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Abstract. Pull-in instability of Boron Nitride Nano-Beam (BNNB) under the combined
electrostatic and Casimir force as nano-switch is presented. Using Euler-Bernoulli Beam
(EBB) theory, nonlocal piezoelasticity theory, von K�arm�an geometric nonlinearity and
virtual work principle, the nonlinear governing di�erential equations are obtained. The
equations are discretized by two types of numerical methods, namely the Modi�ed Adomian
Decomposition (MAD) method and Di�erential Quadrature Method (DQM). Analysis
of lower pull-in voltage values is considered for nano-switches with di�erent boundary
conditions. The detailed parametric study is considered, focusing on the remarkable e�ects
of nonlocal parameter, beam length, boundary condition, geometrical aspect ratio and gap
distance on the behavior of the pull-in instability voltage. The obtained results of DQM
and MAD are compared with published relevant study. This work is hoped to be useful in
designing and manufacturing of Nano-Electro-Mechanical Systems (NEMS) in advanced
applications such as high-tech devices and nano-transistors with great applications in
computer industry.

c 2014 Sharif University of Technology. All rights reserved.

1. Introduction

BNNBs have the same atomic structure such as Carbon
Nano-Beams (CNBs) but many interesting properties
including a more stable electronic property and better
resistance to oxidation at high temperatures (� 900�C)
and possessing strong piezoelectric characteristics are
concerned [1]. They were introduced in the middle
of 1990s similar to CNBs as regards to high elastic
modulus and super structural stability. BNNBs are
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therefore considered as a promising material to be
employed as sensors and actuators, due to their unique
structural, mechanical, thermal, electrical and chem-
ical properties. Elastic properties of Boron Nitride
Nano-Tubes (BNNTs) and Boron Nitride Nano-Sheet
(BNNS) are reported by Oh [2].

Song et al. [3] proposed an atomistic-based contin-
uum theory for BNNTs based on interatomic potentials
for boron and nitrogen to study the Young's modulus,
stress-strain curve and onset of bifurcation in Single-
Walled Boron Nitride Nanotube (SWBNNT) under
tension.

In recent years, a large amount of research works
have been carried out on the buckling and vibration
of the nano-beam in various structure and condition.
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In order to demonstrate the mechanical modeling of
these structures, the higher-order continuum theories,
such as partial nonlocal elasticity, exact nonlocal
elasticity, nonlocal piezoelectricity, modi�ed couple
stress, strain gradient elasticity and surface elasticity
theory have been recently employed. Based on the
partial nonlocal elasticity theory, Ghorbanpour Arani
et al. [1] investigated the buckling of Double-Walled
Boron Nitride Nano-Tubes (DWBNNTs) embedded in
bundle of Carbon Nano-Tubes (CNTs) using nonlocal
piezoelasticity cylindrical shell theory. In addition,
Ghorbanpour Arani et al. [4] studied about nonlocal
vibration of SWBNNT under a moving nano-particle.
The e�ects of electric �eld, elastic medium, slenderness
ratio and small scale parameter were investigated on
the vibration behavior of SWBNNT under a moving
nanoparticle. Results indicated the importance of
using surrounding elastic medium in decrease of nor-
malized dynamic deection.

On the other hand, no report has studied the
modeling of BNNBs for nano-switches. Nano-switches
are fundamental devices in NEMS such as nanoscale
actuators, pressure sensors and moving valves. A
typical NEMS switch includes two parallel conducting
electrodes, one of them is �xed and the other is
exible.

Moveable electrode is adjusted by an electrical
potential di�erence, which creates it between the two
electrodes. Direct Current (DC) voltage between the
two electrodes results in the deection of deformable
electrodes and a consequent change in the system ca-
pacitance. In addition, the intermolecular interaction
force also acts on the moveable electrode, which is
directly dependent on the gap between them. Counter-
acting the electrostatic gathering intermolecular forces
is the elastic force, which wants to restore the moveable
electrode to its original position.

So the equilibrium position of the moveable elec-
trode is de�ned by balancing of the intermolecular,
electrostatic and elastic forces. When the voltage
increases beyond a critical value, the moveable elec-
trode becomes unstable and collapses onto the �xed
electrode, so the nano-switch is in the ON state. For
this state, it has seen an inherent instability, known as
pull-in phenomenon that has been �rst observed experi-
mentally [5-6]. The voltage and deection of the switch
at this state are called the pull-in displacement and
pull-in voltage, respectively. An applied Alternating
Current (AC) causes harmonic motions of the system,
and resonant applications are obtained [6-14].

In addition, the reduction of the separation be-
tween the components of the switch will require the
NEMS designs to account for intermolecular forces. In
this case, the Casimir force has been considered. There
is a speci�c distance for separation gap, (g0 � 1 �m),
that the moveable electrode is a�ected by this force.

The Casimir e�ect on the pull-in gap and pull-
in voltage of NEMS switches was studied in [15-16].
Other works on nanoscale surface forces, such as the
Casimir force were studied in [17-20]. Casimir force
can be connected with the existence of zero-point
vacuum oscillations of the electromagnetic �eld [18-
20]. By using quantum �eld theory, these forces are
formulated in [17-18]. It is determined that the Casimir
force is more e�ective at larger separation distances
between the components than the other intermolecular
forces, like van der Waals force [17-20]. A distributed
parameter model was studied by Ramezani et al. [21]
to derive the pull-in instability of cantilever nano-
mechanicall systems. The Casimir force between the
electrodes is inversely proportional to the fourth power
of the gap.

Yang et al. [22] discussed the pull-in instability
of nano-switches under an electrostatic force and in-
termolecular Casimir force within nonlocal elasticity
theory to account for the small scale e�ect. These
studies are limited only to geometrically linear equa-
tions. Xiao et al. [23] studied pull-in instability of
geometrically nonlinear micro-switches subjected to an
electrostatic and Casimir forces. Although, this study
has considered the geometrically nonlinear but it is
about MEMS without any items of nanoscale. Also,
Batra and his coworkers [24-25] considered von Karman
geometric nonlinearity and Casimir force and devel-
oped the Reduced-Order Models (ROM) for the pull-
in instability of the electrostatically actuated clamped
rectangular, circular, and elliptic micro-plates, respec-
tively. For a wide class of electrostatic NEMS bases,
the deformable electrode is initially a at body whose
thickness, h, is much smaller than its characteristic in-
plane dimension [26].

None of the above mentioned studies have con-
sidered the nonlinear higher order terms of strains
and coupling e�ect of electro-mechanical relation based
on the charge equation and nonlocal elasticity model
presented by Eringen [27], which can enhance the
accuracy of the results.

However, to date, no report has been found in
the literature on the nonlinear pull-in voltage and
deection of BNNBs under intermolecular interaction
force, and especially Casimir force. Herein, it is aimed
to provide the nonlinear and nonlocal pull-in instability
of BNNBs under direct voltage and combined forces.
The higher order nonlinear governing equations are
derived based on principle of virtual work and DQM
is presented to demonstrate the e�ects of small scale
parameter, electric potential and combined forces on
pull-in phenomenon of the BNNBs which are discussed
in details. In order to validate of this study, the
linear equation is solved by MAD to evaluate the
results with DQM and those obtained by Xiao et
al. [23].
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Figure 1. Con�guration of BNNT under the combined
electrostatic and Casimir force for nano-switch.

2. Mathematical model

Figure 1 depicts the structure of a typical nano-switch
where the components are a �xed electrode as a ground
plane and a moveable electrode as a BNNB of length L,
width b and thickness h. It is separated by a dielectric
spacer with an initial gap, g0. V denotes the applied
voltage (DC), so the beam deects towards the �xed
electrode under action of distributed electrostatic force,
Fe, and intermolecular Casimir force, Fc.

2.1. Piezoelasticity EBB
In order to express the equation of equilibrium in
the terms of mechanical and electrical components of
displacement, the stress-strain relation for piezoelectric
materials is given by [28]:

f�g = [C]f"g � [h]T fEg;
fDg = [h]f"g+ [2]fEg; (1)

where f�g, f"g, fEg and fDg are classical stress,
strain, electric �eld tensor and Electric displacement
tensor, respectively. Likewise [C], [h] and [2] denote
elastic sti�ness, piezoelectric and dielectric constants,
respectively. In beam theory, stress-strain relation for
piezoelectric materials under electro axial loading is
given as:

�xx = E("xx)� h11Ex: (2)

Electric displacement relation based on piezoelasticity
theory can be expressed as:

Dx = h11("xx)+ 211 Ex; (3a)

where 211 is the dielectric constant and Ex is given
as [28]:

Ex = �@�
@x
; (3b)

where � is electric potential. The e�ect of electric
potential is seen in x-direction and � must satisfy the
electric boundary conditions like displacement compo-
nents. According to Ke et al. [29], the electric potential
can be assumed as a linear distribution of the electric
potential in the thickness direction of the piezoelectric

nano-beams. In this assumption, although there is
an external electric voltage which can be generated
by deection and deformation, this external voltage
is completely di�erent from pull-in voltage and has
no e�ect on the amount of pull-in voltage. To date,
this type of voltage is being applied to smart control
structures as sensors.

2.2. Strain-displacement relations
Based on EBB theory, the displacement �eld ( ~U , ~W )
of an arbitrary point on the moveable nano-beam can
be expressed as [4]:

~U(x; z) = �z @W (x)
@x

; (4)

~W (x; z) = W (x); (5)

whereW (x) is the transverse displacements of the point
on the mid-plane (i.e., Z = 0). Using Eqs. (4) and (5),
the strain-displacement relation can be written by von
Karman-type nonlinear strain as:

"xx = �z @2W
@x2 +

1
2

�
@W
@x

�2

;

xz = 0;

"zz = 0: (6)

2.3. Nonlocal elasticity theory
Based on the nonlocal elasticity theory, the stress
tensor at a reference point depends not only on the
strain components at same position but also on all
other points of the body. According to nonlocal
elasticity theory, the basic equations for an isotropic
linear homogenous nonlocal elastic body neglecting the
body force are given as [27]:

�ij;j = 0;

�ij(X)=
Z
V

�
���� ~X� ~X 0

��� ; �� tijdV � ~X 0� ; 8 ~X2V;

tij = �ijkl"kl;

"ij =
1
2

(ui;j + uj;i): (7)

The terms �ij , tij , "ij and �ijkl are the nonlocal
stress, classical stress, classical strain and fourth order
elasticity tensors, respectively. The volume integral
is over the region V occupied by the body. Eq. (1)
represents the relations between nonlocal and classical
stresses based on Eringen's nonlocal continuum theory
in which the kernel function �( ~X � ~X 0j; �) is the
nonlocal modulus. The nonlocal modulus acts as an
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attenuation function incorporating into constitutive
equations where the nonlocal e�ects at the reference
point (i.e. ~X) can be produced by local strain at the
source (i.e. ~X 0). The term j ~X � ~X 0j represents the
distance in the Euclidean form and � is a material
constant that depends on the internal (e.g. lattice
parameter, granular size and distance between the C-C
bonds) and external characteristics lengths (e.g. crack
length and wave length). Material constant � is de�ned
as [27]:

� =
e0a
l
; (8)

where e0 is a constant appropriate to each material.
The parameter e0 was given as 0.39 which has to be
determined from experiments by matching dispersion
curves of plane waves. Also, parameter a shows internal
characteristic length, and it was chosen as the length
of C-C bond, which is 0.142 nm. The term l is
the external characteristic length of the nanostructure.
The nonlocal constitutive stress-strain relation at small
scale can be simpli�ed as:

(1� �2l2r2)�ij = tij ; (9)

where r2 is the Laplacian. The above nonlocal consti-
tutive equation (Eq. (9)) has been recently used widely
for the study of micro- and nano-structure elements.
Therefore, Eqs. (2) and (3a) in nonlocal form can ber
written as follows [27]:�

1� (e0a)2r2��xx = E("xx)� h11Ex; (10)�
1� (e0a)2r2�Dx = h11("xx)+ 211 Ex: (11)

2.4. Electrostatic force
From an electrical point of view, the system behaves as
a variable gap capacitor. By assuming that g0

L << 1,
the value Fe of the electrostatic force acting on the
deformable electrode is given by [30]:

Fe =
"0bV 2

2(g0 �W )2

�
1 + 0:65

(g0 �W )
b

�
; (12)

in which "0 = 8:854 � 10�12 C2N�1m�2 is the
permittivity of vacuum. Therefore, the expression for
the electrostatic force depends only on the gap (g0).
Also, for small strains and moderate rotations involved,
Fe is assumed to act along the normal to the �xed
beam. It should be noted that the second term of
Eq. (10), 0:65 "0V 2

2(g0�W ) , is the fringing �eld force. Based
on Ghorbanpour et al. [31], fringing �eld force has a
great e�ect on the pull-in phenomenon. The pull-in
voltage increases when the fringing �eld is eliminated
from equations, and so, switches need higher voltage to
pull-in on the ground plane.

2.5. Intermolecular force
The Casimir force between two surfaces depends on
the dielectric properties of the surfaces and also on the
geometric parameters [32,33]. The Casimir force per
unit length of the actuator is [34]:

Fc =
�2�hcb

240(g0 �W )4 ; (13)

where �h = 1:055 � 10�34Jc is the reduced Planck's
constant and c = 2:998 � 108 m

s is the speed of light.
When actuators are wider enough than the separation
distance, Eq. (13) can provide acceptable results [32].
In this study, the nano-actuators that are wider than
the separation distance ( g0

w < 1) are considered. For
separation distances larger than 1 �m, the interaction
between the bodies is described only by the Casimir
force, (see Eq. (12)). Consequently, at large separation
distances the interaction force is independent of the
material properties of bodies.

Regarding Eqs. (12) and (13), it should be stated
that when an electrical potential di�erence is created
between the two electrodes, the induced electrostatic
charge gives rise to electrostatic force which deects
the moveable electrode towards the �xed electrode.
In addition, the intermolecular interaction force which
is directly dependent on the gap between them also
acts on the moveable electrode, altering its deec-
tion. Counteracting the electrostatic and intermolec-
ular forces is the elastic force, which tries to restore
the moveable electrode to its original position. With
continuing reduction in the size, the surface traction
due to molecular interaction between two surfaces plays
an important role in the deection of micro-switches
and can be described by the Casimir force or the
van der Waals force, depending on the gap between
the electrodes [17,35]. When the gap is less than
20 nm, in this case, the intermolecular force between
two surfaces is estimated as the vdW attraction and
varies as the inverse cube of the separation and is
a�ected by material properties [34]. For separations
large enough (such as above 20 nm), the intermolecular
force between two surfaces can be described by the
Casimir interaction which is proportional to the inverse
fourth power of the separation and it is not a�ected by
material properties [17].

3. Governing equation

The total potential energy, V , of nano-switch is the
sum of strain energy, U and Wc, We as external works
for Casimir force, and electrostatic force, respectively,
which is expressed as:

V = U �Wc �We: (14)

The strain energy of BNNB can be written as:
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U =
1
2

LZ
0

Z
A

("xx � Ex)
�
�xx
Dx

�
dAdx; (15)

using the resultant forces and moments in the middle
surface of BNNB which are de�ned as:

Nx =
Z
A

�xxdA; (16)

Mx =
Z
A

�xxzdA: (17)

The total strain energy can be written as:

Us =
1
2

LZ
0

" 
�Mx

@2W
@x2 +

1
2
Nx
�
@W
@x

�2
!

�
0@Z
A

�
Dx

�
�@�
@x

��
dA

1A35 dx: (18)

The external work due to intermolecular forces and
electrostatic force are written as:

Wv =
1
2

LZ
0

(Fc + Fe)Wdx =
1
2

LZ
0

�
�2�hcb

240(g0 �W )4

+
"0bV 2

2(g0 �W )2

�
1 + 0:65

(g0 �W )
b

��
Wdx:

(19)

By employing the principle of virtual work (�(Us �
Wv) = 0) and setting the coe�cient of mechanical and
electrical to zero, the governing di�erential equilibrium
equations are derived as:

�W :�
�@2Mx

@x2

�
+
�
@Ne
@x

��
@W
@x

�
+Ne

@2W
@x2 � (Fc + Fe) = 0; (20)

��:

@Dx

@x
= 0; (21)

where Ne = �h11A@�
@x is electrical force. Using

Eqs. (3), (5), (10) and (11), Eqs. (15) and (16) can
be expanded as:

Mx � (e0a)2 @2Mx

@x2 = �EI @2W
@x2 ; (22)

Dx � (e0a)2r2Dx = h11

 
�z @2W

@x2 +
1
2

�
@W
@x

�2
!

+ 211

�
�@�
@x

�
: (23)

Using Eringen's nonlocal elasticity model and Eqs. (22)
and (23), the motion equations (i.e. Eqs. (20) and (21))
can be drived as: 

EI
@4W
@x4

!
� h11A

 
@2�
@x2

! 
@W
@x

!
� h11A

@�
@x

 
@2W
@x2

!
=
�2�hcb
240

 
1

(g0 �W )4

� (e0a)2 41
(g0 �W )5

 
@2W
@x2

!

� (e0a)2 20
(g0 �W )6

 
@W
@x

!2!
+

 
"0bV 2

2

 
1

(g0 �W )2 +
0:65

b(g0 �W )

� (e0a)2
�

2
(g0 �W )3 +

0:65
(g0 �W )2

� 
@2W
@x2

!

� (e0a)2

 
6

(g0�W )4 +
1:3

(g0�W )3

!
�
 
@W
@x

!2!
;
(24)

h11

�
@W
@x

��
@2W
@x2

�
� 211

�
@2�
@x2

�
= 0: (25)

After that, we can de�ne dimensionless parameters as:

�w =
W
g
; � =

(e0a)
L

;

� =
"0bV 2L4

2g3
0EI

; � =
�AbL4

6�EIg4
0
;

�x =
x
L
; �� =

h11L
AEI

�;

� =
Ag2

0
I
;  =

211 EI
Ah2

11g2
0
;

f = 0:65
g0

b
: (26)

By substituting Eq. (26) into Eqs. (24) and (25), the
dimensionless equilibrium equations can be rewritten
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as:�
@4 �w
@�x4

�
�
�
@2 ��
@�x2

��
@ �w
@�x

�
�
�
@ ��
@�x

��
@2 �w
@�x2

�
=
�
f�

1
(1� �w)

+�
1

(1� �w)2 +Rc
1

(1� �w)4

�
�
 
f��2 1

(1� �w)2 + 2��2 1
(1� �w)3

+ 4Rc�2 1
(1� �w)5

!�
@2 �w
@�x2

�
�
 

2f��2 1
(1� �w)3 + 6��2 1

(1� �w)4

+ 20Rc�2 1
(1� �w)6

!�
@ �w
@�x

�2
!
; (27)

�
@ �w
@�x

��
@2 �w
@�x2

�
� 

�
@2 ��
@�x2

�
= 0: (28)

Three di�erent boundary conditions of the moveable
electrode are considered in the present analysis and the
above equations are solved by the boundary conditions:

Clamped-Clamped:

at �x = 0; 1 �w = 0;
@ �w
@�x

= 0: (29a)

Clamped-Simply:

at �x = 0 �w = 0;
@ �w
@�x

= 0;

at �x = 1 Mx = 0) @2 �w
@�x2 = 0: (29b)

Simply-Simply:

at �x = 0; 1 �w = 0; Mx = 0) @2 �w
@�x2 = 0:

(29c)

4. Solution method and numerical results

No published report has been found in the literature
against which the output of this paper could be
validated. So, we used two di�erent numerical methods
(DQM and MAD) to solve the equations and validate
the �gures and results.

4.1. DQM
In this method, the partial derivative of a function with
respect to spatial variables at a given discrete point is
approximated as a weighted linear sum of the function
values at all discrete points chosen in the solution
domain. According to this method, the functions �w,
�� and their derivatives are approximated as [36-38]:

dk

d�xk
f �w; ��g���x=�xn

=
NX
m=1

C(k)
nmf �wm; ��mg; (30)

where N is the grid points along �x and Cnm represent
the Lagrange interpolation polynomial as:

C1
nm =

�(�xn)
(�xn � �xm)�(�xm)

;

n;m = 1; 2; � � � ; N ; n 6= m; (31a)

where �(�xn) in the above equation is de�ned as:

�(�xn) =
NY
m=1

(�xn � �xm); n 6= m;

C(1)
nm = C(1)

mm = �
NX
t=1

C(1)
nm;

n = 1; 2; � � � ; N ; n 6= m; (31b)

where Cnm represents the weighting coe�cients. The
weighting coe�cients for the high order derivatives are
determined via matrix multiplication.

C(2)
nm =

NX
t=1

C(1)
nt C

(1)
tm ; C(3)

nm =
NX
t=1

C(1)
nt C

(2)
tm ;

C(4)
nm =

NX
t=1

C(1)
nt C

(3)
tm : (31c)

Applying DQM approximations to the governing equa-
tions (Eqs. (27) and (28)) we obtain:

NX
t=1

C(4)
nm �wm �

NX
t=1

C(2)
nm

��m
NX
t=1

C(1)
nm �wm

�
NX
t=1

C(1)
nm

��m
NX
t=1

C(2)
nm �wm=q1i+q2i

NX
t=1

C(2)
nm �wm

+ q3i

 
NX
t=1

C(1)
nm �wm

!2

;
(32a)

NX
t=1

C(1)
nm �wm

NX
t=1

C(2)
nm �wm � 

NX
t=1

C(2)
nm

��m = 0; (32b)
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where q1i, q2i and q3i are de�ned as:

q1i=+
�
f�

1
(1� �wi)

+�
1

(1� �wi)2 +Rc
1

(1� �wi)4

�
;
(33a)

q2i =�
�
f��2 1

(1� �wi)2 + 2��2 1
(1� �wi)3

+ 4Rc�2 1
(1� �wi)5

��
@2 �wi
@�x2

�
; (33b)

q3i =�
�

2f��2 1
(1� �wi)3 + 6��2 1

(1� �wi)4

+ 20Rc�2 1
(1� �wi)6

��
@ �wi
@�x

�2

: (33c)

Accordingly, the boundary conditions become:

Clamped-Clamped:

�x = 0 �w1 = 0;
NX
t=1

C(1)
1m �wm = 0;

�x = 1 �wN = 0;
NX
t=1

C(1)
Nm �wm = 0: (34a)

Clamped-Simply:

�x = 0 �w1 = 0;
NX
t=1

C(1)
1m �wm = 0;

�x = 1 �wN = 0;
NX
t=1

C(2)
Nm �wm = 0: (34b)

Simply-Simply:

�x = 0 �w1 = 0;
NX
t=1

C(2)
1m �wm = 0;

�x = 0 �wN = 0;
NX
t=1

C(2)
Nm �wm = 0; (34c)

denoting the unknown static displacement and poten-
tial electric �eld vector by X = f �wTi ; ��Ti gT and the
transverse linear and nonlinear force vector by qL =
fqLigT , q = fqigT , respectively. Voltage Iteration (VI)
algorithm is used to obtain the linear and nonlinear
solutions of pull-in parameters.

For solving Eqs. (32) and (33), we �rst reduce
Eq. (32) to the geometric linearity equation. Then, by
reducing the right hand side of Eq. (32) to the linear

part via the Taylor series expansion (qL = fqLigT ),
the equations are solved by choosing a trial voltage,
then increasing the trial voltage (V ) and repeating
the earlier steps, until �w converges. So, the last
trial voltage V , under which the deection is solvable,
is the linear pull-in voltage and the corresponding
deection is the linear pull-in deection. This method
is named Iteration Voltage (IV) and was used in [23]
to obtain pull-in parameters. Afterward, the geometric
nonlinearity answer is obtained by iteration from sub-
stituting the linear answer to the algebraic equation
system.�

K1w K1�
K2w K2�

� �
�wi
��i

�
=
�
qi
0

�
: (35)

The above steps are repeated to obtain the nonlinear
pull-in parameters. The last trial voltage V under
which the deection is convergent is the nonlinear
pull-in voltage VPI .

4.2. Numerical results and discussion
The results are based on the following data used for the
geometric and material properties of BNNBs. Geome-
try and constitutive material of the beams are showed
in Table 1 [4,21,23]. In the following subsections,
the e�ects of small scale, length of beam changes,
electric potential, Casimir force, pull-in voltage and
separation gap BNNBs are studied and discussed in
details.

Plotted in Figure 2 are curves showing the e�ect of
small scale e�ect (�) on the maximum deection versus
applied voltage V that it was derived from the answer

Table 1. Geometric and material parameters of
nano-beam (BNNB).

b
(�m)

h
(�m)

g0

(�m)
E

(Tpa)
211

(c/m)
e0a

(nm)
100 1.5 1 1.8 0.95 0.118572

Figure 2. E�ects of nonlocal parameter on deection.
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Figure 3. Variation of the boundary conditions on
applied voltage V with the maximum deection.

of nonlinear equations. As can be seen, considering
small scale e�ect decreases the deection of BNNBs
especially under higher voltages.

Figure 3 illustrates the relationship between ap-
plied voltage V and the maximum deection �wmax of
the nano-beams with (� = 0:1). As expected, the C-
C nano-beam has considerably higher pull-in voltage
than the other two types while the C-S nano-beam has
the lower pull-in voltage and the lowest pull-in voltage
belongs the S-S boundary condition. Before pull-in
condition, the nonlinear deection is smaller than the
linear ones at the same applied voltage. The pull-in
voltage and deection are obtained from the nonlinear
analysis, however, are larger than those calculated from
the linear analysis.

Table 2 presents the convergence study of the
present analysis by comparing the pull-in voltages of
S-S nano-beams of di�erent length with varying total
number of sampling points N . Material properties are
given in Table 1. For selected values of (�), the pull-in
voltages of the switch can be extracted from Table 3
for L = 310 �m.

The pull-in voltage VPI with varying gap g0 is
given in Figure 4. It is noted that with an increase
in gap values, the calculated pull-in voltage VPI from
both the nonlinear and the linear analysis increases.

Figure 5 indicates the maximum deection �wmax
versus pull-in voltage of C-C BNNB with varying

Table 3. Pull-in voltage of S-S BN nano-beams with
varying (�).
L = 310

(�m)
� = 0 � = 0:2 � = 0:3

N = 13
Linear 17.29 19.03 22.18

Non-linear 19.95 19.63 22.78

N = 17
Linear 17.29 19.03 22.18

Non-linear 19.95 19.63 22.78

Figure 4. Variation of BNNT pull-in voltage with various
gap (g0).

Figure 5. Maximum deection against length of BN
(C-C) nano-beam.

Table 2. Pull-in voltage of S-S BN nano-beams with (� = 0:1).

L (�m)
N = 7 N = 11 N = 15

Linear Non-linear Linear Non-linear Linear Non-linear

510 6.53 7.25 6.53 7.25 6.53 7.25

410 10.11 11.24 10.11 11.24 10.11 11.24

310 17.68 19.66 17.68 19.66 17.68 19.66

210 38.53 44.67 38.53 44.67 38.53 44.67
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Figure 6. Dimensionless pull-in voltage versus
dimensionless beam length (Lc = 510) for three boundary
conditions.

Figure 7. Maximum deection with various lengths to
thickness ratio with di�erent values of small scale.

length. It can be seen that the pull-in voltage decreases
with an increase in length magnitudes of beam, which
indicates that the nano-beam with a lower length can
sustain a higher voltage. The results for nano-beams
under other two boundary conditions are compared in
Figure 6. The e�ect of boundary conditions on the
pull-in voltage versus non-dimensional beam length is
demonstrated in Figure 6. The results indicate that
increasing the non-dimensional beam length decreases
pull-in voltage. As expected, the C-C nano-beam
is more stable than the other types of boundary
conditions.

The e�ects of small scale e�ect (�) on the pull-in
voltage VPI versus length ratio (L=h) for V = 12 is
shown in Figure 7. It is noted that with an increase in
length ratio, the pull-in voltage VPI decreases. Also,
increase in the value of small scale e�ect lead to a
decrease in the maximum deection.

Figure 8 represents the maximum deection
( �wmax) versus various 6( gh )2 ratio for di�erent values of
small scale. In realizing the inuence of the small scale

Figure 8. Maximum deection with various 6( gh )2 ratios
with di�erent values of small scale.

Figure 9. Variation of non-dimensional of electric
potential along the (C-C) nanobeam with di�erent values
of small scale.

e�ect, Figure 8 shows how the dimensionless maximum
deection changes with respect to the dimensionless
6( gh )2 ratio. It is found from Figure 8 that �wmax
for the BNNB decreases with increase of small scale
parameter. Figure 9 shows distribution of electric
potential � for all grid points, which located on beam
length with di�erent values �. It is clear that electric
potential at boundary conditions is constant and equal
to zero in which its curves is changed with variation
of �. It is remarkable that with an increase in �,
changes in the electric potential decrease, too. This is
because the electric potential is directly proportional
to deection.

As can be seen from Figure 10, increasing of the
small scale parameters shifts curves down. However,
according to speci�c characteristic of piezoelectric, any
increase in the value of � leads to an increase in the
pull-in voltage. Also, the magnitudes of voltage have
direct proportion with electric potential.
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Figure 10. E�ect of nonlocal parameter on
non-dimensional electric potential with various voltages.

4.3. MAD
For solving Eq. (27) by MAD and reducing it to the
common form, it is convenient to rewrite Eq. (27) as:�

@4 �w
@�x4

�
=
�
f�

1
(1� �w)

+�
1

(1� �w)2 +Rc
1

(1� �w)4

�
:
(36)

Noted that the above equation is linear form of
Eq. (27).

Clamped-Clamped:

in �x = 0 : �w = 0; �w0 = 0;

in �x = 1 : �w = 0; �w0 = 0; (37)

the solution process of Eq. (36) becomes:�
@4 �w
@�x4

�
=
�

A
(1� �w)

+
B

(1� �w)2 +
D

(1� �w)4

�
:

A = f�; B = �; C = Rc: (38)

The deection of BNNBs in Eq. (36) can be represented
as [37-41]:

�w(x) =
X

�wn = �w(0) +A0x+B0x
2

2
+ C 0x

3

3!

+ L�1
�X

fA
�

+ L�1
�X

fB
�

+ L�1
�X

fD
�
; (39)

where fA = A
1� �w , fB = B

(1� �w)3 , fD = D
(1� �w)4 and

the constants A0, B0 and C 0 can be determined by
boundary conditions. Also L�1 is an inverse operator
which is considered a fourfold integral operator de�ned

by:

L�1(:) =
xZ

0

xZ
0

xZ
0

xZ
0

(:)dxdxdxdx: (40)

Based on this identi�cation, the method formally
admits the use of the recursive relation:26666666666666664

�w0(x) = 0;

�w1(x) =A0x+B0x
2

2
+ C 0x

3

3!
+ L�1

�X
fA0

�
+ L�1

�X
fB0

�
+ L�1

�X
fD0

�
;

�wk+1(x) =L�1
�X

fAk
�

+ L�1
�X

fBk
�

+ L�1
�X

fDk
�
; ki0;

(41)

for the determination of the components �wk(x) of
�w(x). Applying the above data for the Fixed Fixed
switch, and applying Eqs. (36)-(41) to the equations in
Appendix A results in the governing equations:

�w(x) = �w0 + �w1 + �w2; (42)

�w(x) =0 +
�
B0
2!
x2 +

C 0
3!
x3 +

(f � � + � +Rc)
4!

x4
�

+ (f � � + 2� + 4Rc)

�
�
B0
6!
x6+

C 0
7!
x7+

(f � � + � +Rc)
8!

x8
�
:
(43)

The constants A0, B0 and C 0 can be determined
by solving the resulted algebraic equation from the
boundary condition at �x = 1. 55 The answer obtained
by MAD is compared with DQM's answer of linear
motion equation (i.e. Eq. (35)) and nonlinear one (i.e.
Eqs. (27)) for clamped-clamped boundary condition in
Figure 11.

Figure 11 illustrates curves showing a simple
comparison between DQM's answers of BNNB and
the answer of the MAD method for Eq. (36). In the
lower voltage, the di�erence between answers of those
methods is little and is more precise.

To date, no experimental results have been pub-
lished in the literature on the Boron Nitride nano-
switches but it is possible to compare our numerical re-
sults with the published papers in this �eld. Figure 12
shows comparison of the present results with those
reported by Xiao et al. [23]. In mentioned study, the
authors worked on nonlinear analysis of micro-switches
modeled by EBB. In that study, the deection equation
was solved by DQM in which there was a comparison
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Figure 11. Comparison of pull-in parameters by two
methods for (C-C) BNNB.

Figure 12. Comparison of maximum deection between
the present work and Xiao et al. [23].

between voltage and the maximum deection. Now,
their results have been compared with this work which
is calculated by MAD method. Also, it is found from
this �gure that the obtained results from MAD for
geometric linearity equation is more accurate in lower
voltages.

5. Conclusions

The pull-in phenomenon of BNNBs using nonlocal
piezoelasticity theory under electrostatic and Casimir
force was investigated. The governing equations were
solved numerically through DQM and MAD to obtain
pull-in voltage. It could be realized that the com-
parison of pull-in voltage, with respect to nonlocal
parameters, with electric potential, length of beam and
gap were investigated. The major conclusions obtained
are as follows:

1. Increase in the values of small scale parameter leads
to increase in the pull-in voltage magnitude to reach
the instability condition.

2. The clamped-clamped boundary condition has
higher value of pull-in voltage.

3. Increasing the value of the gap leads to increase in
the magnitude of the pull-in voltage.

4. It is observed that an increase in the value of small
scale parameter causes to decrease the potential
�eld in the length of the beam.

5. Comparing between MAD and DQM, it is found
that in lower voltage values, the results have a good
convergence.
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Appendix A

The variables of Eq. (39) in order to obtain the
deection of BNNB can be expressed as:

fA

26666666666666666666664

fA0 = fA0 ( �w(0)) = A

fA1 = �w(1)f 0A ( �w(0)) = �w(1)A

fA2 = �w(2)f 0A ( �w(0)) +
�w2(1)

2!
f 00A ( �w(0))

= �w(2)�A+ �w(1)2 �A
...

fAk+1 = �w(k + 1)f 0A ( �w(0)) + � � �
+

�wk+1(1)
(k + 1)!

fk+1
A ( �w(0))

(A.1)

fB

26666666666666666666664

fB0 = fB0 ( �w(0)) = B

fB1 = �w(1)f 0B ( �w(0)) = �w(1)� 2B

fB2 = �w(2)f 0B ( �w(0)) +
w2(1)

2!
f 00B ( �w(0))

= �w(2)� 2B + �w(1)2 � 3B

...

fBk+1 = �w(k + 1)f 0B ( �w(0)) + � � �
+

�wk+1(1)
(k + 1)!

fk+1
B ( �w(0))

(A.2)

fD

26666666666666666666664

fD0 = fD0 ( �w(0)) = D

fD1 = �w(1)f 0D ( �w(0)) = �w(1)� 4D

fD2 = �w(2)f 0D ( �w(0)) +
�w2(1)

2!
f 00D ( �w(0))

= �w(2)� 4D + �w(1)2 � 10D

...

fDk+1 = �w(k + 1)f 0D ( �w(0)) + � � �
+

�wk+1(1)
(k + 1)!

fk+1
D ( �w(0))

(A.3)

Substituting Eqs. (A.1)-(A.3) into Eq. (39) yields:

�w1(x) =
�
B0
2!
x2 +

C 0
3!
x3 + L�1(fA0)

+ L�1(fB0) + L�1(fD0)
�

=
�
B0
2!
x2 +

C 0
3!
x3 +

(f � � + � +Rc)
4!

x4
�
;

(A.4)

�w2(x) = L�1(fA1) + L�1(fB1) + L�1(fD1)

= (A+ 2B + 4D)
�
B0x

6

6!
+ C 0x

6

6!

+ (A+B +D)
x8

8!

�
: (A.5)

And this procedure can be continued to reach a more
accurate result. As example, for �w3:

�w3(x) =L�1(fA2) + L�1(fB2) + L�1(fD2)

=A
�

(A+ 2B + 4D)
�
B0 x10

90� 56� 6!

+ C 0x
11

11!
+
A+B +D

12!
x12
�

+B0 A+B +D
336� 72� 10

x10

+ C 0 A+B +D
720� 144� 11

x11

+
(A+B +D)2

242 � 90� 132
x12
�

+B
�

2(A+ 2B + 4D)
�
B0 x10

90� 56� 6!

+ C 0x
11

11!
+
A+B +D

12!
x12
�

+B0 A+B +D
112� 72� 10

x10

+ C 0 A+B +D
240� 144� 11

x11

+
(A+B +D)2

242 � 30� 132
x12
�

+D
�

4(A+ 2B + 4D)
�
B0 x10

90� 56� 6!
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+ C 0x
11

11!
+
A+B +D

12!
x12
�

+B0A+B +D
336� 72

x10

+ C 0 A+B +D
24� 144� 11

x11

+
(A+B +D)2

242 � 9� 132
x12
�
: (A.6)
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