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Abstract. The Renormalization Group Method (RGM) is a simple and powerful method
to obtain analytical solutions for di�erential equations. In this paper, with some examples,
we show that the application of RGM to the second order form of di�erential equations to
determine higher order approximations may give solutions that are at variance with those
solutions obtained with the Multiple Scales Method (MSM) and the Generalized Method
of Averaging (GMA). However, transforming a di�erential equation to a complex-variable
form and then applying RGM, one may obtain solutions in agreement with the MSM and
GMA solutions. Furthermore, we consider a Hamiltonian 2DOF system and observe that
the application of RGM to the second order form results in non-Hamiltonian RG equations,
and the result is at variance with the MSM and GMA solutions. Again, this problem can
be overcomed by applying RGM to a complex-variable form of the equation, obtaining
solutions that are derivable from a Lagrangian that are in agreement with the MSM and
GMA solutions. Therefore, using RGM, correct results may be obtained by treating the
equation as a complex-variable form.
© 2014 Sharif University of Technology. All rights reserved.

1. Introduction

Perturbation methods are amongst the most powerful
in applied mathematics and engineering [1,2] and have
been applied to diverse problems (e.g. [3-11]). A
relatively new method is the Renormalization Group
Method (RGM). This is a powerful method for deter-
mining the analytical solution of di�erential equations
proposed by Chen et al. [12,13]. In physics, RGM
extracts the features of a system, which are insensitive
to details [14], and, so, this method is regarded as an
asymptotic analysis [12]. The RGM may be applied
to a wide range of problems that were previously
treated by the Multiple Scales Method (MSM), the
Generalized Method of Averaging (GMA) and the
WKB method [15,16]. Kunihiro [17,18] formulated
the RGM, based on the classical theory of envelopes
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for both scalar and vector �eld problems. Nozaki et
al. [19] and Nozaki and Oono [20] proposed the proto
RGM to free the classical RGM from the necessity of
explicit secular terms, as much as possible. Shiwa [21]
used this version of RGM to study the Swift-Hohenberg
model of a cellular pattern formation. Using the
same method, Tu and Cheng [22] studied the evolution
of the solution of perturbed equations. Ziane [23]
proved that RGM applied to an autonomous nonlinear
system of equations results in solutions valid over a
long time interval, and studied the relation between
this method and the Poincare-Dulak normal forms and
the averaging method. Mudavanhu and O'Malley [24]
developed a simpli�ed version of RGM to determine
higher order approximations on larger time intervals
than by GMA and MSM. Kirkinis [25] improved the
RGM by rearrangement of secular terms and their
grouping into the secular series that multiplies the
constants of the asymptotic expansion. Furthermore,
O'Malley and Kirkinis [26] introduced a method to
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solve initial and boundary singularly perturbed or-
dinary di�erential equations whose solution structure
can be anticipated. Their method uses renormalized
expansion by separating asymptote solutions into fast
and slow parts. Chiba [27] showed that RGM can
be used to determine the approximate center manifold
and the approximate ow on it. Furthermore, he
proved [28] that a family of approximate solutions
constructed by RGM determines a vector �eld that
is approximate to the original vector �eld in C1

topology. He also proved that if the RG equation
has a normally hyperbolic invariant manifold, then the
original equation has an invariant manifold, which is
di�eomorphic to it. The same author [29] studied the
higher order RG equation to re�ne the error in the
�rst order solution and extended the previous results
to higher order RG equations. He also obtained the
simplest form of RG equations by suitably choosing the
integral constants in RG equations. Deville et al. [30]
detailed that the RG method may be used to determine
the normal forms of autonomous and non-autonomous
perturbed di�erential equations. In autonomous cases,
they showed that the RG results are equivalent to
Poincare-Birkho� normal forms up to second order,
and, in non-autonomous cases, the reduced equation is
equivalent to KBM-based normal forms. Using RGM,
Hosseini [31] studied the problem of spurious solutions
in the higher order approximation of the forced Du�ng
equation in the case of primary resonance. In addition,
he [32] proposed a direct method based on RGM for
determining the analytical approximation of weakly
nonlinear continuous systems.

In the above papers, and other studies, RGM
is applied to second order forms, as well as to the
complex-variable form of di�erential equations. Trans-
formation of the nonlinear second-order ordinary dif-
ferential equations to the complex-variable form results
in �rst-order di�erential equations, and the number of
equations becomes double. Since both forms are equiv-
alent, it seems that the corresponding RG equations
should also be identical. In this paper, we show that
this is not the case. With three examples, we show that
the application of RGM to the second order form and to
the complex-variable form may give di�erent solutions.
The results of RGM, when treating the equations
in second order form, is at variance with MSM and
GMA, while application of RGM to complex-variable
forms leads to solutions that are in agreement with
the solutions obtained by these methods. Moreover,
we consider a Hamiltonian 2DOF system of ordinary
di�erential equations and apply RGM to the second
order form. We observe that the RG equations are
non-Hamiltonian and are at variance with those results
obtained by MSM and GMA. To remedy this problem,
we apply RGM to a complex-variable form of equations
and it is shown that the RG equations are derivable

from a Lagrangian (and, therefore, has a Hamiltonian
structure) and are in agreement with the results of
MSM and GMA.

Therefore, one may conclude that in application
of the RGM, it is necessary to treat the equations in
complex-variable form. It is interesting that this situa-
tion also may occur in MSM. Rega et al. [33] applied the
MSM to the second order form of di�erential equations
governing the displacement of a suspended cable near
the �rst crossover and found that in the absence of
damping and external forces, the modulation equations
are not derivable from a Lagrangian, despite the fact
that the system is conservative. Nayfeh [34] remedied
this problem by application of MSM to the space state
form of the governing equations.

2. Application of the RGM to Du�ng and
Rayleigh equations in the second order form

First, we apply the RGM [30] to the Du�ng equation:

d2u
dt2

+ u+ "u3 = 0: (1)

Substituting the naive expansion:

u = u0 + "u1 + "2u2; (2)

into Eq. (1), we �nd:

O("0) :
d2u0

dt2
+ u0 = 0; (3)

O("1) :
d2u1

d2t
+ u1 = �u3

0; (4)

O("2) :
d2u2

dt2
+ u2 = �3u2

0u1: (5)

The solution of Eq. (3) is:

u0(t) = Aei(t��) + cc; (6)

where i =
p�1, A is a complex constant, � is an initial

time and cc stands for \complex conjugate".
Substituting Eq. (6) into Eq. (4) and solving the

result, it is found:

u1(t) =� 1
8
A3ei(t��) +

3
2
iA2 �A(t� �)ei(t��)

+
1
8
A3e3i(t��) + cc; (7)

where an overbar denotes a complex conjugate. In
the above, the homogenous parts of the solutions
are chosen, so that u1(�) = 0. To renormalize the
integration constant, A, we absorb the homogenous
parts of the solutions into it and generate a new
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integration constant, A = A(�) [30]. Removing the
non-secular resonance terms at �rst order, we obtain:

~u1(t) =
3
2
iA2 �A(t� �)ei(t��) +

1
8
A3e3i(t��) + cc: (8)

Substituting Eqs. (6) and (8) into Eq. (5) and solving
the result, we �nd:

u2(t)=
1
64
A4 �21 �A�A� ei(t��)� 15

16
iA3 �A2(t��)ei(t��)

� 9
8
A3 �A2(t� �)2ei(t��) � 21

64
A4 �Ae3i(t��)

+
9
16
iA4 �A(t��)e3i(t��)+

1
64
A5e5i(t��)+cc: (9)

Again, in Eq. (9), the homogenous parts of the solu-
tions are chosen, so that u2(�) = 0. Removing the
non-secular resonance terms at Eq. (9), it is found that:

~u2(t) =� 15
16
iA3 �A2(t� �)ei(t��)

� 9
8
A3 �A2(t� �)2ei(t��) � 21

64
A4 �Ae3i(t��)

+
9
16
i(t� �)e3i(t��) +

1
64
A5e5i(t��) + cc:

(10)

With the application of the RG condition [29]:

d
�
u0 + "~u1 + "2~u2

�
d�

�����
�=t

= 0; (11)

it is found that:

dA
dt

=
3
2
iA2 �A"� 15

16
iA3 �A2"2 +O("3): (12)

As Kunihiro [17,18] stated, with the application of the
RG condition (Eq. (11)), an envelope for the family
(Eq. (2)) parameterized by � is constructed. In other
words [17]. \Actually, what the RG method does may
be said to construct an approximate but global solution
from the ones with a local nature which were obtained
in the perturbation theory". The other interpreta-
tion [23] is that the na��ve perturbation approximation
(Eq. (2)) has general secular terms. To remove these
secular terms, the free parameter, � , is introduced.
Now, since the na��ve solution (Eq. (2)) is originally
independent of the parameter, � , the approximate
solution should not depend on � . Consequently, the
RG condition (Eq. (11)) is applied. It is observed that
RGM requires neither assumptions about the structure
of the perturbation series (e.g. time scales in MSM) nor
the use of asymptotic matching.

Neglecting the higher order terms, O("3), the RG
equation [29] is found as:

dA
dt

=
3
2
iA2 �A"� 15

16
iA3 �A2"2: (13)

In a similar fashion, we apply RGM to the Rayleigh
equation:

d2u
dt

+ u� "du
dt

+ "
1
3

�
du
dt

�3

= 0; (14)

that results in the RG equation as:

dA
dt

=
1
2
A
�
1�A �A

�
"+

1
16
iA
�
A2 �A2 � 2

�
"2: (15)

Eqs. (13) and (15) were previously obtained in [26,30],
respectively.

3. Application of the RGM to Du�ng and
Rayleigh equations in the complex-variable
form

Now, the RGM is applied to Du�ng and Rayleigh
equations in the complex-variable form. Transforma-
tion of the nonlinear second-order ordinary di�erential
equations to the complex-variable form results in the
�rst-order di�erential equations, and the number of
equations becomes double.

The Du�ng Eq. (1) in state space form is:

du
dt
� w = 0; (16)

dw
dt

+ u+ "u3 = 0: (17)

Using transformation, u = � + ��, w = i(� � ��), the
above equations become:

d�
dt

+
d��
dt
� i� + i�� = 0; (18)

d�
dt
� d��
dt
� i �� + ��

�� "i �� + ��
�3 = 0: (19)

Solving Eqs. (18) and (19) for d�
dt and d��

dt , it is obtained
that:

d�
dt

= i� +
1
2
i"
�
� + ��

�3 ; (20)

d��
dt

= �i�� � 1
2
i"
�
� + ��

�3 : (21)

Eq. (21) is just a complex conjugate of Eq. (20).
Therefore, we apply the RGM to Eq. (20). Substituting
the naive expansion;

� = �0 + "�1 + "2�2; (22)
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into Eq. (20), we obtain:

O("0) :
d�0
dt
� i�0 = 0; (23)

O("1) :
d�1
dt
� i�1 =

1
2
i
�
�0 + ��0

�3 ; (24)

O("2) :
d�2
dt
� i�2 =

3
2
i
�
�1 + ��1

� �
�0 + ��0

�2 : (25)

The solution of Eq. (23) with initial time � is:

�0 = Aei(t��): (26)

Substituting Eq. (26) into Eq. (24) and solving the
result, it is obtained:

�1 =
1
8
� �A3 + 6A �A2 � 2A3� ei(t��)

+
3
2
i �AA2(t� �)ei(t��) � 3

4
A �A2e�i(t��)

� 1
8

�A3e�3i(t��) +
1
4
A3e3i(t��): (27)

As before, by removing the non-secular resonance terms
in Eq. (27), it is found that:

~�1 =
3
2
i �AA2(t� �)ei(t��) � 3

4
A �A2e�i(t��)

� 1
8

�A3e�3i(t��) +
1
4
A3e3i(t��): (28)

By substituting Eqs. (26) and (28) into Eq. (25),
solving the result with initial time, � , and removing
the non-secular resonance terms, we obtain:

~�2 =� 51
16
i �A2A3(t� �)ei(t��)

� 9
8
A3 �A2(t� �)2ei(t��) +

69
32
A2 �A3e�i(t��)

+
9
8
iA2 �A 3(t� �)e�i(t��) � 15

16
A4 �Ae3i(t��)

+
9
8
iA4 �A(t� �)e3i(t��) +

21
64

�A4Ae�3i(t��)

+
9
16
i �A4A(t� �)e�3i(t��) +

3
64
A5e5i(t��)

� 1
32

�A5e�5i(t��): (29)

With application of the RG condition:

d
�
�0 + "~�1 + "2 ~�2

�
d�

������
�=t

= 0; (30)

the RG equation is found as:

dA
dt

=
3
2
iA2 �A"� 51

16
iA3 �A2"2: (31)

This solution was previously presented in [29]. It is
noted that if RGM were applied to the state-space form
of the Du�ng equation, i.e. Eqs. (16) and (17), the
RG equation would become the same as Eq. (13), not
Eq. (31).

In the same method, by writing the Rayleigh
Eq. (14) in complex-variable form, using transforma-
tion, u = � + ��, du

dt = i(� � ��), we �nd:

d�
dt

= i� +
1
2
"
�
1� � ��

� �
� � ��

�
+

1
6
"
�
�3 � ��3� ; (32)

and the RG equation becomes:

dA
dt

=
1
2
A
�
1�A �A

�
"+

1
16
iA
�
4A �A�3A2 �A2�2

�
"2:

(33)

Obviously, the higher order parts of Eqs. (13) and
(31) are not identical. Also, the higher order parts
of Eqs. (15) and (33) are not the same. The solutions
obtained by treating the equations in complex-variable
form, i.e. Eqs. (31) and (33), are identical to Eqs. (20)
and (107) of paper [35], using MSM and GMA. In
summary, application of the RGM to the complex-
variable form of Du�ng and Rayleigh equations are in
agreement with those obtained with MSM and GMA,
and at variance with the results obtained by application
of the RGM to the second order form and state-space
form of these equations.

In a theorem, Chiba [28] showed that for a
di�erential equation associated with a given vector
�eld, a family of approximate solutions obtained by the
RG method de�nes a vector �eld which is close to the
original vector �eld in the C1 topology. All his proof
was carried out on vector �elds. So, the di�erential
equations were represented in �rst-order form. To
state and prove the above theorem, he assumed some
norm conditions. Su�cient conditions for the system
to satisfy these norm conditions are [28]:

(i) The unperturbed equation has a diagonalizable
constant matrix, all of whose eigenvalues lie on
the imaginary axis;

(ii) The nonlinear part is polynomial in x and peri-
odic in t;

(iii) The nonlinear part is polynomial in x and almost
periodic in t, and whose set of Fourier exponents
has no accumulation points.

The nonlinear part in our system satis�es conditions
(ii) and (iii). The complex variable form satis�es,
exactly, assumption (i). Consequently, the most ap-
propriate form in which to apply RGM is the complex-
variable form.
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4. Application of the RGM to a 2DOF system
of equations

We consider the following 2DOF system of di�erential
equations with quadratic nonlinearity [35]:

d2u
dt2

+ !2
1u� 2"�uv = 0;

d2v
dt2

+ !2
2v � "�u2 = 0: (34)

To compare the results, the two-to-one internal res-
onance, !2 � 2!1, is considered. For the sake of
simplicity, it is assumed that !1 = 1 and !2 = 2. First,
we apply the RGM to the above equation. Substituting
the na��ve expansion:

u = u0 + "u1 + "2u2; v = v0 + "v1 + "2v2; (35)

into Eq. (34), we �nd:

O("0) :
d2u0

dt2
+ u0 = 0;

d2v0

dt2
+ 4v0 = 0; (36)

O("1) :
d2u1

dt2
+ u1 = 2�u0v0;

d2v1

dt2
+ 4v1 = �u2

0; (37)

O("2) :
d2u2

dt2
+ u2 = 2�(v0u1 + v1u0);

d2v2

dt2
+ 4v2 = 2�u0u1: (38)

The solution of Eqs. (36) is:

u0 = Aei(t��) + cc; v0 = Be2i(t��) + cc: (39)

By substituting Eqs. (39) into Eq. (37), solving the
result with initial time � and removing the non-secular
resonance terms, we obtain:

~u1 = �i� �AB(t� �)ei(t��) � 1
4
�ABe3i(t��) + cc;

~v1 = �1
4
i�A2(t� �)e2i(t��) +

1
4
�A �A+ cc: (40)

Similarly, the solution in O("2) becomes:

~u2 =
1
8
i�2A

�
6B �B � 5A �A

�
(t� �)ei(t��)

+
1
8
�2A

�
4B �B �A �A

�
(t� �)2ei(t��)

+ NRT + cc;

~v2 = �1
4
�2A �AB(t� �)2e2i(t��) + NRT + cc; (41)

where NRT stands for \non-resonance term". Finally,
RG equations are found as:

dA
dt

= �i� �AB"+ i�2
�
�5

8
�AA2 +

3
4
AB �B

�
"2; (42)

dB
dt

= �1
4
i�A2": (43)

It is obvious that Eqs. (42) and (43) are not derivable
from a Lagrangian, because the coe�cient of AB �B
in Eq. (42) is 3

4 i�
2, while the coe�cient of A �AB in

Eq. (43) is 0. The RG Eqs. (42) and (43) are not
Hamiltonian, in spite of the fact that Eq. (34) is
Hamiltonian. In other words, in this case, the RGM
reduces a Hamiltonian system to a non-Hamiltonian
one.

Now, we treat Eq. (34) in complex-variable form.
Using transformation:

u = � + ��;
du
dt

= i
�
� � ��

�
;

v = & + &;
dv
dt

= 2i (& � �&) : (44)

Eq. (34) becomes:

d�
dt
� i� = �i�" �� + ��

�
(& + �&) ;

d&
dt
� 2i& = �1

4
i�"
�
� + ��

�2 : (45)

Substituting the naive expansion:

� = �0 + "�1 + "2�2;

& = &0 + "&1 + "2&2; (46)

into Eq. (45), we obtain:

O("0) :
d�0
dt
� i�0 = 0;

d&0
dt
� 2i&0 = 0; (47)

O("1) :
d�1
dt
� i�1 = i�

�
�0 + ��0

�
(&0 + �&0) ;

d&1
dt
� 2i& = �1

4
i�
�
�0 + ��0

�2 ; (48)

O("2) :
d�2
dt
� i�2 = �i� (&0 + �&0)

�
�1 + ��1

�
� i� ��0 + ��0

�
(&1 + �&1) ;

d&2
dt
� 2i&2 = �1

2
i�
�
�0 + ��0

� �
�1 + ��1

�
; (49)
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The solution of Eq. (47) with initial time � is:

�0 = Aei(t��); &0 = Be2i(t��): (50)

By substituting Eq. (50) into Eq. (48), solving the
result with initial time � and removing the non-secular
resonance terms we obtain:

~�1 =� � �ABi(t� �)ei(t��) +
1
2
�A �Be�i(t��)

� 1
2
�ABe3i(t��) +

1
4
� �A �Be�3i(t��);

~&1 =� 1
4
i�A2(t� �)e2i(t��) +

1
16
� �A2e�2i(t��)

+
1
4
�A �A: (51)

Similarly, for solutions in O("2), we have:

~�2 =� 1
16
i�2A

�
9A �A+ 4B �B

�
(t� �)ei(t��)

� 1
8
�2A

�
A �A� 4B �B

�
(t� �)2ei(t��)

+
1
8
i�2 �A

�
A �A� 4B �B

�
(t� �)e�i(t��)

+
1
32
�2 �A

�
11A �A� 4B �B

�
e�i(t��);

~&2 =� 1
8
i�2A �AB(t� �)e2i(t��)

� 1
4
�2A �AB(t� �)2e2i(t��)

+
1
8
i�2A �A �B(t� �)e�2i(t��)

+
1
16
�2A �A �Be�2i(t��)

+
1
4
�2A2 �B +

1
4
i�2A2B(t� �)

� 1
4
i�2 �A2B(t� �): (52)

With the application of the RG condition;

d
�
�0 + "~�1 + "2 ~�2

�
d�

������
�=t

= 0;

d
�
�0 + "~&1 + "2~&2

�
d�

�����
�=t

= 0; (53)

the RG equations are found as:

dA
dt

= ��i �AB"� i�2A
�

9
16
A �A+

1
4
B �B

�
"2;

dB
dt

= �1
4
i�A2"� 1

8
i�2A �AB"2: (54)

Eqs. (54) are derivable from Lagrangian:

L =2
�

�A _A�A _�A
�

+ 4
�

�B _B �B _�B
�

+ i�B �A2"

+ i� �BA2"+
1
2
i�2A �AB �B"2 +

9
16
i�2A2 �A2"2: (55)

Consequently, the Hamiltonian structure of Eqs. (45),
which is in complex-variable form, is preserved in the
RG reduction process. Moreover, Eqs. (54) are in
agreement with Eqs. (172) and (173) in [35], obtained
by MSM and GMA, and are at variance with Eqs. (42)
and (43) obtained by treating the equations in second
order form. In summary, application of RGM to
complex-variable forms results in reduced equations
that are in agreement with those obtained by MSM
and GMA and preserves the Hamiltonian structure of
the equations. But, this is not the case when treating
the equations in second order form.

5. Conclusion

We applied the RGM to second order and complex-
variable forms of some nonlinear di�erential equations.
Transformation of the nonlinear second-order ordinary
di�erential equations to the complex-variable form
results in �rst-order di�erential equations and the num-
ber of equations becomes double. With three examples,
we have shown that the application of RGM to the
complex-variable form of equations results in solutions
that preserve the original structure of the equations
and are in full agreement with those results obtained
by MSM and GMA. However, treating the equations in
second order form may lead to erroneous results. For
example, if the nonlinear di�erential equations have
a Hamiltonian structure, the approximation solution
from the RGM possesses the original Hamiltonian
structure.
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