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Abstract. This paper deals with miss distance analysis of single-lag Optimal Guidance
Law (OGL) using linearized equations of motion in normalized form. The radome
refraction error, acceleration limit, constant target acceleration, and arbitrary-order
binomial guidance and control system are considered in the formulation. In addition, body
rate feedback is utilized in the OGL formulation as a well-known classical compensation
method of radome e�ect for proportional navigation guidance. The numerical solution of
normalized equations produces normalized miss distance curves, which are useful tools for
guidance designer for analysis and design of guidance parameters for an allowable miss
distance and acceleration limit. Moreover, a modi�ed �rst-order guidance scheme, based
on an analytical stability analysis and normalized miss distance curves, is presented for
reducing the achievable miss distance.
© 2014 Sharif University of Technology. All rights reserved.

1. Introduction

The radome refraction e�ect has an important role
in the stability and miss distance of radar homing
interceptors. The radome refraction of incoming
electromagnetic wave creates an unwanted feedback
path in the homing guidance loop, which causes false
interceptor-to-target Line-Of-Sight (LOS) due to the
interceptor turning rate [1-3]. A thorough explanation
of radome e�ect has been presented in [4]. Proportional
Navigation (PN) and its variants use LOS rate for
calculating the acceleration command. This class of
guidance laws has been widely used for its simplicity
and ease of implementation [5].

One of the most powerful methods for miss
distance analysis is the adjoint method. The adjoint
method can produce the miss distance by a single
run of the numerical solution for all possible 
ight
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times. The adjoint method does not work for nonlinear
guidance laws or when interceptor acceleration limit
is imposed. The covariance analysis and Monte Carlo
methods can also be used for miss distance analysis.
The covariance analysis, similar to the adjoint method,
is restricted to linear systems [5]. Another method
of miss distance analysis uses normalized governing
equations to produce miss distance curves for homing
loop analysis and design. The method can generate
normalized design curves for all possible 
ight times,
interceptor-to-target acceleration ratio, guidance and
control time constant, and other parameters. The
normalized PN miss distance curves can be found in
Ref. [5] for the �rst-order guidance and control system
without acceleration saturation and radome e�ects,
and for the �fth-order system with saturation and
no radome e�ect. Neslin and Zarchan [6] presents
several normalized miss distance curves versus dimen-
sional parameters for PN. Approximate normalized
miss distance curves due to seeker noises are available
in Ref. [7] for PN in the presence of radome e�ect
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and no acceleration limit. Moreover, extensive works
have been done for radome e�ect on PN homing
loop without normalization. However, results of these
studies depend on the individual values of the studied
parameters [8-10]. In Ref. [11] the normalized analysis
of miss distance was presented for PN with saturation,
radome e�ect, and body rate feedback for the �rst-
order guidance and control system. It was also shown
that the normalized analysis could be applied to some
nonlinear types of guidance laws [11].

Most of the literature on the radome refraction
e�ect deals with the miss distance analysis of PN
guidance law and its compensation. Optimal Guidance
Laws (OGLs) have been developed to account for the
interceptor guidance and control dynamics, which can
be modeled by �rst, second, or higher-order transfer
functions. The �rst-order (single-lag) OGL, derived
in Ref. [12], has been compared in Ref. [13] with
PN in terms of performance and sensitivity to errors,
such as radome error slope, considering a �rst-order
control system using dimensional curves of miss dis-
tance which produces case dependent results. However,
since the single-lag OGL is obtained assuming a �rst-
order control system, the miss distance analysis should
be carried out for the higher-order control system;
otherwise the comparison will not be justi�ed. In
addition, the radome-induced miss distance curves in
Ref. [13] do not consider the acceleration saturation.

More advanced guidance laws are the second-
order OGL [14] and high-order OGL [15], which ac-
count for the second- and high-order guidance and
control dynamics, respectively. The �rst-order OGL
is utilized for minimum phase guidance and control
system with equivalent time constant, e.g. canard
control interceptors. The higher order guidance laws
have mainly been developed for nonminimum phase
interceptors [15]. The OGLs may also be modi�ed
by the introduction of a time-weighted performance
index [16], or shaping the commanded acceleration for
minimum and nonminimum phase control systems [17].
These references have compared the performance of
OGLs and its modi�ed versions with PN and simpli�ed
OGLs, without considering the radome e�ect. Few
works in the open literature have analyzed the radome
e�ect on the performance of advanced guidance laws.
An integrated guidance and control scheme has been
developed in Ref. [18], which considers the radome
e�ect, without including the simulation results. The
high-order guidance laws need estimation of more
quantities and their performance degrades in the pres-
ence of noise and unmodeled dynamics. The other type
of modi�cation of PN is pseudoclassical guidance law
in which its commanded acceleration is calculated by
two terms; the �rst term being similar to True PN
(TPN), and the second term consisting of the di�er-
ence between the TPN commanded acceleration and

the achieved commanded acceleration passing through
an appropriate transfer function, such as a lead-lag
compensator or a PD/PID [19]. The pseudoclassical
guidance scheme has similarities in structure with the
�rst-order OGL for the case of constant gains.

There are classical and modern methods for
compensation of radome refraction. The body rate
feedback is one of the classical methods used for
this purpose [20]. The lead-lag networks are utilized
through this feedback path to improve the frequency
response of the guidance and control system. There
are numerous methods, based on modern estimation
and �ltering theory, which are beyond the scope of this
work; for example, radome slope compensation using
multiple-model Kalman �lters [21], adaptive particle
�lter [22], neural network [23], interacting multiple
model algorithm [24], in-
ight two-step nonlinear esti-
mation of radome aberration [25], and slope estimation
in 
ight using fuzzy adaptive multiple model [26]. A
di�erent method is the estimation of radome slope
from information generated by dither and extracted by
bandpass �ltering [27,28].

This work presents the miss distance analysis
of single-lag optimal guidance law using normalized
governing equations taking into account the acceler-
ation saturation and radome e�ect for the �fth-order
binomial guidance and control system. Moreover,
the formulations and obtained results lead to some
modi�cations of this type of guidance law. The method
can also be applied to a wide-variety of guidance
schemes such as pseudoclassical guidance law.

2. Linearized equations

The linearized equation of motion, as the one-
dimensional case, is written as follows [5]:

�y = nT � nM ; (1)

where y is the separation between interceptor M and
target T along axis 2, nM is the interceptor acceler-
ation, and nT is the target acceleration as shown in
Figure 1. The subscripts M and T denote interceptor

Figure 1. Engagement geometry.
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and target, respectively. Also, v stands for velocity
and r is the distance between the interceptor and its
target. Axis 1 is de�ned as a line through the initial
positions of the interceptor and its targets, and axis
2 is perpendicular to this axis. Using small angle
approximation, the LOS angle is given by � = y=r (see
Figure 1). Therefore, the LOS rate is found to be [5]:

_� =
y + �tgo

vct2go
: (2)

Here � = _y, and vc is the closing velocity assumed to be
constant for the problem which leads to the linearized
range equation, i.e. r = vctgo, where tgo = tf � t is the
time-to-go until intercept, t is the current time, and tf
is the intercept time.

The commanded acceleration for a class of guid-
ance laws can be expressed as follows:

nc = N 0vc( _�m +KB _�)�N 0LnL; (3)

where N 0 and N 0L are navigation coe�cients; � and
�m are the angles of the interceptor longitudinal axis
and LOS with respect to axis 1, respectively; KB
is the gain of body rate feedback; and nL is the
lateral acceleration, which equals nM for the linearized
problem.

The radome refraction angle rdome is assumed
to be linearly proportional to the interceptor look
angle [5], that is:

rdome = R(�� �); (4)

where R is a constant known as the radome slope.
As shown in Figure 2, the measured LOS angle

(�m) in terms of the radome slope is given by:

�m = �+ rdome = (1 +R)��R�: (5)

Taking time derivative of Eq. (5) yields:

_�m = _�+ _rdome = (1 +R) _��R _�: (6)

Figure 2. Basic geometry for radome analysis.

Substitution of Eq. (6) in Eq. (3) gives the commanded
acceleration in terms of the true LOS rate:

nc = N 0vc
h
(1 +R) _�� (R�KB) _�

i�N 0LnL: (7)

The interceptor body rate can be written in terms
of the turning rate time constant (T� = angle of
attack/ _
), interceptor speed, and lateral acceleration,
nL = vM _
, where 
 is the interceptor 
ight path angle,
that is [5]:

_� =
nL
vM

+
T�
vM

_nL: (8)

When the interceptor acceleration limit, Asat, is con-
sidered in the modeling, the commanded acceleration
is denoted by ac, whereas nc stands for the saturated
commanded acceleration; therefore:

nc =

8<:Asat sgn(ac) jacj > Asat

ac jacj � Asat

(9)

In the case of the �rst-order guidance and control
system with time constant T , we have:

_nL = (nc � nL)=T (10)

or:

nL
nc

=
1

1 + Ts
; (11)

where s is the Laplace domain variable. In the presence
of radome e�ect, the single-lag OGL becomes unstable
even for the �rst-order model of guidance and control
system. In this case, acceleration command (7) can be
rewritten in terms of nL for the case of no acceleration
limit (nc = ac) to show the instability problem when
the denominator in the following equation goes to zero,
that is:

nc =
N 0vc(1 +R) _��Keq

�
1� T�

T

�
nL �N 0LnL

1 +Keq(T�=T )
;
(12)

where:

Keq =
N 0vc(R�KB)

vM
: (13)

Also, the equivalent radome slope can be de�ned by
Req = R � KB . The navigation coe�cients for the
single-lag OGL are given by [12]:

N 0OPT =
6z2(e�z � 1 + z)

2z3 + 3 + 6z � 6z2 � 12ze�z � 3e�2z ; (14)

KL =
e�z � 1 + z

z2 ; N 0L = N 0OPTKL; (15)
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where z = tgo=T . Also, KL varies from relatively small
values at the beginning of the engagement (depending
on how large z = tgo=T is) and approaches 0.5 as z
goes to zero, i.e. at intercept time.

The n-order binomial model of the guidance and
control system is given by [5]:

nL
nc

= 1=
�

1 +
T
n
s
�n

: (16)

The state space representation of the preceding transfer
function may be obtained by breaking the n-order
transfer function into a series of multiplying single-lag
blocks, that is:8>>>>><>>>>>:

Tn _x3 = �x3 + nc

Tn _x4 = �x4 + x3
...
Tn _xn+2 = �xn+2 + xn+1

(17)

where Tn = T=n and xn+2 = nL (n > 1). The state
variable xj(j = 3; � � � ; n+2) begins with j = 3, because
the �rst two state variables are x1 = y and x2 = �.

3. Stability analysis

Here, the stability analysis of guidance Eq. (7) is
carried out without the saturation e�ect. The transfer
function from LOS rate to interceptor acceleration can
be found using Eqs. (7), (8) and (16) as follows:

nL
_�

=
N 0vc(1 +R)�

1 + T
n s
�n +Keq(1 + T�s) +N 0L

: (18)

The e�ective value for navigation ratio is the DC gain
of the preceding transfer function divided by closing
velocity, that is:

N 0E� =
N 0(1 +R)

1 +Keq +N 0L
> 0: (19)

It follows that the radome slope, body rate feedback,
and N 0L in
uence the e�ective value of the navigation
ratio. As known from the LOS rate behavior of
TPN, N 0E� must be greater than 2 in order to prevent
guidance instability [29].

For the �rst-order guidance and control system
(n = 1) we have:

nL
_�

=
N 0E�vc

1 + TE�s
; (20)

where:

TE� =
T
�
1 + T�

T Keq
�

1 +Keq +N 0L
> 0: (21)

For the second-order guidance and control system (n =
2) we have:

nL
_�

=
N 0E�vc

1 + 2�
!n s+ 1

!2
n
s2
; (22)

where:

� =
1 + T�

T Keqp
1 +Keq +N 0L

; (23)

!n =
2
p

1 +Keq +N 0L
T

: (24)

For brevity we de�ne:

c = 1 +Keq +N 0L; (25)

X = 1 +
T�
T
Keq: (26)

Therefore, the stability criteria for the second-order
guidance and control system (n = 2) can be simply
written as:
c > 0 and X > 0: (27)

The stability criteria for the third-order guidance and
control system (n = 3) are also obtained as:

c > 0 and X > c=9: (28)

The stability criteria for the fourth-order guidance and
control system (n = 4) are obtained as follows:(

0 < c < 9
3�p9� c < X < 3 +

p
9� c (29)

The guidance and control characteristic equation for
n = 5 becomes:
�5 + 5�4 + 10�3 + 10�2 + 5�X + c = 0; (30)

where � = Ts=5. To better trace the derivations, the
notations used are similar to Ref. [7]. The coe�cients
of the characteristic equation are denoted by:(

B5 = 1; B4 = 5; B3 = 10
B2 = 10; B1 = 5X; B0 = c

(31)

According to the Routh criterion, the guidance
and control transfer function is stable if coe�cients
B0; � � � ; B5 and the following quantities are all positive:

a1 =
B4B3 �B5B2

B4
; (32a)

b1 =
a1B2 �B4a2

a1
; (32b)

c1 =
b1a2 � a1b2

b1
; (32c)

d1 = b2 = c; (32d)
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where:

a2 =
B4B1 �B5B0

B4
: (33)

After some manipulation, the stability criteria lead to:8>>><>>>:
c > 0 and X > 0

b1 = 10� 25
8 X + c

8 > 0

c1b1 =
�
10� 25

8 X + c
8

� �
5X � c

5

�� 8c > 0

(34)

The last two inequalities in Relation (34) are simpli�ed
to:

X <
55 + c

25
; (35)

25X2 � 2(40� c)X + 16c+
c2

25
< 0: (36)

To satisfy Inequality (36), X must lie between the two
roots of the left-hand side of the inequality, provided
that c < 5, that is, X1 < X < X2 where:

X1 =
8
5

+
c

25
� 8

5

r
1� c

5
; (37a)

X2 =
8
5

+
c

25
+

8
5

r
1� c

5
: (37b)

Hence, using all the obtained inequalities, the stabil-
ity criteria for the �fth-order binomial guidance and
control system become:

0 < c < 5 and X1 < X < X2: (38)

It should be noted that the coe�cient c is itself a
function of Keq. Stable and unstable regions are
illustrated in Figure 3 for the third- to �fth-order
guidance and control systems. For n = 1; 2, the
complete �rst quadrant, excluding the axes, is the

Figure 3. Stable regions for n = 3; 4; 5.

stable region. For n = 3, the region above the dash-
dotted line (X = c=9) in the �rst quadrant is stable.
For n = 4 and 5, upper bounds for c and X appear,
contrary to the case of n = 1; 2; 3. The regions inside
the solid line and dotted line in the �rst quadrant are
stable regions for n = 4 and 5, respectively.

The stability regions may be displayed using axis
T�=T versus axis c (or Keq + N 0L). Also, approximate
criteria may be obtained for the stability regions. For
example, for c = 1, we have:

�0:791 <
T�
T
Keq < 2:071: (39)

In the case of N 0L = 0, the preceding inequality may be
considered as an approximate criterion for the stability
of the �fth-order binomial guidance and control system
as treated in Ref. [7], provided that �1 < Keq < 4. In
this case, the stable region lies between the two curves,
T�=T = (�1 +X1;2(Keq))=Keq, for a speci�ed value of
N 0L.

4. Normalized equations

The system equations can be normalized using the
following change of variables:

� =
t
T
; �f =

tf
T
; (40a)

ŷ =
y

jnT jT 2 ; �̂ =
�
jnT jT ; (40b)

n̂L = nL=jnT j; n̂c = nc=jnT j; (40c)

�̂ =
vM�
T jnT j ; �̂ =

vc�
T jnT j : (40d)

As we consider only a maneuvering target with con-
stant acceleration, the initial heading error is assumed
to be zero. The initial value for ŷ is zero because of
the de�nition of axis 1 in Figure 1. Since, the initial
heading error is assumed to be zero, �̂ is set to zero at
t = 0.

The normalized form of Eqs. (2) and (8) are given
by:

�̂0 =
ŷ + �̂z
z2 ; (41)

�̂0 = n̂L +
T�
T
n̂0L; (42)

where ()0 stands for d()=d� . Also, the acceleration
command and its saturated form can be normalized
as follows:
âc = N 0(z)(1 +R)�̂0 �Keq(z)�̂0 �N 0L(z)n̂L; (43)

n̂c =

8<:Rsat sgn(âc) jâcj > Rsat

âc jâcj � Rsat

(44)
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where âc = ac=jnT j and Rsat = Asat=jnT j.
4.1. First-order G&C system
The normalized equations for the �rst-order guidance
and control system (n = 1) are obtained as follows:8>>><>>>:

ŷ0 = �̂

�̂0 = sgn(nT )� n̂L
n̂0L = n̂c � n̂L

(45)

where âc and n̂c are calculated from Eqs. (43) and (44).
By substituting Eq. (42) and the last term in Eq. (45)
into Eq. (43), âc can be rewritten for the case of no
acceleration limit (n̂c = âc) as follows:

âc=
N 0(z)(1+R)�̂0�Keq(z)

�
1� T�

T

�
n̂L�N 0L(z)n̂L

1 +Keq(z)T�T
:

(46)

4.2. The nth-order binomial G&C system
The normalized equations for the nth-order binomial
model of the guidance and control system are obtained
in the following form:8>>>>>>>>>>>><>>>>>>>>>>>>:

ŷ0 = �̂

�̂0 = sgn(nT )� n̂L
x̂03 = n (�x̂3 + n̂c)

x̂04 = n (�x̂4 + x̂3)
...
x̂0n+2 = n (�x̂n+2 + x̂n+1)

(47)

where x̂ = x=jnT j and x̂n+2 = n̂L (n > 1). Substitut-
ing Eq. (42) in Eq. (43) yields:

âc =N 0(1 +R)�̂0 �
�
N 0L +Keq � nKeq

T�
T

�
n̂L

� nKeq
T�
T

_xn+1: (48)

Also, �̂0 and n̂c are calculated from Eqs. (41) and
(44), respectively. It should be noted that Eq. (42)
may be added to the state equations, if we need the
values of �̂. The miss distance, MD, is approximated by
jy(tf )j, obtained by numerical solution of the linearized
equations. Here, the normalized miss distance, dMD =
MD=(jnT jT 2), is determined using the numerical so-
lution of the normalized equations when the initial
conditions for all the state variables are set to zero.

5. Modi�ed �rst-order guidance law

The single-lag OGL generates smaller miss distance
than that of PN when total 
ight time is relatively

Figure 4. Normalized MD vs normalized 
ight time
without radome e�ect: a) Without acceleration limit; and
b) with acceleration ratio of 3.

small [5], as seen in Figure 4(a). An observation of
Figure 4(a) may imply that if PN is initially used,
followed by the OGL at the end of engagement, the
resulted miss distance for all the total 
ight times will
be modi�ed such that the miss distance will be similar
to that of OGL and PN for small 
ight times and
the remaining total �ght times, respectively. However,
the numerical solution does not show such behavior.
The normalized miss distance of OGL, obtained for
the �fth-order binomial guidance and control (n = 5)
without radome e�ect (Keq = 0), versus tf=T , is
illustrated in Figure 4(a) and (b) by solid line, PN
(with N 0 = 4) by dotted line marked with plus signs,
and PN+OGL given in Eq. (49) by dashed line. As
shown in Figure 4(a), the miss distance for Eq. (49)
is still inferior compared to that of PN for tf > 7:8T
(with no acceleration limit).

ac =

8<:PN(N 0 = 4) for z > 5

OGL for z � 5
(49)

The results are obtained for tf=T = 0:4 to 20 with step
size of 0.2; the integration step for the normalized time
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Figure 5. E�ective navigation ratio vs normalized
time-to-go.

is 0.0002. The miss distance is considerably increased
when an acceleration ratio of Rsat = 3 is imposed
as shown in Figure 4(b). The �gure shows that the
di�erence between OGL and OGL+PN increases when
an acceleration ratio of 3 is imposed. It should be noted
that Eqs. (14) and (15) give optimal gains only for the
case of �rst-order guidance and control system without
acceleration limit and radome e�ect. However, here
reference to OGL means referring to Eqs. (14) and
(15), which are not optimal gains for the other cases.

The navigation ratio N 0OPT has very large values
for small values of z = tgo=T . Therefore, the e�ective
navigation ratio becomes 1=KL = 2 for small values of
z as depicted in Figure 5. The navigation ratio may be
determined so as to modify the pro�le of the e�ective
navigation ratio. If the navigation ratio is chosen as
N 0 = N 0OPT(1 + KL) with the same N 0L = N 0OPTKL,
the e�ective navigation ratio becomes nearly constant
and attains the value of 3 as shown in Figure 5. Also,
if N 0 = 4N 0OPT(1 +KL)=3, we have N 0E� � 4 for which
the resulted miss distance, compared to that of OGL
and PN with N 0 = 4, is illustrated in Figure 6(a) using
legends similar to Figure 4 (Rsat = 3). As expected, the
miss distance reduces considerably when the modi�ed
navigation ratio is used.

As mentioned earlier, the navigation ratio N 0OPT
has very large values for small values of z = tgo=T . The
other modi�cation is to restrict the value of navigation
ratio. For example, when N 0 = 4(1 + 4KL) and N 0L =
4KL we have N 0E� = 4. In Figure 6(b), using similar
legends as Figure 4, the resultant normalized miss
distance is depicted by dashed-line and is compared
to that of OGL and PN with N 0 = 4 (Rsat = 3).

In the next step, a correction factor and switching
parameter, kc, may be chosen as follows:

kc =

8>><>>:
0 for z � Z2

Kf

�
Z2�z
Z2�Z1

�m
for Z1 < z < Z2

Kf for z � Z1

(50)

where Kf , Z1, Z2 and m are constants. In the guidance

Figure 6. Normalized MD vs normalized 
ight time with
modi�ed navigation coe�cients:
a) N 0 = 4N 0OPT(1 +KL)=3, N 0L = N 0OPTKL; b)
N 0 = 4(1 + 4KL), N 0L = 4KL; and c) with correction
factor (50).

law, KL is replaced by kcKL. Therefore, the modi�ed
single-lag guidance law takes the following form:

ac=4(1+4kcKL)
�
vc
�

_�m+KB _�
�� kcKL

1+4kcKL
nL
�
;
(51)

with N 0E� = 4 regardless of the value of kc. In
Figure 6(c) the normalized miss distance is displayed
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Figure 7. Normalized MD vs normalized 
ight time with
radome e�ect (T�=T = 5, Rsat = 3): a) vcReq=vM = 0:04;
and b) vcReq=vM = �0:01.

for Kf = 1, Z1 = 5, Z2 = 6, m = 1 and Rsat = 3, and
is compared to that of OGL and PN (with N 0 = 4) as
before.

6. Results and discussion

The miss distance of OGL is compared with that of PN
and modi�ed �rst-order guidance (51) in the presence
of radome e�ect for the �fth-order binomial guidance
and control system. The achieved commanded acceler-
ation and body turning rate are assumed to be known
perfectly.

The normalized miss distance of OGL in Fig-
ures 7-9 is illustrated by solid line, PN (with N 0 = 4) by
dotted line marked by plus signs, modi�ed �rst-order
guidance given in Eq. (51) by dashed line. Figure 7(a)
and (b) depict the normalized miss distance versus
normalized 
ight time for vcReq=vM = 0:04 and �0:01,
respectively (T�=T = 5, Rsat = 3). As shown in
Figure 7(a), the miss distance of the modi�ed �rst-
order guidance is less than that of OGL and PN
for vcReq=vM = 0:04 and T�=T = 5, whereas for
negative Req the results are di�erent; however, the

Figure 8. RMS of normalized MD for di�erent intervals
of tf=T with T�=T = 5 and Rsat = 3: a) tf=T = [0:4 20];
and b) tf=T = [0:4 4].

miss distance of the modi�ed �rst-order guidance is
less than that of the two guidance laws for the end
game under the mentioned assumptions. The Root
Mean Square (RMS) of the normalized miss distance
is de�ned over a discretized interval for normalized
intercept time, e.g. �f = [0:4 20] by step size of 0.2;
therefore:

RMS
�dMD

�
=

24 1
S

SX
j=1

�
MDj

T 2nT

�2
351=2

; (52)

where MDj is the miss distance at �f for the jth step
up to the �nal step S. Using the mentioned de�nition,
the RMS of normalized miss distance can be plotted
versus vcReq=vM as shown in Figures 8 and 9 for the
three mentioned guidance laws when Rsat = 3. The
RMS of normalized MD is displayed in Figures 8(a)
and 9(a) for T�=T = 5 and 10, respectively, and
the mentioned interval for �f with the step size of
0.2. Similarly, Figures 8(b) and 9(b) show RMS of
normalized MD for �f = [0:4 4] with T�=T = 5 and
10, respectively. These �gures imply that the miss
distance of the OGL is less than that of PN for the
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Figure 9. RMS of normalized MD for di�erent intervals
of tf=T with T�=T = 10 and Rsat = 3: a) tf=T = [0:4 20];
and b) tf=T = [0:4 4].

end game. Also, the preliminary study shows that
the proposed modi�cations to the OGL improve the
miss distance of the OGL. For the larger values of
�f the results are case dependent, but mostly the
miss distance of PN is better than OGL, whereas
the modi�ed �rst-order guidance produces less miss
distance for the shown intervals when Req > 0. The
modi�ed �rst-order guidance can be utilized when
a good approximation of radome slope is available.
Better results can be achieved with the adjustment of
kc.

It should be noted that for the numerical results to
be independent of the values of radome slope, Eq. (48)
has been simpli�ed by replacement of N 0(1 + R) with
N 0, which slightly changes the values of navigation
ratio. For example, in case of R = �0:03 we have
N 0(1 + R) = N 0(1 � 0:03) which can be negligible at
the �rst stage of the preliminary design.

As mentioned earlier, the preliminary study sug-
gests some modi�cations to the �rst-order optimal
guidance law. Further modi�cations should be done
in the presence of seeker noises, actuator saturation,
�n rate saturation and other unmodeled dynamics in a
nonlinear six-degree-of-freedom 
ight simulation.

7. Conclusions

In this paper, normalized miss distance analysis of
single-lag OGL is carried out for the �fth-order bi-
nomial guidance and control system with the radome
refraction error, acceleration limit, and constant target
acceleration. The body rate feedback is also added
to the OGL as a well-known classical compensation
method for radome e�ect. Moreover, the stability
criteria are obtained for the �rst- to �fth-order guid-
ance and control system. It is seen that the stability
criteria for the �rst- to third-order guidance and control
system impose no upper bound on the two related
normalized parameters, whereas they impose some
upper bounds on these parameters for the fourth-
and �fth-order binomial guidance and control system.
The acceleration feedback gain decreases the e�ective
navigation ratio and the equivalent time constant of
the guidance and control system. The normalized miss
distance curves are useful tools for guidance designer
for analysis and design of guidance parameters for an
allowable miss distance and acceleration limit. For
convenience, the Root Mean Square (RMS) of the
normalized miss distance over a speci�ed normalized

ight time is utilized to obtain the RMS of normalized
MD versus equivalent radome slope (multiplied by
closing velocity-to-interceptor velocity ratio). Based
on the presented analysis, some modi�cations to OGL
are presented for the end game, which are useful for
the design of an end game guidance scheme in a real
engagement.
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