.906 49.730
5 56.853 56.319 56.293 56.285 56.281 56.278 56.657 56.617
6 77.456 77.337 77.327 77.325 77.324 77.324 77.369 77.368

CCCF

1 24.028 23.950 23.934 23.926 23.923 23.921 | 24.020
2 40.080 40.016 40.006 40.002 39.999 39.998 | 40.039
3 64.465 63.279 63.240 63.230 63.224 63.220 | 63.493
4 77.042 76.740 76.715 76.712 76.711 76.710 | 76.761
5 81.121 80.613 80.585 80.578 80.574 80.571 | 80.713
6 116.772 116.700 116.666 116.661 116.657 116.656 | 116.80

CSCF

1 23.475 23.397 23.382 23.376 23.372 23.371 | 23.460
2 35.626 35.588 35.579 35.575 35.573 35.571 | 35.612
3 64.124 62.930 62.892 62.883 62.877 62.874 | 63.126
4 67.067 66.786 66.767 66.764 66.763 66.762 | 66.808
5 77.969 77.414 77.387 77.380 77.376 77.374 | 77.502
6 108.988 108.908 108.878 108.873 108.870 108.868 | 108.99

CFCF

1 22.307 22.193 22.178 22.172 22.169 22.167 | 22.272
2 26.484 26.446 26.425 26.415 26.409 26.406 | 26.529
3 43.770 43.625 43.608 43.602 43.598 43.595 | 43.664
4 62.533 61.230 61.191 61.182 61.177 61.174 | 61.466
5 68.219 67.251 67.205 67.189 67.179 67.174 | 67.549
6 80.329 79.865 79.825 79.820 79.818 79.816 | 79.904
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Table 4. Convergence of natural frequencies (
i = !ia2p�h=D) of an isotropic SSSS square plate (n = 5).

p 
 m=15 m=20 m=25 m=30 m=35 Exact [45]

7

10 167.783275 167.783275 167.783275 167.783275 167.783275 167.783275

20 315.827693 315.827341 315.827341 315.827341 315.827341 315.827341

30 446.950054 444.132364 444.132364 444.132364 444.132364 444.132198

40 601.956821 602.045583 602.045883 602.045883 602.045883 602.045868

50 785.746316 720.489661 720.489661 720.489661 720.489661 720.481121

60 882.307481 843.404099 838.959106 838.959106 838.959106 838.916374

70 1026.45628 986.966798 996.847902 996.830064 996.830044 996.830044

80 1233.63580 1120.83139 1144.89003 1144.87413 1144.87411 1144.87411

90 1441.37515 1283.58358 1263.31485 1263.31478 1263.31478 1263.30936

100 1669.34106 1432.71254 1431.12080 1431.09756 1431.09756 1431.09264

9

10 167.783275 167.783275 167.783275 167.783275 167.783275

20 315.827692 315.827341 315.827341 315.827341 315.827341

30 446.950054 444.132198 444.132198 444.132198 444.132198

40 601.956694 602.045568 602.045868 602.045868 602.045868

50 785.746316 720.481128 720.481238 720.481128 720.481128

60 882.307481 843.404099 838.916435 838.916435 838.916435

70 1026.43888 986.960222 996.830068 996.830064 996.830044

80 1233.62084 1120.83139 1144.87413 1144.87412 1144.87411

90 1440.88544 1283.06163 1263.30944 1263.30936 1263.30936

100 1667.89291 1431.10075 1431.09274 1431.09264 1431.09264

11

10 167.783275 167.783275 167.783275 167.783275 167.783275

20 315.827692 315.827341 315.827341 315.827341 315.827341

30 446.950054 444.132198 444.132198 444.132198 444.132198

40 601.956694 602.045568 602.045868 602.045868 602.045868

50 785.746316 720.481121 720.481238 720.481121 720.481121

60 882.307481 843.404099 838.916374 838.916376 838.916374

70 1026.43886 986.960216 996.830044 996.830044 996.830044

80 1233.62082 1120.83139 1144.87411 1144.87411 1144.87411

90 1440.88380 1283.06159 1263.30943 1263.30936 1263.30936

100 1667.88575 1431.09265 1431.09265 1431.09264 1431.09264

Civalek et al. [46]. The results have a close agreement
with those of existing literature. Besides, by increasing
the order of interpolation functions, a smaller number
of �nite elements is required to obtain solutions with
identical accuracies. Again, one sees that the rate
of convergence of the present method is not very
satisfactory when Hermite interpolation functions are
used in the algorithm.

In Table 8, the results are given for di�erent
aspect ratios (a=b). As evident from this table, the
results obtained by the present methodology have
closer agreement with the Ritz-DQM solutions of Jafari

and Eftekhari [30] than those of Civalek et al. [46]. In
Table 9, the present results are compared with the DSC
results of Civalek et al. [46], the DQM solution results
of Wang et al. [47], and the analytical solutions of
Leissa and Kang [48]. Excellent agreement is achieved
between the present algorithm solutions and those of
existing literature.

4.2. Example 2: Free vibration of an
orthotropic rectangular plate

In Table 10, the convergence and accuracy of the funda-
mental frequency of a clamped orthotropic rectangular
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Table 5. Convergence of natural frequencies (
i = !ia2p�h=D) of an isotropic SSSS square plate (m = 35).

p 
 n=2 n=3 n=4 n=5 n=6 Exact [45]

7

10 167.786014 167.783562 167.783295 167.783275 167.783275 167.783275

20 315.829004 315.827507 315.827352 315.827341 315.827341 315.827341

30 449.449016 444.137592 444.134345 444.132364 444.132237 444.132198

40 602.289841 602.048767 602.045972 602.045883 602.045869 602.045868

50 730.571272 722.333091 720.491454 720.489661 720.482201 720.481121

60 888.264520 852.132138 839.375994 838.959106 838.921993 838.916374

70 1046.36419 996.830044 996.830044 996.830044 996.830044 996.830044

80 1233.70055 1144.87417 1144.87411 1144.87411 1144.87411 1144.87411

90 1446.96674 1283.04857 1263.31602 1263.31478 1263.31003 1263.30936

100 1677.83268 1432.33728 1431.09871 1431.09756 1431.09324 1431.09264

9

10 167.783278 167.783275 167.783275 167.783275 167.783275

20 315.827343 315.827341 315.827341 315.827341 315.827341

30 444.206377 444.132205 444.132199 444.132198 444.132198

40 602.047185 602.045871 602.045868 602.045868 602.045868

50 721.260974 720.495892 720.481135 720.481128 720.481122

60 852.376378 839.105305 838.918094 838.916435 838.916378

70 996.830044 996.830044 996.830044 996.830044 996.830044

80 1153.54312 1144.87411 1144.87411 1144.87411 1144.87411

90 1294.18941 1263.31922 1263.30937 1263.30936 1263.30936

100 1440.96303 1431.10171 1431.09264 1431.09264 1431.09264

11

10 167.783275 167.783275 167.783275 167.783275 167.783275

20 315.827341 315.827341 315.827341 315.827341 315.827341

30 444.132552 444.132198 444.132198 444.132198 444.132198

40 602.045871 602.045868 602.045868 602.045868 602.045868

50 720.490206 720.481162 720.481121 720.481121 720.481121

60 839.359817 838.917290 838.916376 838.916374 838.916374

70 996.830044 996.830044 996.830044 996.830044 996.830044

80 1144.87411 1144.87411 1144.87411 1144.87411 1144.87411

90 1263.31560 1263.30939 1263.30936 1263.30936 1263.30936

100 1431.09842 1431.09266 1431.09264 1431.09264 1431.09264

plate are veri�ed. Only one �nite element is used to
obtain the results in the present analysis. The material
properties of the plate are assumed to be: D33 = D22 =
1:5D11. In this table, the results of two superposition
methods are also shown for comparison [49,50]. It is
seen that the frequency parameters generated from this
study agree well with the Levy-type solution results
from Refs. [49,50].

Table 11 presents the validation of the proposed
method for free vibration analysis of an orthotropic
CCCC plate with initial stresses. The material prop-

erties of the orthotropic plate are: D11 = D22 =
2D33. Good agreement is observed between the re-
sults of the method presented here and those from
Refs. [50,51].

4.3. Example 3: Free vibration of an axially
moving single-span orthotropic
rectangular plate subjected to linearly
varying in-plane stresses

To investigate the e�ects of dimensionless moving
speed, material properties of the plate, variation of in-
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Table 6. Convergence of buckling load (Na2=D) of an isotropic SSSS square plate under uniaxial linearly varying
compressive load (� = 1).

n p m=7 m=9 m=11 m=13 m=15 Ref. [30] Ref. [46]

1

3 81.4895 80.8989 80.8987 80.8986 80.8986 77.1009 77.081

5 77.6328 77.1109 77.1107 77.1106 77.1106

7 77.6230 77.1013 77.1010 77.1009 77.1009

9 77.6230 77.1012 77.1010 77.1009 77.1009

11 77.6230 77.1012 77.1010 77.1009 77.1009

2
3 77.7587 77.2347 77.2344 77.2343 77.2343

5 77.6230 77.1013 77.1010 77.1010 77.1010

3
3 77.6525 77.1302 77.1300 77.1299 77.1299

5 77.6230 77.1013 77.1010 77.1009 77.1009

4 3 77.6326 77.1107 77.1105 77.1104 77.1104

6 3 77.6249 77.1032 77.1029 77.1029 77.1029

8 3 77.6236 77.1019 77.1016 77.1015 77.1015

12 3 77.6231 77.1014 77.1011 77.1011 77.1011

16 3 77.6230 77.1013 77.1010 77.1010 77.1010

20 3 77.6230 77.1013 77.1010 77.1009 77.1009

Figure 3. Dimensionless complex frequencies of axially moving single-span isotropic SSSS square plates versus axially
moving speed.

plane stresses, and the aspect ratio on the stability
property of a moving plate, we consider a single-
span rectangular plate with all edges simply supported
(SSSS). The real and imaginary parts of the �rst three
dimensionless complex frequencies are obtained for dif-
ferent dimensionless axially moving speeds. Only one
�nite element with 13th order interpolation functions

is considered in the x-direction, and 17 DQM sampling
points are adopted in the y-direction. In Figure 3,
variations of the �rst three complex natural frequencies
of the SSSS isotropic plate with axially moving speed
are shown. It can be observed that, when the axially
moving speed is zero, the real parts of all natural
frequencies are zero. By increasing the moving speed,



S.A. Eftekhari and A.A. Jafari/Scientia Iranica, Transactions B: Mechanical Engineering 21 (2014) 1933{1954 1945

Table 7. Convergence of buckling load (Na2=D) of an isotropic SCSC square plate under uniaxial linearly varying
compressive load (� = 0:25).

n p m=9 m=11 m=13 m=15 m=17 Ref. [30]

1

3 98.6974 98.6902 98.6901 98.6901 98.6901 86.6689

5 87.0105 86.9762 86.9754 86.9754 86.9754

7 86.7054 86.6712 86.6704 86.6704 86.6704

9 86.7040 86.6697 86.6689 86.6689 86.6689

11 86.7040 86.6697 86.6689 86.6689 86.6689

13 86.7040 86.6697 86.6689 86.6689 86.6689

2
3 96.2247 96.1898 96.1890 96.1890 96.1890

5 86.7284 86.6942 86.6934 86.6934 86.6934

7 86.7040 86.6697 86.6690 86.6689 86.6689

4
3 87.0366 87.0023 87.0015 87.0015 87.0015

5 86.7040 86.6698 86.6690 86.6690 86.6690

5
3 86.8466 86.8124 86.8116 86.8116 86.8116

5 86.7040 86.6697 86.6689 86.6689 86.6689

10 3 86.7135 86.6792 86.6785 86.6784 86.6784

20 3 86.7046 86.6703 86.6695 86.6695 86.6695

30 3 86.7041 86.6698 86.6691 86.6690 86.6690

40 3 86.7040 86.6698 86.6690 86.6690 86.6690

45 3 86.7040 86.6697 86.6690 86.6689 86.6689

Table 8. Non-dimensional critical buckling loads (Na2=D) of SSSS isotropic rectangular plates under di�erent linearly
varying compressive loads (n = 1, p = 9, m = 16).

a=b
� = 0:8 � = 1 � = 2

Present Ref. [30] Ref. [46] Present Ref. [30] Ref. [46] Present Ref. [30] Ref. [46]

0.4 131.3579 131.3579 131.452 149.5357 149.5357 149.623 287.1940 287.1946 287.205

0.6 82.4374 82.4374 82.703 96.1641 96.1641 96.131 238.0719 238.0720 238.071

0.75 70.2014 70.2014 70.268 82.5896 82.5896 83.004 237.9742 237.9743 237.952

1 65.0906 65.0906 65.236 77.1009 77.1009 77.081 251.9547 251.9549 252.863

1.5 70.2014 70.2014 70.275 82.5896 82.5896 82.708 237.9742 237.9743 237.859

Table 9. Non-dimensional critical buckling loads
(Na2=D) for SCSC isotropic rectangular plate under
di�erent linearly varying compressive loads (n = 1, p = 9,
m = 16, a=b = 0:7).

� Present Ref.
[30]

Ref.
[46]

Ref.
[47]

Ref.
[48]

0 69.0952 69.0952 69.088 69.095 69.10
1 134.5895 134.5895 134.592 134.589 134.6
2 422.4652 422.4663 422.473 422.465 422.5

the imaginary parts decrease, while their real parts
remain zero. Note that for a moving speed lower
than v = 6:29, all eigenvalues are purely imaginary
and, therefore, the moving plate is stable. At v =
6:29, which is called critical or divergence velocity, the
imaginary part of 
1 becomes zero, while the real part
starts to take positive and negative values. After that,
some values of the real part of 
1 may exceed the
zero magnitude and, therefore, the moving plate will
experience divergent instability. In this case, a bubble
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Table 10. Convergence of fundamental frequency (
1 = !1a2p�h=D11) of an orthotropic CCCC plate
(D33 = D22 = 1:5D11, n = 1).

a=b p m=9 m=11 m=13 m=15 m=17 Ref. [49] Ref. [50]

1

5 41.1350 41.1333 41.1332 41.1332 41.1332 41.12 41.10

7 41.1123 41.1098 41.1097 41.1097 41.1097

9 41.1081 41.1049 41.1047 41.1047 41.1047

11 41.1079 41.1044 41.1043 41.1043 41.1043

13 41.1079 41.1044 41.1043 41.1043 41.1043

15 41.1079 41.1044 41.1043 41.1043 41.1043

0.5

5 25.6397 25.6368 25.6367 25.6367 25.6367 25.60 25.60

7 25.6079 25.6055 25.6054 25.6054 25.6054

9 25.6072 25.6046 25.6046 25.6045 25.6045

11 25.6072 25.6046 25.6045 25.6045 25.6045

13 25.6072 25.6045 25.6045 25.6045 25.6045

15 25.6072 25.6045 25.6045 25.6045 25.6045

Table 11. Convergence of fundamental frequency (
1 = !1a2p�h=D33) of an square orthotropic CCCC plate with initial
stresses (D11 = D22 = 2D33, Nx = Ny = N , n = 1).

N0a2=�2D33 p m=9 m=11 m=13 m=15 Ref. [50] Ref. [51]

-2

5 42.7131 42.7154 42.7154 42.7154 42.641 42.641

7 42.6414 42.6428 42.6428 42.6428

9 42.6404 42.6414 42.6414 42.6414

11 42.6404 42.6414 42.6413 42.6413

13 42.6404 42.6414 42.6413 42.6413

15 42.6404 42.6414 42.6413 42.6413

0

5 47.9823 47.9828 47.9828 47.9828 47.959 47.959

7 47.9605 47.9603 47.9602 47.9602

9 47.9595 47.9590 47.9589 47.9589

11 47.9594 47.9589 47.9589 47.9589

13 47.9594 47.9589 47.9589 47.9589

15 47.9594 47.9589 47.9589 47.9589

10

5 68.2723 68.2617 68.2615 68.2615 68.165 68.165

7 68.1800 68.1694 68.1693 68.1692

9 68.1758 68.1652 68.1650 68.1650

11 68.1758 68.1652 68.1649 68.1649

13 68.1758 68.1651 68.1649 68.1649

15 68.1758 68.1651 68.1649 68.1649

20

5 83.5830 83.5599 83.5590 83.5589 83.206 83.206

7 83.2466 83.2236 83.2227 83.2227

9 83.2306 83.2076 83.2066 83.2066

11 83.2303 83.2073 83.2064 83.2064

13 83.2303 83.2073 83.2064 83.2064

15 83.2303 83.2073 83.2064 83.2064



S.A. Eftekhari and A.A. Jafari/Scientia Iranica, Transactions B: Mechanical Engineering 21 (2014) 1933{1954 1947

Figure 4. Dimensionless complex frequencies of axially moving single-span orthotropic SSSS square plates versus axially
moving speed for di�erent values of D11.

is formed with bifurcation and reverse bifurcation in
the plot. If the moving speed falls within the bubble,
the moving plate will be unstable as the plate vibration
amplitude would grow signi�cantly with time. From
Figure 3, it can also be seen that there exists a second
stable region, where all eigenvalues become purely
imaginary. At v = 8:23, which is called 
utter velocity,
the real parts of 
1 and 
2 start to take positive and
negative values, while their imaginary parts are non-
zero. If the moving speed is further increased, a larger
bubble is formed with bifurcation in the plot. In this
case, the real and imaginary parts of 
1 couple with
those of 
2, which means that the plate will experience
coupled-mode 
utter and loses stability for the second
time.

Figures 4 and 5 show the variation of the
�rst three dimensionless complex frequencies of the

orthotropic plate versus moving speed for various
values of plate 
exural rigidities. From Figure 4,
it is seen that the divergence velocity and 
ut-
ter velocity both increase by increasing the D11-
value. It can also be seen that the size of the
�rst bubble increases considerably as the D11-value
increases. This means that, while an increase in
D11-value will improve the dynamic behavior of ax-
ially moving orthotropic plates, it also increases the
instability limit of the �rst unstable region. How-
ever, the instability limit of the �rst coupled-mode

utter decreases as the D11-value increases (note
that 
1 does not couple with 
2 when D11 =
4D33).

From Figure 5, it can be seen that an increase
in D22-value can also improve the dynamical behavior
of axially moving orthotropic plates (i.e., the diver-
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Figure 5. Dimensionless complex frequencies of axially moving single-span orthotropic SSSS square plates versus axially
moving speed for di�erent values of D22.

gence and 
utter velocities increase as the D22-value
increases). It can also be seen that, as the D22-value
increases, the size of the �rst bubble decreases. Note
that the �rst bubble is vanished when D22 = 4D33.
In summary, from the results shown in Figures 4
and 5, one may conclude that the vibrational behavior
of axially moving orthotropic plates can be easily
controlled by choosing the proper values of 
exural
rigidities.

Figure 6 shows the variation of the �rst three
dimensionless complex frequencies of the orthotropic
plate with moving speed for di�erent aspect ratios. It
can be observed that the divergence and 
utter veloc-
ities increase as the aspect ratio increases. Moreover,
the size of the �rst bubble decreases signi�cantly as the
aspect ratio increases.

Figures 7 and 8 demonstrate the e�ects of in-
plane stresses and their variation on the stability
of the axially moving orthotropic plate. It can be
seen that the divergence and 
utter velocities increase
as N0 increases or � decreases. But, the size of
the �rst bubble (say the �rst unstable region) does
not change as the magnitude of N0 or � changes.
Moreover, the shape of the curves does not change by
any variation in magnitudes of N0 and �. In other
words, the curves are only shifted to the right direction
as N0 increases or � decreases. Figure 9 shows the
variation of critical velocity with � for di�erent values
of N0. It can be seen that the critical velocity �rst
decreases by increasing � and takes its minimum value.
After that, the critical velocity increases rapidly with
increasing �.
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Figure 6. Dimensionless complex frequencies of axially moving single-span orthotropic SSSS rectangular plates versus
axially moving speed for di�erent values of � = a=b.

Figure 7. Dimensionless complex frequencies of axially moving single-span orthotropic SSSS rectangular plates versus
axially moving speed for di�erent values of in-plane forces (D11 = D22 = 2D33, � = 3=2, � = 0).

4.4. Example 4: Free vibration of an axially
moving multi-span orthotropic rectangular
plate subjected to linearly varying
in-plane stresses

Consider an axially moving multi-span SFSF rectangu-
lar orthotropic plate with equal length spans subjected
to linearly varying in-plane stresses. Figure 10 shows
the variation of the �rst three dimensionless complex
frequencies of the orthotropic plates of one, two, and

three equal spans versus moving speed. The aspect ra-
tio and material properties of the orthotropic plate are,
respectively, � = 3 and D11 = D22 = 2D33. It can be
seen that the divergence speeds of the orthotropic plate
increase considerably as the number of spans increases.
Moreover, for the range of moving speeds shown in this
�gure, one sees that the single span orthotropic plate is
the only one that may experience coupled mode 
utter.
In conclusion, the dynamic behavior of axially moving
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Figure 8. Dimensionless complex frequencies of axially moving single-span orthotropic SSSS rectangular plates versus
axially moving speed for di�erent values of � (D11 = D22 = 2D33, � = 3=2, N0a2=D33 = 100).

Figure 9. Variation of critical velocity of an axially
moving single-span orthotropic SSSS rectangular plates
versus �-value for di�erent values of N0

(D11 = D22 = 2D33, � = 3=2).

plates can be easily improved by increasing the number
of spans.

5. Conclusions

A high order accurate mixed FE-DQM is proposed
to study the dynamic behavior of axially moving or-
thotropic rectangular plates loaded by linearly varying
in-plane stresses. The mixed method reduces the
original plate problem to two simple beam problems,
whose assembly of equations and implementation of
boundary conditions are easier than cases where each
component method is fully applied to the problem. The
numerical examples prove the accuracy, convergence,
and stability of the proposed method for the dynamic
analysis of axially moving orthotropic rectangular
plates.

The e�ects of material properties of the or-
thotropic plate, axial moving speed, magnitude and
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Figure 10. Dimensionless complex frequencies of axially moving multi-span orthotropic SFSF rectangular plates versus
axially moving speed (D11 = D22 = 2D33, � = 3, N0a2=D33 = 100, � = 1).

variation of in-plane stresses on the dynamics of the
moving plate are also investigated. It is found that
all the above-mentioned parameters have signi�cant
e�ects on the dynamic behavior of moving orthotropic
plates. Results indicate that the critical velocity
of the orthotropic plates can be easily controlled by
choosing the proper values of 
exural rigidities of the
plate, in-plane stresses and their variations along plate
boundaries.
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Appendix A

In this study, the technique of direct Substitution of
Boundary Conditions into discrete Governing Equa-
tions (SBCGE) [37] is used to implement the boundary
conditions of the plate problem in the y direction.
In this technique, the plate boundary conditions are
�rst discretized using the DQ approach. The re-
sulting analog equations are then substituted into
discrete governing Eqs. (24) (for more details, see
Refs. [35,37]).

The boundary conditions of the orthotropic plate
are given in Eqs. (3)-(8). Using the di�erential quadra-
ture rules (21), the corresponding quadrature analogs
are obtained as:

(I) Simply supported end condition at y = yr (r = 1
or m):

fW (yr)g =

8>>><>>>:
W1(yr)
W2(yr)

...
Wq(yr)

9>>>=>>>; =

8>>><>>>:
0
0
...
0

9>>>=>>>; = f0g; (A.1)

fW;yy(yr)g =
mX
j=1

E(2)
rj fW (yj)g = f0g: (A.2)

(II) Clamped or �xed end condition at y = yr (r = 1
or m):

fW (yr)g = f0g; (A.3)

fW;y(yr)g =
mX
j=1

E(1)
rj fW (yj)g = f0g: (A.4)

(III) Free end condition at y = yr (r = 1 or m):

D22[B]
mX
j=1

E(2)
rj fW (yj)g

+D12[C]fW (yr)g = f0g; (A.5)

D22[B]
mX
j=1

E(3)
rj fW (yj)g

+ (2D33�D12)[C]
mX
j=1

E(1)
rj fW (yj)g = f0g;

(A.6)

where the matrices [B] and [C] are denied in
Eqs. (18) and (19).
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