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Abstract. This paper presents the vibration and buckling analysis of functionally graded
beams with di�erent boundary conditions, using the Reproducing Kernel Particle Method
(RKPM). Vibration of simple Euler-Bernoulli beams using RKPM is already developed
and reported in the literature. So far, the modeling of FGM beams using the theoretical
method or the �nite element technique has not evolved with accurate results for the power
law form of FGM with a large power of \n" value. The accuracy of RKPM results is
very good and is not sensitive to the n value. The system of equations of motion is
derived using Lagrange's method under the assumption of the Euler-Bernoulli beam theory.
Boundary conditions of the beam are taken into account using Lagrange multipliers. It is
assumed that material properties of the beam vary continuously in the thickness direction,
according to the power-law form. RKPM is implemented to obtain the equation of motion
and, consequently, natural frequencies and buckling loads of the FGM beam are evaluated.
Results are veri�ed for special cases reported in the literature. Considering the displacement
of the neutral axis, buckling loads, with respect to length and material distribution, are
evaluated. For special cases of homogenous beams, RKPM matches theoretical evaluation
with less than one percent error.
© 2014 Sharif University of Technology. All rights reserved.

1. Introduction

One of the new concepts in material design is the con-
cept of Functionally Graded Materials (FGM). These
materials are mostly made of ceramic and metallic
components, with properties varying from one side
to the other, in the form of a particular distribution
function. This enables FGM structures to be exible
for any desired properties. The exclusive characteristic
of functionally graded materials is the continuous and
smooth change in properties, which reduces undesirable
phenomena, such as stress concentration. Functionally
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graded materials are used to make gradual changes
in the mechanical properties and characteristics of
structures [1].

FGMs are of interest for a wide range of applica-
tions, such as arti�cial teeth and dental implants, sen-
sors, biomedicine, di�erent aspects of tissue engineering
and aerospace industries [2-8]. The idea of combining
two di�erent types of material was introduced by
Bever and Duwez in 1972 [9]. Over the last decades,
many studies have been devoted to understanding the
static and dynamic behavior of these materials. Due
to the continuous change of properties, analysis of
FGMs results in mathematical complications, applying
analytical solution to which becomes di�cult. Con-
sidering the application of beams in most structures,
studying the vibration and mechanical performance of
FGM beams is of great importance. Chakraborty et
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al. [10] developed a new beam �nite element for the
analysis of functionally graded materials. They used
the exact solution of the static part of the governing
di�erential equations to construct interpolating poly-
nomials for the element formulation, and showed the
behavioral di�erence of functionally graded material
beams with pure metal or pure ceramic beams for
both exponential and power-law variations of material
properties. Xiang and Yang [11] investigated the free
and forced vibration of a laminated functionally graded
beam of variable thickness under thermally induced
initial stresses within the framework of the Timoshenko
beam theory. The beam consisted of a homogeneous
substrate and two heterogeneous functionally graded
layers whose material composition followed a power law
distribution in the thickness direction. It was assumed
that the beam might be clamped, hinged, or free at
its ends. They showed that vibration frequencies,
mode shapes and dynamic responses of the beam,
were signi�cantly inuenced by thickness variation,
temperature change, slenderness ratio and end support
conditions. Aydogdu [12] analyzed the vibration and
buckling of simply supported axially FGM beams using
the semi-inverse method, assuming the Euler-Bernoulli
beam theory. Simsek and Kocat�urk [13] investigated
free vibration characteristics and dynamic behavior of
a functionally graded simply supported beam under a
concentrated moving harmonic load. The system of
equations of motion was derived using Lagrange's equa-
tions under the assumption of the Euler-Bernoulli beam
theory, and the constraint conditions of supports were
taken into account using Lagrange multipliers. They
discussed the e�ects of di�erent material distribution,
the velocity of the moving harmonic load and excitation
frequency on the dynamic response of the beam. Sina
et al. [14] used a new beam theory, di�erent from the
traditional �rst-order shear deformation beam theory,
to analyze free vibration of functionally graded beams.
The equations of motion were derived using Hamilton's
principle and solved using an analytical method. The
e�ects of boundary conditions, volume fraction and
shear deformation on natural frequencies and mode
shapes were investigated. Simsek [15] investigated
vibration of a functionally graded simply-supported
beam under a moving mass using di�erent beam
theories. The material properties of the beam varied
continuously in the thickness direction, according to
the power law form. The system of equations of motion
were derived using Lagrange's equations, while the
constraint conditions of supports were taken into ac-
count using Lagrange multipliers. The e�ects of shear
deformation, various material distributions, velocity of
the moving mass, inertia, Coriolis and the centripetal
e�ects of the moving mass, on the dynamic displace-
ments and stresses of the beam were discussed and
compared with those of previous literature. Alshorbagy

et al. [16] presented the dynamic characteristics of
functionally graded beams with material graduation
in axial or transversal directions, based on the power
law form. They derived a system of equations of
motion using the principle of virtual work and the �nite
element method to discretize the model. E�ects of
di�erent material distribution, slenderness ratios, and
boundary conditions, on the dynamic characteristics of
the beam, are discussed.

The purpose of this paper is to evaluate vibration
frequencies and buckling loads of functionally graded
beams using the RKPM meshless method. The system
of equations of motion is derived using Lagrange's
method within the framework of the Euler-Bernoulli
beam theory. Boundary conditions of supports are
taken into account using Lagrange multipliers. It is
assumed that the material properties of the beam vary
continuously in the thickness direction, according to
the power law form.

2. Theory and formulation

Figure 1 shows an FGM beam with length, L, and
thickness, h. A schematic of the beam cross section
under bending moment, M_, with the assumption
of the Euler-Bernoulli beam theory, is presented in
Figure 2. The normal strain in an arbitrary point in
the thickness of the beam is given by [17]:

"xx =
@u
@x
: (1)

The displacement �eld of the beam may be written as:

w = w; u = �z @w
@x

; v = 0; (2)

where w, u and v are transverse, axial and lateral
displacements of any point of the beam, respectively.
Substituting Eq. (2) into Eq. (1) yields:

"xx =
@u
@x

= �z @2w
@x2 : (3)

The stress �eld in the xx plane is [14]:

Figure 1. A functionally graded beam.

Figure 2. An FGM beam under bending moment.
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�xx = E(~z)"xx = �E(~z)z
@2w
@x2 ; (4)

where E(~z) is the Young modulus of the beam. The
potential energy of the beam can be written as [17]:

U =
1
2

LZ
0

Z
A

"xx�xxdAdx; (5)

where A is the cross section of the beam. Substituting
Eqs. (3) and (4) into Eq. (5) yields:

U =
1
2

LZ
0

Z
A

E(~z)z2
�
@2w
@x2

�2

dAdx: (6)

For a homogeneous beam, potential energy is [17]:

U =
1
2

LZ
0

EI
�
@2w
@x2

�2

dx; (7)

in which, I is the moment of inertia of the beam cross-
section. Comparing Eqs. (6) and (7) without loss of
generality, an equivalent EI for the FGM beam can be
introduced as:

(EI)eq =
Z
A
z2E(~z)dA: (8)

For any arbitrary distribution of materials, the location
of the neutral axis may be evaluated as follows [18]:

~zc =
R
AE(~z)~zdAR
AE(~z)dA

: (9)

Having the position of the neutral axis, according to
Figure 1, the equivalent EI for the FGM beam will be:

(EI)eq =
Z h

0
(~z � ~zc)2E(~z)bd~z: (10)

The kinetic energy of the beam for transverse vibration
is [17]:

T =
1
2

LZ
0

m
�
@w
@t

�2

dx; (11)

in which m is the mass per unit length of the beam and
is obtained as below:

m =
Z
A
�(~z)dA =

Z h

0
�(~z)bd~z; (12)

where �(~z) is the density of the FGM beam.
In Eqs. (4) to (12), material properties of the

FGM beam vary continuously in the thickness direction
according to the power law form:

�(~z) = �b +
�

~z
h

�n
(�t � �b);

E(~z) = Eb +
�

~z
h

�n
(Et � Eb); (13)

where subscripts, t and b, refer to top and bottom.
From Eqs. (6) and (11), using Lagrange's theorem, the
equation of the transverse vibration of the FGM beam
is obtained as below:

(EI)eq
@4w(x; t)
@x4 +m

@2w(x; t)
@t2

= 0: (14)

To solve Eq. (14), w(x; t) is reproduced using RKPM
shape functions, and natural frequencies are obtained
from the eigenvalue equation.

3. Overview of RKPM

The reproduced function in RKPM is [19]:

uR(x) =
Z



�a(x;x� y)u(y)dy; (15)

in which, � is the corrected kernel function de�ned as:

�a(x;x� y) = C(x;x� y)�a(x� y); (16)

where C is the correction function and �a is kernel
function:

C(x;x� y) =
nX
i=0

bi(x)(x� y)i = bTH(x� y);

HT (x�y) =
�
1 x�y (x�y)2 � � � (x�y)n

�
;

�a(x� y) =
1
a
�
�
x� y
a

�
: (17)

De�ning the moments of kernel function in the follow-
ing form:

mk(x) =
Z



(x� y)k�a(x� y)dy; (18)

the Taylor series expansion of u(y) can be expressed as
below:

u(y)�=
nX
a=0

"
(�1)a(x�y)a

a!
u(a)(x)

nX
i=0

bi(x)ma+i(x)

#
:

(19)

In order for the reproduced function to be equal to
the main function, the following conditions must be



R. Saljooghi et al./Scientia Iranica, Transactions B: Mechanical Engineering 21 (2014) 1896{1906 1899

satis�ed:
nX
i=0

bi(x)mi(x) = 1;

nX
i=0

bi(x)ma+i(x) = 0; a = 1; 2; � � � ; n: (20)

Eq. (20) can be written in the matrix form:fM(x)b(x) = H(0); (21)

in which matrix fM is:26664
m0 m1 � � � mn
m1 m2 � � � mn+1
...

...
. . .

...
mn mn+1 � � � m2n

37775 : (22)

By solving the matrix Eq. (21), unknown coe�cients,
bi(x) and the eventually reproduced function, uR(x)
are obtained.

Applying the trapezoidal rule to Eq. (15) leads to
the discretized form of RKPM:

uR(x) =
NPX
I=1

 I(x)u(xI); (23)

where:

 I(x) =

"
nX
i=1

bi(x)(x� xI)i
#
�a(x� xI)�xI ;

is the shape function of particle I, u(xI) is the param-
eter associated with particle I, NP is the total number
of particles and �xI is the speci�c length of particle I.

�xI =

2664
x2�x1

2 I = 1
xI+1�xI�1

2 I = 2; � � � ;NP� 1
xNP�xNP�1

2 I = NP

3775 : (24)

4. RKPM for free vibration analysis of FGM
beams

Similar to the method used in [20,21], using Lagrange
multipliers to impose boundary conditions in the weak
form of Eq. (14) at di�erent end supports leads to the
following equations:

(a) Simply-simply supported:Z l

0

@2w
@x2

@2�w
@x2 dx+

m
EIeq

Z l

0

@2w
@t2

�wdx

+
@3w
@x3 �w

����l
0

+ �
@3w
@x3 w

����l
0

= 0: (25)

(b) Clamped-simply supported:Z l

0

@2w
@x2

@2�w
@x2 dx+

m
EIeq

Z l

0

@2w
@t2

�wdx

+
@3w
@x3 �w

����l
0

+ �
@3w
@x3 w

����l
0

+
@2w
@x2 �

@w
@x

����
0

+ �
@2w
@x2

@w
@x

����
0

= 0: (26)

(c) Clamped- free:Z l

0

@2w
@x2

@2�w
@x2 dx+

m
EIeq

Z l

0

@2w
@t2

�wdx

� @3w
@x3 �w

����
0
� � @3w

@x3 w
����
0

+
@2w
@x2 �

@w
@x

����
0

+ �
@2w
@x2

@w
@x

����
0

= 0: (27)

(d) Clamped-clamped:Z l

0

@2w
@x2

@2�w
@x2 dx+

m
EIeq

Z l

0

@2w
@t2

�wdx

+
@3w
@x3 �w

����l
0

+ �
@3w
@x3 w

����l
0
� @2w

@x2 �
@w
@x

����l
0

� � @2w
@x2

@w
@x

����l
0

= 0: (28)

Applying RKPM discretization to the above weak
forms leads to sti�ness and mass matrices. w and �w
can be expressed in the form of Eq. (23):

w(x; t) =
NPX
I=1

	I(x)DI(t);

�w(x; t) =
NPX
I=1

	I(x)CI(t); (29)

where DI(t) and CI(t) are degrees of freedom for trial
and test functions and assumed as:

DI(t) = dIei!t;

CI(t) = cIei!t: (30)

Finally, the vibration equation of the FGM beam is
obtained as an eigenvalue matrix problem:

([K]� !2
i [M ])f�ig = 0; (31)
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where !i and �i are the natural frequency and mode
shape of the beam.

For example, discretization for a simply-simply
supported beam leads to the sti�ness and mass ma-
trices as below:

Mij =
Z l

0

m
EIeq

 i(x)T j(x)dx;

Kij =
Z l

0

@2 i(x)T

@x2
@2 j(x)
@x2 dx+

@3 i(x)T

@x3  j(x)
����l
0

+  i(x)T
@3 j(x)
@x3

����l
0
: (32)

For numeric calculations, integrals of Eq. (32) are
discretized using the trapezoidal rule.

5. Buckling of FGM beam

Using (EI)eq, the general equation for transverse
vibrations of an FGM beam under axial compression
(Figure 3) can be written in a similar manner to a
simple beam [19,20]:

(EI)eq
@4w(x; t)
@x4 +m

@2w(x; t)
@t2

+ p
@2w(x; t)
@x2 = 0;

(33)

where p is the compressive axial load, which is positive
in compression.

It should be noted that load, p, must be applied
on the displaced neutral axis, otherwise the buckling
analysis of FGM beams would be incorrect.

Using Lagrange multipliers to impose boundary
conditions on the weak form of Eq. (33) for di�erent
end supports, under axial compression, leads to the
following equations:

(a) Simply-simply supported:

EIeq

Z l

0

@2w
@x2

@2�w
@x2 dx+m

Z l

0

@2w
@t2

�wdx

� p
Z l

0

@w
@x

�wdx

+
�
EIeq

@3w
@x3 + p

@w
@x

�
�w
����l
0

+
�
EIeq�

@3w
@x3 + p�

@w
@x

�
w
����l
0

= 0: (34)

Figure 3. Beam under axial compression.

(b) Clamped-simply supported:

EIeq

Z l

0

@2w
@x2

@2�w
@x2 dx+m

Z l

0

@2w
@t2

�wdx

� p
Z l

0

@w
@x

�wdx

+
�
EIeq

@3w
@x3 + p

@w
@x

�
�w
����l
0

+
�
EIeq�

@3w
@x3 + p�

@w
@x

�
w
����l
0

+ EIeq
@2w
@x2 �

@w
@x

����
0

+ EIeq�
@2w
@x2

@w
@x

����
0

= 0: (35)

(c) Clamped-free:

EIeq

Z l

0

@2w
@x2

@2�w
@x2 dx+m

Z l

0

@2w
@t2

�wdx

� p
Z l

0

@w
@x

�wdx

�
�
EIeq

@3w
@x3 + p

@w
@x

�
�w
����
0

�
�
EIeq�

@3w
@x3 + p�

@w
@x

�
w
����
0

+ EIeq
@2w
@x2 �

@w
@x

����
0

+ EIeq�
@2w
@x2

@w
@x

����
0

= 0: (36)

(d) Clamped-clamped:

EIeq

Z l

0

@2w
@x2

@2�w
@x2 dx+m

Z l

0

@2w
@t2

�wdx

� p
Z l

0

@w
@x

�wdx

+
�
EIeq

@3w
@x3 + p

@w
@x

�
�w
����l
0

+
�
EIeq�

@3w
@x3 + p�

@w
@x

�
w
����l
0

� EIeq
@2w
@x2 �

@w
@x

����l
0
� EIeq�

@2w
@x2

@w
@x

����l
0

= 0: (37)
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Considering Eqs. (29)-(31), in a similar manner, sti�-
ness and mass matrices are obtained. Solving the
eigenvalue problem for the buckling of a FGM beam,
results in natural frequencies and critical buckling
loads.

6. Numerical results

This section is devoted to examples of the free vibration
analysis of FGM beams with di�erent materials and
end supports. The order of the correction polynomial
is considered 2 (n in Eq. (17) = 2) and the dilation
parameter is considered 3.5 times the speci�c length of
particle I (a = 3:5�xI). The number of particles is
assumed to be 100, which are distributed evenly along
the beam. This number of particles is selected after
performing the convergence test. For the particular
problems involved in this paper, 100 particles are
enough to give very good results in comparison with
theoretical �ndings for special cases. As the number
of particles goes beyond this number in the actual
problem, even though the computational time increases
rapidly, no sensible change is achieved. To solve
the equations of motion, several MATLAB codes are
developed in 1D space and the results are presented in
both tabular and graphical forms.

Example 1. Consider an FGM beam made of alu-
minum and alumina, as metal and ceramic, respec-
tively, with properties varying according to the power-
law given by Eq. (13). The bottom surface of the
beam is pure alumina, whereas the top surface is pure
aluminum. The properties of these materials are given
in Table 1. Boundary conditions are assumed to be
clamped-free.

Non-dimensional natural frequency maybe de-
�ned as [18]:

� = !

s
12�bL4

Ebh2 : (38)

To validate the present formulation for an FGM beam,
a comparison is made between the results of RKPM
and the analytical method [17] for the clamped-free
boundary conditions in Table 2. From Eq. (13), as
n ! 1, the beam approaches a homogenous one.
For n = 106, non-dimensional natural frequencies
obtained from Eqs. (31) and (38) are compared with
the homogenous beam [17]. Results reveal very good

Table 1. Metal and ceramic properties.

Properties Unit Aluminum Alumina

Elasticity modulus (E) GPa 67 393
Density (�) kg/m3 2800 3960

agreement, with a maximum di�erence of 0.85 percent.
To validate the claim that 100 particles are enough to
give very good results, the L2-error norm of the �rst
four non-dimensional natural frequencies obtained from
RKPM, in the case of a homogenous beam, for which
exact solutions are available, is presented in Figure 4. It
is seen from this �gure, as the number of particles goes
beyond 100, even though the error decreases slightly,
the computational time grows rapidly. Figure 5 shows
variations of �rst and second non-dimensional natural
frequencies versus the power exponent of Eq. (13). It
is seen that increasing the power exponent leads to
higher frequencies. By increasing the power exponent,
properties of the FGM beam approach those of the

Figure 4. L2-error norm of �rst four non-dimensional
natural frequencies.

Figure 5. Variation of the �rst and second
non-dimensional frequencies with the power-law exponent
(n).

Table 2. Non-dimensional natural frequencies for
homogenous beam.

Mode number 1 2 3 4

Ref. [17] 3.5160 22.034 61.696 120.903
RKPM with 21 particles 3.5152 22.061 61.973 121.951
RKPM with 51 particles 3.5158 22.033 61.703 120.930
RKPM with 101 particles 3.5159 22.034 61.695 120.901
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material at the bottom surface. Since, in this example,
the bottom surface is ceramic, the beam gets sti�er and
natural frequencies increase. Table 3 represents �rst,
second, and third natural frequencies for FGM beams
with di�erent material distributions. As mentioned
before, when the power exponent (n) increases, the
beam deviates from pure aluminum to pure alumina,
which causes an increase in non-dimensional natural
frequencies.

Example 2. Consider an FGM beam made of steel
and alumina, as metal and ceramic, with material prop-
erties varying continuously in the thickness direction,
according to the power law presented by Eq. (13).
The bottom surface of the beam is assumed to be
pure steel, whereas the top surface is pure alumina.
Material properties of steel and alumina are given
in Table 4. Considering the formulation used in
Ref. [16] for non-dimensional natural frequency, i.e.
�2 = !

p
12�bL4=Ebh2, using RKPM, non-dimensional

natural frequencies of the simply-simply supported
beam are evaluated and represented in Table 5. In
this table, the results for non-dimensional natural
frequencies of the FGM beam, using the �nite element
technique [16], are also shown. Comparing the results
of RKPM with the �ndings of Ref. [16] indicates a
very good agreement. Figure 6 shows variations of the
�rst and second non-dimensional natural frequencies,
with respect to the power exponent of Eq. (13). It

Table 3. Non-dimensional natural frequencies of FGM
beam.

�i n = 0 n = 2 n = 5 n = 10

�1 1.785 2.853 3.084 3.24

�2 11.031 19.90 19.35 20.33

�3 30.99 50.30 54.37 57.11

Table 4. Metal and ceramic properties.

Properties Unit Steel Alumina

Elasticity modulus (E) GPa 210 393

Density (�) kg/m3 7800 3960

can be seen that, as the power exponent increases,
natural frequencies tend to decrease. This is due
to a reduction in the beam modulus of elasticity.
Figure 7 presents variations of the �rst non-dimensional
natural frequency of the FGM beam versus the power
exponent, at di�erent end supports. From this �gure,
it is clear that clamped-clamped support (cc) leads to
the highest frequencies, where the lowest are obtained
for clamped-free boundary conditions (cf). The �rst
three non-dimensional natural frequencies for di�erent
boundary conditions and power exponents are given in
Table 6. It is seen that as the power exponent increases,
natural frequencies decrease. This is due to the fact
that the structure changes from pure alumina to pure
steel.

Figure 6. Variation of the �rst and second
non-dimensional frequencies with the power-law exponent
(n).

Figure 7. Variation of the �rst non-dimensional
frequency with the power-law exponent (n) for di�erent
end supports.

Table 5. The �rst �ve non-dimensional frequencies for di�erent material distribution.

n = 0:2 n = 2 n = 10

RKPM Ref. [16] RKPM Ref. [16] RKPM Ref. [16]

�1 4.1781 4.2315 3.8014 3.9684 3.7031 3.8572

�2 8.2871 8.4500 7.6317 7.9245 7.3347 7.7026

�3 12.475 12.643 11.388 11.856 11.015 11.525

�4 16.325 16.798 15.233 15.752 14.817 15.312

�5 20.389 20.904 19.016 19.599 18.126 19.054



R. Saljooghi et al./Scientia Iranica, Transactions B: Mechanical Engineering 21 (2014) 1896{1906 1903

Table 6. The �rst three non-dimensional frequencies for di�erent material distributions and di�erent boundary conditions.

�i BCs n = 0 n = 0:1 n = 0:5 n = 1 n = 5 n = 106

�1

cf 2.593 2.503 2.297 2.183 2.012 1.875
� 0.000 0.000 0.000 0.000 0.000 0.000
ss 4.344 4.215 4.025 3.995 3.871 3.141
cs 5.430 5.242 4.810 4.572 4.214 3.926
cc 6.541 6.315 5.795 5.507 5.076 4.729

�2

cf 6.491 6.267 5.751 5.465 5.073 4.694
� 6.541 6.315 5.795 5.507 5.076 4.730
ss 8.689 8.388 8.102 7.921 7.554 6.283
cs 9.775 9.438 8.660 8.230 7.585 7.068
cc 10.86 10.485 9.621 9.144 8.427 7.853

�3

cf 10.862 10.491 9.632 9.172 8.431 7.864
� 10.860 10.484 9.621 9.144 8.427 7.853
ss 13.034 12.583 12.021 11.685 11.215 9.425
cs 14.120 13.632 12.509 11.889 10.957 10.21
cc 15.206 14.680 13.472 12.803 11.800 10.995

Table 7. Critical buckling loads for a homogeneous simply-simply supported beam.

L = 2 m L = 5 m L = 10 m

Analytical
�
Pcr = �2 EI

L2

�
16.1615 MN 2.5858 MN 0.6465 MN

RKPM 16.1754 MN 2.5881 MN 0.6470 MN

7. Example of buckling

This section is devoted to the buckling analysis of
an FGM beam under di�erent boundary conditions
and material distributions. For convenience, the beam
of the second example is selected. According to the
weak forms of the equation of motion of the beam
with di�erent boundary conditions (Eqs. (34)-(37)), the
higher the compressive load p, the less the elements of
sti�ness matrix, resulting in the reduction of natural
frequencies. As p increases, the �rst natural frequency
tends to zero and buckling takes place. The p value, at
which the �rst natural frequency becomes zero, is called
the critical buckling load [22]. Using RKPM to solve
the eigenvalue problem of the FGM beam, buckling
loads can be obtained. To validate the present analysis
for the buckling of an FGM beam, a comparison is
made between results of RKPM and the analytical
method [23]. Considering Eq. (13) as n ! 1, the
beam approaches a homogenous one, e.g. for n = 106

and critical buckling loads obtained from RKPM are
compared with those of the analytical method for a
homogenous beam (Table 7). The beam is considered
to be made of alumina with simply supported boundary
conditions, width of b = 0:2 m, thickness h = 0:1 m,
and lengths of 2, 5 and 10 meters. Comparing the
results indicates that RKPM can predict the buckling
loads with an accuracy of more than 99 percent.

Figure 8. Variation of the �rst non-dimensional
frequency with the compressive load (p) for di�erent
material distributions.

Figure 8 shows variations of the �rst non-
dimensional natural frequency of a cantilevered FGM
beam versus compressive load, for di�erent material
distributions. From Figure 8, it is seen that, as
the power exponent increases, critical buckling load
also increases. This is due to higher contribution
of a ceramic component in the structure. Table 8
represents critical buckling loads of an FGM beam
at di�erent beam lengths, material distributions, and
boundary conditions, where letters C, F and S stand
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Table 8. Critical buckling loads (unit: MN) for FGM beams with di�erent material distributions and end supports.

Length BC's n = 0 n = 0:2 n = 1 n = 5 n = 10 n = 106

L = 2 m

CF 0.688 1.218 1.968 2.944 3.332 4.04
SS 2.74 4.88 7.88 11.78 13.34 16.17
CS 5.642 9.988 16.128 24.130 27.298 33.10
CC 11.042 19.543 31.541 47.203 53.406 64.760

L = 5 m

CF 0.1102 0.195 0.315 0.471 0.533 0.646
SS 0.4412 0.781 1.261 1.887 2.1344 2.586
CS 0.902 1.598 2.580 3.860 4.366 5.296
CC 1.766 3.126 5.048 7.554 8.546 10.360

L = 10 m

CF 0.0274 0.0486 0.0786 0.1178 0.1332 0.1616
SS 0.11 0.1952 0.315 0.4716 0.534 0.647
CS 0.226 0.399 0.645 0.965 1.0918 1.324
CC 0.442 0.781 1.262 1.888 2.136 2.590

for clamped, simply supported and free boundary
conditions.

8. Conclusion

In this paper, free vibration characteristics and buck-
ling loads of functionally graded beams are analyzed.
A system of equations of motion is derived using
Lagrange's equations, under the assumption of the
Euler-Bernoulli beam theory. Boundary conditions
are taken into account using Lagrange multipliers. It
is assumed that the material properties of the beam
vary continuously in the thickness direction according
to the power-law form. RKPM is applied to solve
the eigenvalue equation of FGM beams. Natural
frequencies and buckling loads of the FGM beam are
evaluated. For the case where n ! 1, results of
natural frequencies and buckling loads are in good
agreement with analytical �ndings. The accuracy of
the �ndings shows that the RKPM technique is a
reliable method for analysis of FGM structures, in
which the neutral axis is usually displaced and the
density of the components is not homogenous. In this
study, the e�ect of material distribution, compressive
load and boundary conditions on the vibration char-
acteristics of the beam is discussed. The meshless
method of RKPM is shown to be a powerful tool for
the vibration analysis and buckling load of beams with
non-homogenous material distribution in the thickness
direction in which the neutral axis can be displaced
drastically.

Nomenclature

A Area of beam cross section
a Dilation parameter
b Width of beam cross section

bi(x) Coe�cients of base functions

bT Transposed vector of coe�cients of
base function

C(x;x� y) Correction function
CI(t) Degrees of freedom for test functions
DI(t) Degrees of freedom for trial functions
E(~z) Young's modulus of the beam
(EI)eq Equivalent EI
h Height of beam cross section
H(x� y) Vector of base functions
I Moment of inertia of beam cross

section
K Sti�ness matrix
L; l Length of beam
M_ Bending moment of cross section
M� Matrix of moments of kernel functions
M Mass matrix
m Mass per unit length of beam
mk(x) Moment of kernel function
n Power exponent in Eq. (13), order of

correction polynomial in Eq. (17)
NP Total number of particles
p Compressive axial load
T Kinetic energy of beam
U Potential energy of beam
u Axial displacement
uR(x) Reproduced function
v Lateral displacement
w Transverse displacement
x Coordinate in axial direction
xI Position of Ith particle
�xI Speci�c length of particle I
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z Distance of an arbitrary point from
neutral axis of the beam

~z Distance of an arbitrary point from
bottom surface of the beam

~zc Position of neutral axis
� Variation
"xx Normal strain
� Non-dimensional natural frequency
�(~z) Density
�xx Normal stress
f�ig Vector of mode shapes
�a Kernel function
�a Corrected kernel function
 I(x) Shape function of particle I

 Domain of integration
! Natural frequency
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