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Abstract. In this paper, the modeling and control of a rotary missile that uses the
proportional navigation law is proposed, applying the Quantitative Feedback Theory (QFT)
technique. The dynamics of a missile are highly uncertain; thus, application of robust
control methods for high precise control of missiles is inevitable. In the modeling section,
a new coordinate system has been introduced, which simpli�es analysis of rotary missile
dynamics equations. In the controlling part, application of the QFT method leads to the
design of a robust PID controller for the highly uncertain dynamics of a missile. Since
missile dynamics have multivariable nonlinear transfer functions, in order to apply the
QFT technique, these functions are converted to a family of linear time invariant processes
with uncertainty. Next, in the loop shaping phase, an optimal robust PID controller for the
linear process is designed. Lastly, analysis of the design procedure shows that the robust
PID controller is superior to the commonly used PID scheme and multiple sliding surface
schemes, in terms of both tracking accuracy and robustness.

© 2014 Sharif University of Technology. All rights reserved.

1. Introduction

Closed loop controlled missiles are designed, taking
into consideration that they do not rotate around
the longitudinal axis [1-8]. In order to control these
missiles, we must control yaw and pitch channels
independently. For analyzing the dynamics of a mis-
sile, both earth-�xed and body coordinate systems
are normally employed. But, in this paper, a new
coordinate system has been introduced which results
in simpli�cation of the dynamic modeling analysis,
and obtains a linear uncertain SISO dynamic model
for the missile. The main di�erence between con-
trolling a Multiple-Input Multiple-Output (MIMO)
system and a Single-Input Single-Output (SISO) sys-
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tem is in the process of assessing and compensat-
ing the interactions in the system degrees of free-
dom [9,10].

In summary, one can say that it is a complicated
issue to implement an established SISO system control
model on a MIMO system, because of extensive com-
putational load.

The advantage of QFT, with respect to other
robust control techniques such as H1 [11-16], is that
their design is based on the magnitude of transfer
function in the frequency domain. However, design of
QFT [17-26] is not only concerned with the aforemen-
tioned subject, but is also able to take into account
phase information. The unique feature of QFT is
that the performance speci�cations are expressed as
bounds on frequency-response loop shapes in such
a way that the satisfaction of these bounds implies
a corresponding approximate closed-loop satisfaction
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Figure 1. Two-degree-of-freedom feedback system.

of time-domain response bounds for given classes of
inputs and for all uncertainty in a given compact
set.

Consider the feedback system shown in diagram
of Figure 1. This system has a two-degree-of-freedom
structure. In this diagram, p(s) is an uncertain plant
belonging to a set that is p(s) 2 fp(s; �);� 2 pg, where
� is the vector of uncertain parameters. P (s) and
G(s) are plants with an uncertainty structure and a
�xed structure feedback controller, respectively. F (s)
is the pre-�lter and D(s) is the disturbance at the plant
output.

2. Missile's model

To obtain the missile's dynamic model, three coordi-
nate systems are de�ned.

The origin of the earth-�xed coordinate system is
located at the missile's launch point [1,3].

The origin of the body coordinate system is
assumed to be at the missile center of gravity. The
XB-axis of the body coordinate system points in the
direction of the missile nose, the YB-axis points in
the starboard direction, and the ZB-axis completes the
right-handed triad [3].

A new method for dynamic modeling of a rotary
missile, based on suggesting a new irrotational body
coordinate system, has been introduced, which elimi-
nates the interaction between pitch and yaw channels.
This coordinates system is de�ned as below:

The body irrotational coordinates system is as-
sumed to be at the missile's center of gravity. The
XS-axis system points in the direction of the missile
nose, the YS-axis in the yaw channel, and the ZS-axis
in the pitch channel.

The body coordinate system and the inertial
coordinate systems are used to derive the equations
of motion. These coordinate systems are illustrated in
Figure 2.

Based on Newton's second rule, we know that
the force is equal to changes in the vector of momen-
tum [1]:

F = FS =
�
FX FY FZ

�T ; (1)

! = !SIS =
�
p q r

�T ; (2)

V = V s =
�
u v w

�T ; (3)

Figure 2. Missile's coordinate systems [3].8>>><>>>:
Fx = _Mu+M( _u+ qw � rv)

Fy = _Mv +M( _v + ru� pw)

Fz = _Mw +M( _w + pv � qu)

(4)

where u, v and w are the speed components measured
in the missile body axes system, and p, q and r are
the components of the body angular velocity [1,3].

Consider that HS = I!SIB and I is the moment
of inertia of the missile in the body irrotational coordi-
nates system. By reason of symmetry around the mis-
sile longitudinal axis, I matrix is I = diagfIxx; IzzIzzg.
Also, !SIB is the angular velocity vector (that rotates
with the body coordinate system), which is expressed
in terms of frame fSg.

If the angular velocity around the longitudinal
axis is s, then:

!SIB = !SIS +
�
s 0 0

�T =
�
s+ p q r

�T : (5)

So, by applying Eq. (5) and the de�nition of HS :

HS = I!SIB =
�
Ixxp+ Ixxs Izzq Izzr

�
: (6)

Using Eq. (6), Coriolis and Newton's rules, and assum-
ing �2 =

�
l m n

�T (where � is a vector of moment),
yields [1]:8>>><>>>:

l = _Ixx(p+ s) + Ixx( _p+ _s)

m = _Ixxq + Izz _q + (Ixx � Izz)qr + Ixxsr

n = _Ixxr + Izz _r � (Izz � Ixx)pq � Ixxsq
(7)

2.1. Linearization of model
The state vector is de�ned as [1,5]:

x =
�
u v w p q r

�T :
Angle of attack (�) and angle of sideslip (�) can be
de�ned as follows:

� = tan�1
� v
u

�
; � = tan�1

�w
u

�
: (8)
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Figure 3. Motion variable notations.

Aerodynamics force and moment are functions of the
angles of attack (�), sideslip, �ns (�p; �d) and angular
velocity (p; q; r) (Figure 3) [1].

Since the missile has one movable �n, as a result
of rotation, it can be supposed that the missile has two
movable �ns, separately, in y, z directions in the body
irrotational coordinate system.

The equivalent �n in the Y -axis direction is
named the lifter �n, and �p is a small deviation of it.
The second �n is named the rotating �n and �d is a
small deviation of that.

For linearization, aerodynamics force and moment
are assumed linear functions.

The translational and rotational dynamics of the
missile are described by the following six nonlinear
di�erential equations:

_x1 =� � _M0=M0

�
x1 � x2x6 � x3x5

+ (1=M0)
n

tan�1(x3=x1)Cx�

+ tan�1(x2=x1)Cx� + Cx�p�p+ Cx�d�d

+ Cyqx5 + Fxprop
	
;

_x2 =� � _M0=M0

�
x2 � x1x6 � x3x4

+ (1=M0)
�

tan�1(x3=x1)Cy�

+ tan�1(x2=x1)Cy� + Cy�p�p+ Cy�d�d

+ Cyqx5 + Fyprop
	
;

_x3 =� � _M0=M0

�
x3 � x1x5 � x2x4

+ (1=M0)
�

tan�1(x3=x1)Cz�

+ tan�1(x3=x1)Cz� + Cz�p�p

+ Cz�d�d+ Czqx5 + Fzprop
	
;

_x4 = �� _Ixx0=Ixx0

�
x4 � � _Ixx0=Ixx0

�
s

+ (1=Ixx0)
�

tan�1(x3=x1)Cl� + Cl�p�p

+ Cl�d�d+ Clpx4 + lprop
	
;

_x5 =� � _Izz0=Izz0
�
x5 + I 0x4x6 � (Ixx0s=Izz0)x6

+ (1=Izz0)
�

tan�1(x3=x1)Cm�

+ tan�1(x2=x1)Cm� + Cm�p�p+ Cm�d�d

+ Cmrx5 +mprop
	
;

_x6 =� � _Izz0=Izz0
�
x6 + I 0x4x5 � (Ixx0s=Izz0)x5

+ (1=Izz0)
�

tan�1(x3=x1)Cn�

+ tan�1(x2=x1)Cn� + Cn�p�p+ Cn�d�d

+ Cnrx6 + nprop
	
; (9)

where I 0 = (Izz0�Ixx0)=Izz0 and prop index are related
to forces and moments produced from combustion of
the missile, and C coe�cients are aerodynamic factors
of the missile. The result of linearizing Eq. (9) in the
operating point (V0; !0), when u = u0 + �u, is given
by [4], as follows:

�
�X =

26666664
A1 A2 A3 0 0 0
0 A4 0 0 0 A5
0 0 A6 0 A7 0
0 0 0 A8 0 0
0 0 A9 0 A10 A11
0 A12 0 0 A13 A14

37777775 �X

+

26666664
B1 B1
0 B1
B1 0
0 0
B1 0
0 B1

37777775 �u; (10)

A1 A2 A3
� _M0
M0

Cx�
u0M0

Cx�
u0M0

A4 A5 A6
� _M0
M0

+ Cy�
u0M0

u0 + Cyr � _M0
M0

+ Cz�
u0M0

A7 A8 A9
u0 + Czq

� _Ixx0+Clp
Ixx0

Cm�
u0Izz0

A10 A11 A12
� _Izz0+Cmq

Izz0

Ixx0s
Izz0

Cn�
u0Izz0

A13 A14 B1
Ixx0s
Izz0

� _Izz0+Cnr
Izz0

CX�p

The system outputs are (r; q).
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According to the state space model, x2 is related
to x6, x3 is related to x5. x2 and x6 states represent
the yaw channel, while x3 and x5 states express the
pitch channel in common missiles. The main system
can be divided into two subsystems; yaw and pitch
channels. x1 and x4 states have no e�ect on pitch
and yaw channels, but the stability of these channels
causes the stability of x1 and x4 states. The outputs
of the system are the angular velocities of the missile
(in the normal direction of the longitudinal axis).These
angular velocities are related to pitch and yaw channels.
By controlling the missile in these channels, a good
performance will be resulted. In the irrotational body
coordinate system, the only interaction between these
channels is the term (Ixx0s=Izz0). According to the
physical shape of the missile, Izz0 is approximately 100
times greater than Ixx0 . By ignoring the interaction
between these channels, the state space of the pitch
channel is:

y =
�
0 1

� �x2
x6

�
;

�
_x2
_x6

�
=

264� _M0
M0

+ Cy�
u0M0

u0 + cyr

cn�
u0Izz0

� _Izz0+cnr
Izz0

375�x2
x6

�
+
�
cy�d
cn�d

�
�d:

(11)

From state equations to transfer function. Con-
sider the system described by state Eq. (11). The
system's transfer function, G(s), is G(s) = C(sI �
A)�1B +D.

According to the relation between aerodynamic
coe�cients in yaw and pitch channels, in these chan-
nels, transfer functions between output (angle of �n)
and input (angular velocity) are identical and only
di�er in the sign. So, the designed controller for one
channel can be used for another channel by changing
its sign.

A missile is a guidable 
ying machine with vari-
able transfer functions. This means that by changing
the speed, 
ying height and mass, and the parameters
of 
ying, the transfer function will change. Variation of
speed is especially important, which causes variation in
the aerodynamic coe�cients. So, by applying Eq. (12),
shown in Box I, and using a servo motor at four
di�erent Machspeeds, the missile transfer functions will
be obtained.

For the model of the pitch channel missile:

P (s) =
as+ b

cs3 + ds2 + es+ 1
;

a =
�
0:27 1:7

�
; b =

�
0:41 1:7

�
;

c =
�
1:4� 10�6 1:47� 10�5� ;

d =
�
0:0016 0:0073

�
; e =

�
0:31 0:91

�
: (13)

3. Quantitative Feedback Theory (QFT)

There are many practical systems that have high un-
certainty in open-loop transfer functions, which makes
it very di�cult to have suitable stability margins and
proper performance in command following problems
in the closed-loop system. Therefore, a single �xed
controller in such systems is found amongst the \robust
control" family.

Quantitative Feedback Theory (QFT) is a robust
feedback control-system design technique initially in-
troduced by Horowitz (1963, 1979), which allows direct
design to closed-loop robust performance and stability
speci�cations. Since then, this technique has been
further developed by him and others [9-21].

Simply, the QFT controller design method can be
summarized as follows.

In parametric uncertain systems, we must �rst
generate plant templates prior to the QFT design
(at a �xed frequency, the plant's frequency response
set is called a template). Given the plant templates,
QFT converts closed loop magnitude speci�cations into
magnitude constraints on a nominal open-loop function
(these are called QFT bounds). A nominal open loop
function is then designed to simultaneously satisfy its
constraints, as well as to achieve nominal closed loop
stability. In a two-degree-of-freedom design, a pre-�lter
will be designed after the loop is closed (i.e., after the
controller has been designed) [12].

4. Optimal controller design

QFT tunes the G controller with the objective of
reducing control bandwidth while maintaining robust
performance. A desired modi�cation in small frequency
bands is transparent using QFT's open-loop tuning.
The bandwidth control point of view was introduced

�r
�d

=
Cn�ds+

�Cn�d _M0
M0

+ Cn�Cy�d
u0Izzo � Cn�dCy�

u0M0

�
s2 +

�
_M0
M0
� Cy�

u0M0
+ _Izzo

Izzo � Cnr
Izzo

�
s+

�
_M0 _Izzo
M0Izzo + Cy�Cnr

u0MoIzzo � Cy� _Izzo
u0MoIzzo � _M0Cnr

M0Izzo + Cn�
Izzo � Cn�Cyr

u0Izzo

� : (12)

Box I
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by Chait and Hollot (1990) [22-26]. A key limitation
of the mentioned procedure is that the poles of T
are �xed with only the zeros taken as optimization
variables. So, in the second step, we optimize the
denominator coe�cients, where the cost function is the
quadratic sum of Euclidean distance between the open-
loop response and the bounds in the Nichols plane.
This minimization tries to reach the optimal loop-
shaping de�ned by Zhang et al. [27] and Horowitz and
Sidi [31].

In the design stage (loop-shaping), the controller,
GC(s), is synthesized by adding poles and zeros until
the nominal loop, de�ned as L0 = G0GC , lies near its
bounds. An optimal controller will be obtained if it
meets its bounds while it has minimum high frequency
gain. So, application of this method to obtain the min-
imum gain of the controller is employed here. Hence,
there is no need to be concerned about saturation. As
a comprehensive optimal QFT controller design is not
the main contribution of this paper, it will be dealt
with in future research.

5. PID controller

A realistic de�nition of optimum in LTI systems is min-
imization of the high-frequency loop gain, k, while sat-
isfying performance bounds. This gain a�ects the high-
frequency response, since lim

!!1[L(j!)] = K(j!)��,
where � is the excess of poles over zeros assigned to
L(j!). Thus, only the gain, K, has a signi�cant e�ect
on the high-frequency response, and the e�ect of the
other parameter uncertainty is negligible. It has been
shown that if the optimum, L0(j!) exists, then, it
lies on the performance bounds at all !i, and it is
unique [14]. In this part, we will introduce a simple
algorithm for designing an optimal PID controller. A
PID controller has a transfer function;

Gpid(s) = kp +
ki
s

+ kds: (14)

Three used terms in Eq. (14) are de�ned as: kp (propor-
tional gain), ki (integral gain) and kd (derivative gain).
Our method for designing an optimal PID controller
is based on designing a speci�c lead-lag compensator,
which transforms into a PID controller under special
conditions.

Consider the closed-loop system in Figure 1 in
which G(s) is a below lag-lead compensator:

G(s) = Ka� s+ 1
T1

s+ a
T1

� s+ 1
T2

s+ 1
aT2

: (15)

In order to achieve a PID controller, let us move a
towards in�nity value, so, we will have:

lim
a!1G(s) =

KT1

s

��
s+

1
T1

�
�
�
s+

1
T2

��
; (16)

) G(s) = KT1

�
1
T1

+
1
T2

�
+
�
K
T2

�
1
s

+KT1s:
(17)

So, we have a PID controller which is de�ned by:

kp = K
�
T1 + T2

T2

�
; ki =

K
T2
; kd = KT1:

(18)

Up to now, two real poles of the lag-lead compensator
have been speci�ed: one located in in�nity and the
other in the origin. In order to de�ne the PID controller
in the next step of this algorithm, we must specify
the gain, K, and the situation of two zeros of G(s).
But, as mentioned before, the optimum, L0(j!), must
lie exactly on its performance bounds at all frequency
values (!i). Therefore, in the last phase of this
algorithm, the suitable location of these two zeros can
be achieved by a trial and error procedure using the
Interactive Design Environment (IDE) of QFT [21].

Under special circumstances, using only one zero
in the loop shaping phase will result in the PI con-
troller (considering the lag-compensator), and the PD
controller will be resulted by elimination of the pole in
the origin.

6. Design of robust controller for the missile

The objective of this part is to synthesize a suitable
controller and pre-�lter, such that, �rst, the closed loop
system is stable and, second, it can track the desired
inputs.

1. Stability margin:���� P (j!)G(j!)
1 + P (j!)G(j!)

���� < 1:2: (19)

2. The tracking speci�cation is overshoot (= 5%)
and the settling time (= 0:005 s) for all plant
uncertainty, which can be described with a second
order system:

j�(j!i)j � jT (j!i)j � j�(j!i)j ; (20)

where �(j!i) and �(j!i) are lower bound and
upper bounds, respectively, and T (j!i) is the input-
output relation from input R(s) to output Y (s).

At the �rst step, the plant uncertainty must
be de�ned (template). Thus, the boundaries of the
plant templates have been computed and are shown in
Figure 4. Next, having plant templates and required
performance speci�cations, we can compute robust
performance bounds, which are shown in Figure 5.
Then, by having robust performance bounds in the
loop-shaping phase of the design, by applying the
algorithm developed in part 4, we can design a suitable
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Figure 4. Plant uncertainty templates.

Figure 5. Intersection bounds.

PID controller. Figures 6 and 7 depict the loop and
pre�lter shaping of the open loop transfer function.
In the loop shaping design, one can observe that
the nominal plants lie on their performance bounds,
which con�rms the optimal design of robust controllers.
According to the loop shaping phase, optimal robust
PID controllers are as follows:

G(s)PID = 169 + 0:17s+
2:15� 104

s
; (21)

F (s) =
� s

3596
+ 1
��1 � s

4782
+ 1
��1

: (22)

7. Analysis of design

In this part, the robust stability of the closed-loop
system and, also, tracking speci�cations in both time
and frequency domains is investigated for all considered
uncertainty of the missile dynamics. Frequency domain
stability is shown in Figure 8.

Figure 6. Loop shaping of open-loop system.

Figure 7. Pre�lter shaping of open-loop system.

Figure 8. Robust stability of closed-loop system.

The frequency-domain closed-loop response is
shown in Figure 9 and, consequently, the time-domain
closed-loop response is shown in Figure 10. Hence,
according to linear simulation, the missile has ro-
bust stability and can also satisfy tracking speci�ca-
tions.
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Figure 9. Closed-loop frequency response.

Figure 10. Unit step response.

Figure 11. Tracking performance of pitch angle �(t) to
the commanded pitch angle �d(t) (solid line: �d(t), dotted
line: �(t)) using MSS [32].

7.1. Comparison of QFT controller with MSS
control approach in control of pitch
channel

Angular tracking responses were used to evaluate the
control performance of the missile pitch channel. Fig-
ures 11 and 12 show simulations of angular tracking

Figure 12. Tracking performance of pitch angle using
QFT.

Figure 13. Tracking errors versus time of pitch angle
using MSS [29].

responses related to MSS [32] and QFT applied in this
work, respectively.

Comparison of the MSS [32] method with the
QFT controller, regarding angular tracking errors,
demonstrates that the QFT technique, in the presence
of all uncertainties, suggests a controller which has a
better control performance, with respect to maximum
and integral absolute errors (Figures 13 and 14).

8. Conclusion

In this article, after achieving the dynamic model of
the missile, QFT is introduced as a robust controlling
design method, and application of the proposed third
coordinate system simpli�ed the dynamic modeling of
the missile. This caused the nonlinear MIMO system
to be converted to a linear SISO system. In order
to compensate the uncertainties involved, a family of
linear uncertain SISO systems is introduced. Then,
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Figure 14. Tracking errors versus time of pitch angle
using QFT.

an optimal robust PID controller for the linear process
is designed. Finally, the results obtained from the
controller output designed using the QFT method are
compared with reported results of a multiple sliding
surface controller designed by \Lu, Zhao. et al." [32]. It
is shown that the QFT technique suggests a controller
with a better control performance.

Nomenclature

� Angle of attack (�)
� Angle of sideslip (�)
�p Small deviation of lift �n
�d Small deviation of rotating �n
�(S) Uncertain parameters vector
!x; !y; !z Angular velocity components (rad/s)
�� De
ection angle in the pitch plane (�)
�� De
ection angle in the yaw plane (�)
kd Derivative gain
� Fractional derivative
� Fractional integration
P (s; �) Uncertain plant
Xb; Yb; Zb Body coordinate
G(s) Compensator
Fx; Fy; Fz Components of total forces acting on

missile (N)
Mx;My;Mz Components of total moments acting

on missile (N m)
D(s) Disturbance
Cx Drag coe�cient
Xg; Yg; Zg Ground coordinate
ki Integral gain
u; v; w Velocity components (m/s)

S Laplace variable
Cz Lateral coe�cient
Cy Lift coe�cient
Ix; Iy; Iz Moment of inertia components (kg

m2/s)
F (s) Pre-�lter
kp Proportional gain
r Reference signal
M The mass of missile (kg)
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