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Abstract. In the present study, the frequency response of skew and trapezoidal shaped
single layer graphene sheets are studied via Kirchho� plate theory. A four node Discrete
Singular Convolution (DSC) method is developed for free vibration analysis of arbitrary
straight-sided quadrilateral graphene. The straight-sided skew and trapezoidal graphene
is mapped into a square graphene in the computational space using a four-node element.
By using the geometric transformation, the governing equations and boundary conditions
of the graphene are transformed from the physical domain into a square computational
domain. Numerical examples illustrating the accuracy and convergence of the DSC method
for skew and trapezoidal shaped graphene sheets are presented. New results for skew and
trapezoidal shaped graphene have been presented, which can serve as benchmark solutions
for future investigations.
c 2014 Sharif University of Technology. All rights reserved.

1. Introduction

Nanomechanics are a popular branch of nano-sciences.
The aim of this new area is to de�ne some of the
fundamental physical properties of nano-scaled struc-
tures. In general, atomistic modeling and continuum
modeling are adopted foe modeling of the mechan-
ical properties of these nano-scaled systems. Car-
bon nanotubes (CNTs) and Graphene Sheets (GS)
are two-novel forms of carbon [1-4]. Due to their
superior physical, electrical and chemical properties,
both carbon nanotubes and the graphene sheets have
been widely used in many disciplines, such as Nano-
Electro-Mechanical Systems (NEMS), biomechanics,
computers, and medical and optic applications [5-9].

Straight-sided quadrilateral graphenes are used
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in modern engineering applications, such as nano-
electro-mechanical components. Knowledge of the free
vibration characteristics of these structures is very
important during the design process. The vibration
analysis of carbon nanotubes and graphene may be
either analytical or numerical [10-15]. It is well known
that the experimental or atomic based solutions of
such problems can be obtained for only certain simple
cases of rectangular and square shapes. Consequently,
employment of classical or higher-order continuum
approaches is an e�cient alternative [16-26]. The
analysis of non-rectangular graphenes or, as generally
called, straight-sided quadrilateral graphenes, has been
a research subject in nanomechanics and modern indus-
tries. In the past, geometric transformation was used
for non-rectangular plate analysis [27,28]. However, in
the past �fty years, �nite element methods have been
widely used in mathematical physics and engineering.
Solutions of initial and boundary value problems have
always been issues of interest to engineering and phys-
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ical sciences, and many di�erent numerical approaches
have been used for computational purposes. In this
regard, in general, �nite di�erence, �nite element,
Ritz, and boundary element methods have become
very popular, and these numerical approaches are used
extensively for solving engineering problems. The
method of Discrete Singular Convolution (DSC) is a
relatively new numerical technique for the numerical
solution of partial and ordinary di�erential equations.
DSC is a novel type of numerical approach for ap-
proximate numerical solutions of di�erential equations
proposed by Wei [29]. In the literature, Wei and his
co-workers �rstly applied the DSC algorithm to solve
some mathematical physics problems [30-35]. Zhao et
al. [36-38] analyzed the high frequency vibration of
plates using the DSC algorithm, and Hou et al. [39]
investigated the DSC based Ritz approach for the
dynamic analysis of thin and thick plates. These
studies indicate that the DSC algorithm works very
well for the modeling and solution of mechanical
problems [40,41]. It is also concluded that the discrete
singular convolution technique has a global method
accuracy and a local method exibility for solving
ordinary and partial di�erential equations in physics
and engineering problems [42-50]. Numerical solution
of the free vibration problem of plates and shells has
also been investigated by the present author [51-57].
Wei states that the mathematical base of the singular
convolution technique is the theory of distributions
and some types of wavelet analysis. [29-31]. The
primary objective of this study is to give a numerical
solution of the free vibration analysis of straight-
sided quadrilateral graphene sheets. Using a four-
node element, the straight-sided quadrilateral domain
is mapped into a square domain in computational
space. To the author's knowledge, it is the �rst
time that free vibration has been successfully obtained
for skew and trapezoidal graphene sheets. Further-
more, new results for the frequency values of skew
and trapezoidal shaped graphene have been presented,
which can serve as benchmark solutions for future
investigations.

2. Discrete Singular Convolution (DSC)

Using the same notations and similar parameters, let
us consider a distribution, T and �(t), as an element
of the space of the test or trial function. Thus, we can
de�ne the typical singular convolution as [29]:

F (t) = (T � �)(t) =
Z 1
�1

T (t� x)�(x)dx: (1)

The operator T (t � x) is known as a singular kernel.
Many types of kernel have been used in the literature.
For example, singular kernels of a delta type [30] is:

T (x) = �(n)(x); (n = 0; 1; 2; :::; ): (2)

The kernel given in Eq. (2), T (x) = �(x), is im-
portant for interpolation of surfaces and curves, and
T (x) = �(n)(x) for n > 1 are requisite for numerical
solution of di�erential equations. It is also known
that the following form is more e�ective for discrete
singular convolution with a su�ciently smooth approx-
imation [31]:

Fa(t) =
X
k

Ta(t� xk)f(xk); (3)

where Fa(t) is an approximation of F (t), and fxkg is an
appropriate set of discrete points on which the discrete
singular convolution in Eq. (3) is well de�ned. It must
also be de�ned that the original test function, �(x),
has been replaced by f(x) for computer realization
purpose [31,32]. After some successful applications
in mathematical physics and applied mechanics, the
use of some type of kernel and regularizer, such as a
delta regularizer, was proposed [32-37]. For example,
a well-known kernel is the Shannon kernel, and it is
regularized as the following relation [38]:

��;�(x� xk) =
sin[(�=�)(x� xk)]

(�=�)(x� xk)
exp

�
�
� (x� xk)2

2�2

�
; � > 0: (4)

Eq. (4) can also be used to provide discrete approxi-
mations of the singular convolution kernels of the delta
type [40]:

f (n)(x) �
MX

k=�M
��(x� xk)f(xk); (5)

where ��(x � xk) = ��a(x � xk) and superscript (n)
denotes the nth-order derivative, and 2M + 1 is the
computational bandwidth, which is centered around x
and is usually smaller than the whole computational
domain. For example, the Dirichlet kernel has one more
M parameter for computation. In the DSC method,
function f(x) and its derivatives, with respect to the
x coordinate at a grid point xi, are approximated by
a linear sum of discrete values of function f(xk) in a
narrow bandwidth [x� xM ; x+ xM ], namely [41]:

dnf(x)
dxn

����
x�xi

= f (n)(x) �
MX

k=�M
�(n)
�;�(xi � xk)f(xk);

(n = 0; 1; 2; :::; ); (6)

where superscript n denotes the nth-order derivative
with respect to x. The xk is a set of discrete sampling
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points centered around point x, � is a regularization
parameter, � is the grid spacing, and 2M + 1 is
the computational bandwidth, which is usually smaller
than the size of the computational domain. For
example, the second order derivative at x = xi of
the DSC kernels are directly given in discretized form
as [41]:

f (2)(x) =
d2f
dx2

����
x=xi
�

MX
k=�M

�(2)
�;�(k�xN )fi+k;j : (7)

In the above equation, M + 1 is the e�ective kernel
support. In these equations, the related derivatives can
be listed in the literature [35-41]. The fourth-order
derivative is de�ned as follows [42,43]:

�(4)
�=�;�(xm � xk) = 4

(�2=�2) cos(�=�)(x� xk)
(x� xk)2

�exp
��(x� xk)2

2�2

�
+

(�3=�3) sin(�=�)(x� xk)
(x� xk)

� exp
��(x� xk)2

2�2

�
+4

(�2=�2) cos(�=�)(x� xk)
�2

�exp
��(x� xk)2

2�2

�
� 12

(�=�) sin(�=�)(x� xk)
(x� xk)3

�exp
��(x� xk)2

2�2

�
� 6

(�=�) sin(�=�)(x� xk)
(x� xk)�2

�exp
��(x� xk)2

2�2

�
�6

(�=�)(x� xk) sin(�=�)(x� xk)
�4

� exp
��(x� xk)2

2�2

�
� 24

cos(�=�)(x� xk)
(x� xk)4

� exp
��(x� xk)2

2�2

�
� 12

cos(�=�)(x� xk)
(x� xk)2�2

�exp
��(x� xk)2

2�2

�
�4

(x�xk)2cos(�=�)(x� xk)
�6

� exp
��(x� xk)2

2�2

�
+ 24

sin(�=�)(x� xk)
�(x� xk)5=�

� exp
��(x� xk)2

2�2

�
+ 12

sin(�=�)(x� xk)
��6(x� xk)3=�

� exp
��(x� xk)2

2�2

�
+ 3

sin(�=�)(x� xk)
�(x� xk)�4=�

�exp
��(x� xk)2

2�2

�
� 2

(x� xk) sin(�=�)(x� xk)
(��6=�)

� exp
��(x� xk)2

2�2

�
+

(x� xk)3 sin(�=�)(x� xk)
��8=�

� exp
��(x� xk)2

2�2

�
: (8)

Discrete singular convolution has many potential appli-
cations for computer realization (e.g. Hilbert, Radon,
Delta and Abel transforms).

3. Domain transformation for skew �eld

The method of DSC is not suitable for an irregu-
lar domain. Consider an arbitrary (straight-sided),
quadrilateral, mono-layer graphene sheet, as shown
in Figure 1. The geometry of this graphene can be
mapped into a rectangular graphene in the natural
� � � plane, as shown in this �gure. By employing
the following four-node transformation equations, the
physical domain is mapped into the computational
domain [27]:

x =
NX
i�1

xi�i(�; �); (9a)

y =
NX
i=1

yi�i(�; �); (9b)

where xi and yi are the coordinates of node i in the
physical domain, N is the number of grid points, and
�i(�; �); i = 1; 2; 3; :::; N , are the interpolation (shape)
functions. These are given for node i [28,29]:

�i(�; �) =
1
4

(1 + ��i)(1 + ��i): (10)

Thus, the �rst-order and second order derivatives of
function g are de�ned as [27]:�

gx
gy

�
= [H11]�1

�
g�
g�

�
; (11)8<:gxxgyy2gyx

9=;=[H22]�1

8<:g��g��2g��

9=;�[H22]�1[H21][H11]�1
�
g�
g�

�
;
(12)

Figure 1. Mapping of arbitrary quadrilateral plates into
natural coordinates.
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where �i and �i are the coordinates of node i in the
� � � plane, and Hij are the elements of the Jacobian
matrix. These are expressed as follows [27]:

[H11] =
�
x� y�
x� y�

�
; [H21] =

24x�� y��
x�� y��
x�� y��

35 ; (13)

[H22] =

266664
x2
� y2

� x�y�

x2
� y2

� x�y�

x�x� y�y� 1
2 (x�y� + x�y�)

377775 : (14)

Consequently, an arbitrary-shaped quadrilateral
graphene may be represented by the mapping of
a square graphene de�ned in terms of its natural
coordinates. Using the above procedure, the second-
order derivatives, with respect to the �x coordinate,
can be written as:

@2w
@x2 =[H22]�1

MX
i=�M

�(2)
�;�(k��)wik

� [H22]�1[H21][H11]�1
MX

i=�M
�(1)
�;�(k��)wik; (15)

@2w
@x2 = [H11]�1

MX
i=�M

�(1)
�;�(k��)wik: (16)

4. Governing equations

Graphene sheet is very strong and has high rigidity. An
atomistic model is expensive and needs large computer
capacity. Experimental studies can be undertaken for
only some speci�c cases. So, the modeling of graphene
sheets as a continuum plate model is generally used
by researchers. For non-rectangular grapheme, some
important studies can be found in literature [59,60].
The nonlocal continuum plate model is used for the
modeling of quadrilateral graphene sheets by Babaei
and Shahidi [59], and the free vibration analysis of
orthotropic non-prismatic skew nanoplates is presented
by Alibeygi Beni and Malekzadeh [60].

The governing equation of a single layer graphene
in vibration is written as:

D(
@4w
@x4 + 2

@4w
@x2@y2 +

@4w
@y4 )� �h@2w

@t2
= 0; (17)

where D is the coe�cient of the bending rigidity for
graphene, h is the thickness, w is the deection, � is
the density, and x and y are the midplane Cartesian
coordinates. The transverse displacement, w, for free
vibration is taken as:

w(x; y; t) = W (x; y)eiwt: (18)

Substituting Eq. (18) into Eq. (17), one obtains the
normalized equation:

@4W
@X4 + 2�2 @4W

@X2@Y 2 + �4 @4W
@Y 4 = 
2W: (19)

The non-dimensional quantities are:

X = x=a; Y = y=b;

� = a=b; 
2 = �ha4!2=D: (20)

Eq. (19) takes the following simple form:

r2r2(WXY ) = 
2W; (21)

where r2 is the Laplace operator. Consider the
following di�erential operators before discretizing the
governing di�erential equations:

F =
@2W
@X2 ; (22)

G =
@2W
@Y 2 : (23)

Thus, the fourth-order derivatives can be given in terms
of the second order derivatives, that is:

@4W
@X4 =

@2

@X2F; (24)

@4W
@Y 4 =

@2

@Y 2G; (25)

@4W
@X2@Y 2 =

@2

@X2

�
@2w
@Y 2

�
=

@2

@X2G: (26)

After using the geometric transformation process, the
following form can be given for the �rst, second, and
fourth-order derivatives:

@W
@X

= [H11]�1 @W
@�

; (27a)

@W
@Y

= [H11]�1 @W
@�

; (27b)

@2W
@X2 =[H22]�1 @2W

@�2 �[H22]�1[H21][H11]�1 @W
@�

; (27c)

@2W
@Y 2 =[H22]�1 @2W

@�2 �[H22]�1[H21][H11]�1 @W
@�

; (27d)

and:

@4W
@X4 =

@2F
@�2 = [H22]�1 @2F

@�2

� [H22]�1[H21][H11]�1 @F
@�

; (28a)
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@4W
@Y 4 =

@2G
@�2 = [H22]�1 @2G

@�2

� [H22]�1[H21][H11]�1 @G
@�

; (28b)

@4W
@X2@Y 2 =

@2G
@X2 = [H22]�1 @2S

@�2

� [H22]�1[H21][H11]�1 @S
@�
: (28c)

Using the di�erential operators in Eqs. (27) and (28);
the normalized governing equation, i.e. Eq. (21), takes
the following form:

@2F
@X2 + 2�2 @2G

@X2 + �4 @2G
@Y 2 = 
2W; (29)

or:

r2(W��) = 
2W: (30)

Employing the transformation rule, governing Eq. (30)
becomes:

[H22]�1 @2F
@�2 � [H22]�1[H21][H11]�1 @F

@�

+ 2�2
�

[H22]�1 @2F
@�2 � [H22]�1[H21][H11]�1 @F

@�

�
+�4

�
[H22]�1 @2G

@�2 �[H22]�1[H21][H11]�1 @G
@�

�
= 
2W: (31)

Substituting the discrete singular convolution proce-
dure from Eq. (6) into Eq. (31), one can obtain the
discrete analog of the governing equations as:

[H22]�1
� MX
k=�M

�(2)
�;�(k��)Fkj+2�2

MX
k=�M

�(2)
�;�(k��)Fik

+ �4
MX

k=�M
�(2)
�;�(k��)Gik

�
� [H22]�1

[H21][H11]�1
� MX
k=�M

�(1)
�;�(k��)Fkj

+ 2�2
MX

k=�M
�(1)
�;�(k��)Fik

+ �4
MX

k=�M
�(1)
�;�(k��)Gik

�
= 
2Wij : (32)

At this stage, the following new variable is introduced
for simplicity:

= = (k��)Fkj + 2�2(k��)Fik + �4(k��)Gik: (33)

Using this new operator, the governing equations of a
plate for free vibration can be expressed as:

[H22]�1
� MX
k=�M

�(2)
�;�=

�
� [H22]�1[H21][H11]�1

�
� MX
k=�M

�(1)
�;�=

�
= 
2Wij : (34)

To obtain the discretized form of Eq. (32) in its natural
coordinate, we apply Eq. (34) to the following equation:

r4(W��) = r2r2(W��) = 
2W: (35)

Substituting Eq. (34) into Eq. (35), the governing
equation can now be obtained as:�

[H22]�1
� MX
k=�M

�(2)
�;�=

�
� [H22]�1[H21][H11]�1

�
� MX
k=�M

�(1)
�;�=

�
� [H22]�1

� MX
k=�M

�(2)
�;�=

�
� [H22]�1[H21][H11]�1

� MX
k=�M

�(1)
�;�=

��
= 
2Wij : (36)

Therefore, the governing equation is given by the
matrix notation as:

(D4
�
I� + 2�2D2

�
D2
� + �4I�
D4

�)W=
2W; (37)

where I� and I� are the (Nr + 1)2; (r = �; �) unit
matrix and 
 is used as the manner of tensorial
product. In this study, two types of boundary
condition (simply supported and clamped) are taken
into consideration for graphene sheet. The related
formulations and their DSC form [33-41] are given in
detail in the following:

Simply supported edge (S):

W = 0; �D(
@2W
@n2 + v

@2W
@S2 ) = 0: (38)

Clamped edge (C):

W = 0;
@W
@n

= 0; (39)
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where n and s denote the normal and tangential
directions of the plate, respectively. The discrete form
of the related boundary conditions can be given as
follows [36,37,52,53]:

Simply supported edge (S):

Wij = 0; (40)

�
�
�(2)
�;�(Xi �X0)+

JX
j=0

(1� ai)�(2)
�;�(Xi �Xj)

�
W (X0)

+
JX
j=0

(1 + ai)�
(2)
�;�(Xi �Xj)W (Xi)

+ v
��

�(2)
�;�(Yi � Y0) +

JX
j=0

(1� ai)�(2)
�;�(Yi � Yj)

�
�W (Y0)+

JX
j=0

(1 + ai)�
(2)
�;�(Yi � Yj)W (Yi)

�
= 0:

(41)

Clamped edge (C):

Wij = 0; (42)�
�(1)
�;�(Xi �XN�1)�

JX
j=0

(1� ai)�(1)
�;�(Xi �Xj)

�
�W (XN�1)+

JX
j=0

(1� ai)�(1)
�;�(Xi �Xj)�W (Xi):(43)

After implementation of the boundary conditions,
Eq. (37) is rewritten as:

(D�4� 
I�+2�2D�2� 
D�2� +�4I�
D�4� )W=
2W: (44)

Here, D�nr is (N � 2)� (N � 2).

5. Numerical results

The numerical solutions of the vibration response of
skew and trapezoidal shaped graphene sheets are shown
in Figure 2, under various geometric parameters and
boundary conditions. In these analyses, the material
properties of the graphene layer are taken as follows:
E = 1 TPa, v = 0:16, � = 2250 kg/m3. The
results given in this section are aimed to illustrate
the numerical accuracy of the proposed DSC based
coordinate transformation method. The graphenes
of various planforms are designated by the boundary
conditions at their edges.

For the veri�cation of the proposed model, we
simulate the vibration of a single layer square graphene

Figure 2. A typical skew and trapezoidal graphene.

Table 1. Frequency values (THz) of SSSS skew graphene
sheets (a=b = 1; � = 75�, b = 10 nm).

Frequency
mode

Present numerical results
N = 9 N = 13 N = 15 N = 17

1 0.07005 0.06951 0.06949 0.06949
2 0.17023 0.16094 0.16050 0.16050
3 0.19302 0.18703 0.18690 0.18691
4 0.28241 0.26386 0.26324 0.26323
5 0.35377 0.34685 0.34645 0.34642

Table 2. Fundamental frequency values (THz) of SSSS
square graphene sheets (a=b = 1, � = 90�, N = 15).

a
(nm)

Molecular
dynamics

(zigzag) [58]

Molecular
dynamics

(armchair) [58]

Present
DSC

10 0.05877 0.05950 0.06503
20 0.01575 0.01581 0.01628
30 0.00706 0.00707 0.00716
40 0.00409 0.00410 0.00410

sheet. The graphene has di�erent lengths, from 10 nm
to 40 nm. For comparison purposes, we use the value
of 0.34 nm for the thickness of the graphene layer.

The Young's modulus is 1 TPa. In Table 1, the
e�ects of di�erent values of N on the convergence of
the �rst �ve frequencies for SSSS skew graphene sheets
of a=b = 1, (� = 75�, b = 10 nm) are presented. It
is shown that the results are good for N = 13 for
�rst frequencies. For second and other higher modes
of vibration, however, accurate results are obtained
for N = 15. Based on this convergence study, unless
otherwise indicated, we set the grid number as N = 15.
Table 2 contains the fundamental frequencies (THz)
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of SSSS square graphene. Four di�erent length values
are taken into consideration. The results are compared
with those obtained by molecular dynamics (zigzag)
and molecular dynamics (armchair) approaches by
Ansari et al. [58]. The results are in good agreement
compared with those presented by Ansari et al. [58] for
the longest length value.

Some benchmark results are presented in Ta-
bles 3-6 for skew and trapezoidal shaped graphene
sheets, respectively. The fundamental frequency pa-
rameters are given in Table 3 for skew graphenes,
with skew angles varying from 30� to 75�. Three
di�erent boundary conditions are considered. It is
shown that the increasing value of skew angle (as �)
always decreases the frequency parameter for all types
of boundary condition. In literature [59], the angle
is taken between the axis-y and the skew side of the
grapheme, as � in Figure 2. So, the frequency value

Table 3. Fundamental frequency values (THz) of skew
graphene sheets (a=b = 1).

� SSSS CCCC SCSC

75 0.06949 0.12717 0.10219
60 0.08311 0.15348 0.12307
45 0.11764 0.21865 0.17483
30 0.22078 0.40566 0.32391

Table 4. Frequency values (THz) of skew graphene sheets
(CCCC) for di�erent aspect ratio.

� b=a = 1 b=a = 2 b=a = 3

45 0.21865 0.15773 0.15226
60 0.15363 0.10732 0.10226
90 0.11982 0.08187 0.07728

Table 5. Frequency values (THz) of SCSC trapezoidal
graphene sheets (a=b = 1; c=a = 0:2).

Frequency
mode

N = 13 N = 15 N = 17

1 0.15291 0.15283 0.15283
2 0.31024 0.31012 0.31012
3 0.36222 0.36220 0.36218
4 0.51881 0.51871 0.51877
5 0.60186 0.60179 0.60178
6 0.65342 0.65336 0.65334

Table 6. Frequency values (THz) of CCCC trapezoidal
graphene sheets (b=a = 1).

Mode c=a = 0:2 c=a = 0:4 c=a = 0:7

1 0.1258 0.1026 0.0773
2 0.2653 0.2131 0.1736
3 0.3304 0.2763 0.2108

increases with increasing the skew angles (�). In fact,
our own conclusions and those in the literature are
in agreement. The CCCC skew graphene has the
highest frequency parameter, followed by SCSC and
SSSS type boundary conditions. In other words, the
e�ect of boundary conditions on the vibration behavior
of graphene is signi�cant. Fundamental frequencies
(THz) of skew graphene sheets (CCCC) for di�erent
aspect ratios have been presented in Table 4. Depend-
ing on the increase in aspect ratio, b=a, the e�ect of
the skew angle on the frequency becomes insigni�cant.
Frequency values (THz) of trapezoidal graphene sheets
are calculated and presented in Tables 5-6 for di�erent
geometric parameters. It is shown that the increasing
value of c=a always decreases the frequency parameter.
Frequency responses of skew shaped mono-layer SSSS
graphene sheets for di�erent skew angles (a=b = 1)
are depicted in Figure 3 for di�erent mode numbers.
It is found from this �gure that, as the skew angle
is increased, the frequency values tend to decrease.
However, the e�ect of skew angle on the frequency
parameter is more signi�cant for the higher modes.
Namely, the frequency parameter decreases rapidly for
small skew angle ratios and, then, gradually decreases
with increasing skew angles.

The e�ect of aspect ratio on the frequency re-
sponse of skew shaped mono-layer SSSS graphene
sheets for di�erent skew angles is depicted in Figure 4.
Generally, it can be seen that, as b=a increases, with
�xed skew angle, the frequencies decrease. Also, the
e�ect of the skew angle on the frequency parameter is
more signi�cant for small aspect ratios.

The relationships between frequency parameter
and mode number for skew graphene are depicted
in Figure 5 for di�erent skew angles. Variations of

Figure 3. Frequency response of skew shaped mono-layer
SSSS graphene sheets for di�erent skew angles (a=b = 1).
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Figure 4. Frequency response of skew shaped mono-layer
SSSS graphene sheets for di�erent aspect ratio.

Figure 5. Frequencies of skew shaped mono-layer CCSS
graphene sheets for di�erent mode numbers.

the frequency parameter of skew shaped mono-layer
graphene sheets, for di�erent boundary conditions and
mode number, is �gured in Figure 6. From these two
�gures, it can be concluded that the increasing value
of the mode number always increases the frequency
parameter for all types of boundary condition and skew
angle.

6. Concluding remarks

Skew and trapezoidal shaped graphene has found
applications in the area of micro-computers and
micro-medical applications. In the present paper,
the frequency behavior of straight-sided quadrilateral
graphene sheets is presented. Using the geometric

Figure 6. Frequencies of skew shaped mono-layer
graphene sheets for di�erent boundary conditions.

transformation, the governing equations and boundary
conditions of the mono-layer graphene are transformed
from the physical domain into a square computa-
tional domain. Then, all computations are based
on the computational domain. Several examples are
worked to demonstrate the convergence of the present
DSC method. Excellent convergence behavior and
accuracy, in comparison with exact results and or
results obtained by other methods, are obtained. The
e�ect of some geometric parameters on the frequency
parameters of graphene sheet is investigated for skew
and trapezoidal graphenes. Di�erent combinations of
boundary condition are also investigated. It can be also
concluded that the classical plate theory can be suitable
or an alternative approach for some special types of
graphene. Also, the current transformation can be used
for modeling of multilayer-graphene and other shaped
graphene sheets with a quadrilateral domain.
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