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Abstract. The problem of unsteady three-dimensional axisymmetric stagnation-point
ow and heat transfer of a viscous compressible uid on a at plate is solved when the
plate can move with any arbitrary time-dependently variable or constant velocity. An
external low Mach number potential ow impinges, along z-direction, on the at plate
with strain rate a to produce three-dimensional axisymmetric stagnation-point ow where
the plate moves toward or away from impinging ow, concurrently. An exact solution
of the governing Navier-Stokes and energy equations is obtained by the use of suitably-
introduced similarity transformations. The temperature of the plate wall is kept constant
which is di�erent with that of the main stream. A Boussinesq approximation is used to
take into account the density variations of the uid. The results are presented for a wide
range of parameters characterizing the problem including volumetric expansion coe�cient
(�), wall temperature, Prandtl number and plate velocity at both steady and unsteady
cases. According to the results obtained, it is revealed that when the plate moves away
from the impinging ow, thermal and velocity boundary layer thicknesses get higher values
compared to the plate moving upward. Besides, it is captured that the value of � and Pr
number do not have any signi�cant e�ect on shear stress and, also, heat transfer for a plate
moving away from the incoming potential ow.
© 2014 Sharif University of Technology. All rights reserved.

1. Introduction

The study of impinging jet problems is of consid-
erable interest in last decades because of its great
technical importance in many industrial branches spe-
cially cooling applications of electronic components,
gas-turbine combustion chambers and mechanical de-
vices. Obtaining exact solutions of Navier-Stokes and
energy equations regarding the impinging problems
is one of the most e�cient methods to solve such
problems. There are some publications available in
the literature which studied stagnation ow and heat
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transfer based on incompressible or compressible u-
ids. The incompressible-based papers were started by
Hiemenz [1] and Homann [2] who discussed steady
two-dimensional and axisymmetric three-dimensional,
respectively, and stagnation ow towards a circular
cylinder. A three-dimensional stagnation-point ow on
a plane boundary was considered �rstly by Howarth [3].
In the more general context of a three-dimensional
stagnation point, the at plate can be allowed to
slide in its own plane with constant velocity [4] and,
also, can be assumed to be porous to allow for tran-
spiration across it [5]. In another paper, Wang [6]
considered axisymmetric case of stagnation ow against
a sliding plate. Axisymmetric and nonaxisymmetric
stagnation-point ow and heat transfer of a viscous,
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incompressible uid on a moving cylinder in di�erent
physical situations are the main subjects of papers
conducted by Saleh and Rahimi [7-9]. The steady
three-dimensional stagnation-point ow of a second
grade uid against a moving at plate is another
research written by Baris [10]. In another study, exact
solutions of the Navier-Stokes and energy equations of
a viscous obliquely impinging ow on a moving cylinder
were studied by Rahimi and Esmaeilpour [11]. Exact
solutions of the Navier-Stokes and energy equations
were derived by Shokrgozar Abbasi and Rahimi [12,13]
to solve the problem of stagnation-point ow and heat
transfer of an incompressible uid on a at plate
with and without transpiration. Also, Abbasi et
al. [14] investigated the unsteady case of this problem.
Moreover, it was shown by Weidman et al. [15] that self-
similar solution of the Navier-Stokes equation exists if
the isolated in�nite at plate moves at a constant speed
normal to the oncoming stagnation point ow.

Some papers available in the literature studied the
compressible ow in the stagnation region of bodies
using boundary layer equations. The characteristics of
such a ow were scrutinized under di�erent physical
considerations in [16-17]. Kumari and Nath [18]
studied the theory of the response of the compressible
laminar boundary layer ow to the variation of the ex-
ternal stream velocity with time at a three-dimensional
stagnation point, numerically. They solved such a
problem when the ow is asymmetric with respect
to the stagnation point [19]. Subsequently, in an-
other paper, Kumari and Nath [20] gained the self-
similar solution of the forgoing problem with mass
transfer only when the free stream velocity varies
inversely as a linear function of time. Vasantha
and Nath [21,22] obtained solutions of the unsteady
compressible second-order boundary layer ow at the
stagnation point, analytically. Additionally, Zheng
et al. [23] obtained similarity solutions to a second
order heat equation with convection in an in�nite
medium. They used suitable similarity transformations
in order to reduce the parabolic heat equation to a
class of singular nonlinear boundary value problems.
The same authors, in another research [24], solved
the problem of compressible boundary layer behind a
thin expansion wave by using the application of the
similarity transformation and shooting technique. The
objective of the article presented by Zuccher et al. [25]
was to analyze the compressible, non-parallel boundary
layer of the ow passing a at plate and sphere.
Furthermore, Turkyilmazoglu [26] was concerned with
the case in which exact solution of the steady laminar
ow of a compressible viscous uid over a rotating
disk was obtained in the presence of uniformly applied
suction or blowing. The steady stagnation-point ow
and heat transfer of a viscous, compressible uid on an
in�nite stationary cylinder is the subject of the paper

recently written by Mohammadiun and Rahimi [27].
The potential ow impinging on the cylinder was
assumed to be low Mach number one. They found
similarity parameters of their problem for the �rst time.

In this paper, the general unsteady three-
dimensional axisymmetric stagnation-point ow and
heat transfer of a viscous, compressible uid of a
low Mach number ow impinging on a at plate are
intended to be solved for the �rst time. The at plate
is moving toward or away from the impinging ow at
both constant and time-dependently variable velocity.
The density of the uid, also, changes due to the
temperature di�erence existing between the plate and
incoming in�nite uid. New similarity transformations
are introduced in order to reduce the governing Navier-
Stokes and energy equations to ordinary di�erential
equations which are much easier to solve. The results
are presented over a wide range of parameters charac-
terizing the problems such as coe�cient of volumetric
expansion, wall temperature and Prandtl number at
both steady and unsteady cases.

2. Problem formulation

The problem of steady and unsteady three-dimensional
axisymmetric stagnation-point ow and heat transfer
of a viscous compressible uid on a at plate is aimed
to be solved when the plate is moving toward or away
from the oncoming low Mach number ow at both time-
dependently variable and constant velocity. In order
to solve this problem, the axisymmetric cylindrical
coordinate system (r; z) with corresponding velocity
components (u;w) is selected, as illustrated in Figure 1.
An external potential ow impinges along z-direction
on the moving plate, �rstly centered at z = 0, with
strain rate a. Moreover, the temperature of the plate
wall is maintained constant which is di�erent with that
of the main stream �xed at 25�C. The Navier-Stokes

Figure 1. Schematic of the problem.
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and energy equations governing this problem are:
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where, p, �, �, k and T are pressure, density, dynamic
viscosity, thermal conductivity and temperature, re-
spectively. It is worth noting that dynamic viscosity
and thermal conductivity of the uid are assumed to
be constant. Furthermore, the dissipation terms of the
energy equation are negligible at the stagnation region.

3. Similarity solutions

3.1. Fluid ow solution
By solving the momentum equations in potential re-
gion, the velocity components can be gained as:

U = a(t)r; (5)

W = �2a(t)�; (6)

where � = z � S(t) and a(t) = @w
@� . Here, S(t) is the

amount of vertical displacement of the plate, positively
de�ned when the plate moves toward the incoming far
�eld ow, and is a function of time. Hence, � and
then ow strain rate a(t) can be expressed as time-
dependent functions.

A reduction of Navier-Stokes and energy equa-
tions to ordinary di�erential equations is sought by us-
ing suitably introduced new similarity transformations
as below:
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where � is the similarity variable, the terms involv-
ing f(�) comprise the cylindrical similarity form for

stagnation-point ow, prime denotes di�erentiation
with respect to �, ao is the reference potential ow
strain rate at the time = 0, the subscript w and1 refer
to the conditions at the wall and in the free stream,
respectively, and _S is the plate velocity. It is interesting
to note how the e�ect of the plate velocity shows itself
in w-component of velocity as in Eq. (9). In case of
incompressible uid, c(�) = 1, this part has no role in
the results.

In order to capture the e�ects of variations of
temperature on the density of the uid, a parameter,
c(�), named density ratio, is introduced as:

c(�) =
�(�)
�1

: (10)

From Boussinesq approximation for low Mach number
ow:
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in which, � is the volumetric expansion coe�cient.
It is clear that for the case of incompressible uid,
� = 0. Hence � = �1 and c(�) = 1. Inserting
the Transformations (7)-(10) into Eqs. (1)-(3) causes
the continuity equation to be satis�ed automatically,
yeilding an ordinary di�erential equations reduced from
r-momentum, and also an expression for the pressure,
obtained by integrating Eq. (3) in z-direction as:
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There are several dimensionless parameters introduced
in Eqs. (12) and (13), which are de�ned as:
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where, ~a(�), ~P , � , ~_S, ~�S and � are dimensionless forms
of the quantities strain rate, pressure, time, plate
velocity, plate acceleration and r, respectively. In
general, when the plate moves with time-dependently
variable velocity, the strain rate, a, can be expressed
as a function of time. Hence, @~a

@� represents the
strain variation with respect to time, and is taken into
account when the plate moves with time-dependent
velocity and acceleration. The quantity �o used in this
relation expresses the amount of vertical distance from
the plate in which the velocity of ow incoming to the
plate is a�ected by the movement of the plate and starts
decreasing. The quantity ~Wo is dimensionless velocity
of potential ow at �o.

The boundary conditions used for Eq. (12) are:

� = 0 : f =
~_S ln cw

2~a
; f 0 = 0; (15)

� !1 : f 0 = 1; (16)

where:

cw = 1� �(Tw � T1): (17)

Note that for an incompressible uid impinging on a
stationary plate at steady state conditions, � = 0:0,
_S = 0, �S = 0 and a(t) = ao, Eq. (12) simpli�es to the

case of Homann ow obtained in [2], and this is one
way of validation of the results achieved.

3.2. Heat transfer solution
To transform the energy equation into a non-
dimensional form for the case of de�ned wall tempera-
ture, we introduce:

� =
T (�)� T1
Tw � T1 : (18)

Making use of Transformations (7)-(10) and (18), this
equation may be written as:

c�00 + c0�0 +
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in which Pr is the Prandtl number.
It is worth noting that the coupled system of

(12), (13) and (19) is the most general form for any
arbitrary at plate movement in vertical direction.
The boundary conditions needed to solve Eq. (19) are
de�ned as:

� = 0 : � = 1

� !1 : � = 0: (20)

The local heat transfer coe�cient on the at plate is
calculated from:

h =
qw

Tw � T1 : (21)

Using Eq. (21) and dimensionless parameters, the
dimensionless form of heat transfer coe�cient for this
study can be gained as:

H = ��0(� = 0)cw; (22)

where:
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A �nite di�erence procedure consisting of Tri-Diagonal
Matrix Algorithm (TDMA) is used to numerically solve
the governing equations (12), (13) and (19). The
numerical procedure is repeated until the di�erence
between the results of two repeated sequences of each
of the equations becomes less than 0.00001.

4. Shear stress

Shear stress at the wall surface is given by:

� = �
@u
@z z=0

: (24)

By introducing the dimensionless parameters de�ned
in Section 3, the dimensionless form of shear stress on
the at plate is obtained as:
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Figure 2a. Comparison of f 0 pro�les with [28] when
Tw = 200�C and Pr=0.7.

Figure 2b. E�ect of � parameter on f 0 pro�les for
di�erent values of plate velocity when Tw = 100�C and
Pr=0.7.

5. Presentation of results

In order to validate the results obtained, f 0 distri-
butions are compared with those of [28] for the case
of Tw = 200�C and Pr=0.7. As can be seen from
Figure 2(a), there is no signi�cant di�erence between
the results achieved and those in [28].

At �rst, the inuences of the plate velocity on
f 0 distributions are investigated for selected values of
� number, in Figure 2(b), and wall temperature, in
Figure 3. As it can be noticed from these two �gures,
when the plate is moving away from the incoming
potential ow, i.e. with a negative value of velocity, the
thickness of the velocity boundary layer is considerably
higher compared to that of the plate with zero or

Figure 3. E�ect of wall temperature on f 0 pro�les for
di�erent values of plate velocity when � = 0:003 and
Pr=0.7.

positive value of velocity. Moreover, it can be found
out that the increase of both � number from 0 to
0.004 and wall temperature from 50�C to 150�C has
somehow the same e�ect on f 0 pro�les whether the
plate moves toward the impinging ow or away from it.
The e�ects of enhancement of these two characterizing
parameters can be more noticeably seen when the plate
is moving with high negative values of velocity. As the
speed of the plate approaches zero and, then, positive
ones the e�ect of the change of � parameter and wall
temperature on f 0 distributions decreases, gradually. It
can be claimed, from these �gures, that f 0 distributions
will be, somehow, independent of � coe�cient or wall
temperature in physical situations in which the plate
is moving toward the impinging ow with high speeds;
~_S = 5 for example.

Next, in Figure 4 e�ects of the plate velocity
along with � parameter on dimensionless distribu-
tions of velocity component in z-direction is reported.
With the increase of � number, the general ten-
dency for the absolute values of w-component is to
increase for a plate receding from the main stream
and to decrease for a plate advancing toward the main
stream.

Distributions of the dimensionless temperature
are shown for di�erent values of dimensionless plate
velocity and selected � numbers in Figure 5, and
Pr numbers in Figure 6, when Tw = 100�C and
Pr=0.7. It is revealed from these two �gures that
the thermal boundary layer thickness becomes smaller
as the negative plate velocity tends to zero and then,
afterwards, positive ones. Besides, it is understood that
the increase of � parameter from 0, incompressible-
stated uid, to 0.004 has a signi�cant e�ect on temper-
ature pro�les if the plate recedes from the impinging
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Figure 4. E�ect of � parameter on dimensionless w
component pro�les for di�erent values of plate velocity
when Tw = 100�C and Pr=0.7.

Figure 5. E�ects of � parameter on � pro�les for di�erent
values of plate velocity when Tw = 100�C and Pr=0.7.

ow. However, the more the speed of the plate
advancing toward the normal incoming ow enhances,
the less important � number becomes. Also, it can
be seen from Figure 6 that the increase of Pr number
at any plate velocity has a considerable inuence on
temperature pro�les and causes the thermal boundary
layer thickness to decrease.

The changes of dimensionless pressure, due to the
increase of � parameter and wall temperature, are,
respectively, shown in Figures 7 and 8. As can be found
out, the absolute values of the pressure in the vicinity of
the plate receding from the incoming potential ow are
considerably lower than those when the plate is moving
toward the main stream. Moreover, as it is reported,

Figure 6. E�ects of Pr no. on � pro�les for di�erent
values of plate velocity when Tw = 100�C and Pr=0.003.

Figure 7. E�ects of � parameter on dimensionless
pressure distributions for di�erent values of plate velocity
when Tw = 100�C and Pr=0.7.

there is no noticeable change in pressure values in the
region close to the plate, up to � = 2, for ~_S = �2:0.

The inuences of � and Pr numbers on dimen-
sionless heat transfer coe�cient are investigated in Fig-
ures 9 and 10 at di�erent dimensionless plate velocity.
For a plate with a negative value of velocity, the en-
hancement of these two characterizing parameters does
not have any signi�cant e�ect on heat transfer between
the plate and viscous uid close to the plate. With the
increase of the plate speed toward the impinging ow,
the e�ects of the increase of � and Pr numbers on heat
transfer become more dominated in such a way that the
increase of � form 0.0 to 0.004 causes the H coe�cient
to decrease, and the increase of Pr number from 0.3
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Figure 8. E�ect of wall temperature on dimensionless
pressure distributions for di�erent values of plate velocity
when � = 0:003 and Pr=0.7.

Figure 9. E�ect of � parameter on H values for di�erent
amounts of plate velocity when Tw = 100�C and Pr=0.7.

to 1.0 brings about the increase of this coe�cient.
Note that with constant uid characteristics, as the
plate velocity tends to zero and then positive ones, the
amount of heat transfer between the plate and viscous
uid increases noticeably. Furthermore, it is shown in
Figures 11 and 12 that shear stress on a stationary plate
or a plate receding from the incoming far �eld ow is
independent of the value of � and Pr numbers. Note
that if characterizing parameters are kept constant,
the change of the plate velocity from negative values
to positive ones has a signi�cant e�ect on shear stress
existing on the plate wall.

In unsteady cases, the plate can move with any
arbitrary time-dependent velocity function. As the
most practical example for time-dependently moving

Figure 10. E�ect of Pr no. on H values for di�erent
amounts of plate velocity when Tw = 100�C and Pr=0.7.

Figure 11. E�ect of � parameter on shear stress for
di�erent values of plate velocity when Tw = 100�C and
Pr=0.7.

plate, the exponential function, which can be used to
model a three-dimensional axisymmetric solidi�cation
problem, is taken to have the form:

_S = Aexp(�t); (26)

where A is a constant. The results obtained by
using the plate velocity function mentioned above are
presented in Figures 13 through 19.

Velocity component in r-direction is distributed
in terms of time for selected values of � number in
Figure 13, and wall temperature in Figure 14. With
the passage of time, the velocity and acceleration of
the plate approach zero which cause the f 0 value to
decrease. This reality is more noticeable when the
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Figure 12. E�ect of Pr no. on shear stress for di�erent
values of plate velocity when Tw = 100�C and Pr=0.7.

Figure 13. E�ect of � parameter on f 0 pro�les at
di�erent times when Tw = 125�C and Pr=0.7.

density variations with respect to temperature are
negligible, which are evident for the cases of � = 0 in
Figure 13 and a wall temperature of 50�C in Figure 14.
It is worth mentioning that for an incompressible uid
with � = 0, the increase of time, which makes the plate
velocity and acceleration close to zero, approaches the
f 0 pro�le to that of Homann ow, which is captured
for � > 5:0 in Figure 13.

In Figure 15, one can see the sample results of
w-component distributions with respect to time and
selected wall temperatures. The e�ect of passage of
time on distributions of dimensionless heat transfer
coe�cient and shear stress in a wide range of wall
temperature is reported in Figures 16 and 17. As it
is revealed, the increase of time, �rstly, causes the
decrease in the amounts of both heat transfer coe�cient

Figure 14. E�ect of wall temperature on f 0 pro�les at
di�erent times when � = 0:003 and Pr=0.7.

Figure 15. E�ects of wall temperature on dimensionless
form of w component distributions at di�erent times when
� = 0:003 and Pr=0.7.

and shear stress. This trend is continued to reach a
constant value at steady state conditions. It should be
noted that the more the wall temperature, the less H
and shear stress will be at any selected time.

Later on, the variations of dimensionless temper-
ature and pressure versus time are shown in Figures 18
and 19 for selected Pr numbers, 0.3 and 1, respectively.
As the velocity and acceleration of the plate vanish, the
increase in temperature and decrease in the absolute
value of pressure are captured. Besides, the enhance-
ment of Pr number causes the thermal boundary layer
thickness to decrease (Figure 18), however, it does not
have any considerable e�ect on pressure distributions
(Figure 19).
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Figure 16. Distributions of dimensionless heat transfer
coe�cient at unsteady procedure for di�erent values of
wall temperature when � = 0:003 and Pr=0.7.

Figure 17. Distributions of shear stress on the plate in
unsteady procedure for di�erent values of wall
temperature when � = 0:003 and Pr=0.7.

6. Conclusions

A similarity solution for the problem of unsteady three-
dimensional axisymmetric stagnation-point ow and
heat transfer of a viscous, compressible uid on an
accelerated at plate has been obtained in this paper
when an external low Mach number ow with strain
rate a impinges on this plate. Firstly, the intro-
duced similarity transformations are used to reduce
the unsteady Navier-Stokes and energy equations to a
coupled system of nonlinear ordinary di�erential equa-
tions. The density of the uid changes because of the
temperature di�erence existing between the plate and
incoming far �eld ow. A Boussinesq approximation
is used to take the density variations into account.

Figure 18. E�ect of Pr on � pro�les at di�erent times
when Tw = 125�C and � = 0:003.

Figure 19. E�ect of Pr on pressure distributions at
di�erent times when Tw = 125�C and � = 0:003.

The results achieved in this paper were presented for a
wide range of parameters characterizing the problem
including volumetric expansion coe�cient (�), wall
temperature, Prandtl number and plate velocity. The
solutions obtained show that the thickness of velocity
and thermal boundary layer for a plate receding from
the impinging ow is much more than those when
the plate moves toward the incoming potential ow.
Moreover, it was shown that the increase of � and
Pr numbers does not have any signi�cant e�ect on
dimensionless heat transfer coe�cient and shear stress
at steady state conditions. However, the passage of
time causes H and ~� to decrease for an exponentially
moving plate.
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Nomenclature

a(t) Time-dependent ow strain rate
ao Flow strain rate at time = 0
c Density ratio
f; g Similarity functions
h Local heat transfer coe�cient
H Dimensionless heat transfer coe�cient
k Thermal conductivity of the uid
p Pressure
P Dimensionless pressure
Pr Prandtl number
S; _S; �S Displacement, velocity and acceleration

of the plate, respectively, in z-direction
~S; ~_S; ~�S Dimensionless displacement, velocity

and acceleration of the plate,
respectively, in z-direction

T Temperature
u;w Velocity components near the plate in

x and z directions
U;W Potential region velocity components

in x and z directions
r; z Cylindrical coordinates

Greeks

� Volumetric expansion coe�cient
� Similarity variable
� Dynamic viscosity
� Dimensionless temperature
� Shear stress
� Dimensionless time
� Variable (z � S(t))
� Dimensionless x axis
� Density
� Kinematic viscosity

Subscripts

o Stagnation point
w Wall
1 In�nite
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