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Abstract. With respect to stochastic hybrid multi-attribute decision making problems
with interval probability and unknown attribute weight, a multi-attribute decision making
method, based on the prospect theory, is proposed. To begin with, the hybrid attribute
values, including real numbers, interval numbers, triangular fuzzy numbers, linguistic
variables, uncertain linguistic variables and intuitionistic fuzzy values, are converted to
trapezoidal fuzzy numbers, and interval probability is expressed by trapezoidal fuzzy
probability. The prospect value function of the trapezoidal fuzzy numbers for every
alternative, under every attribute, and every natural state, based on the decision-making
reference point of each attribute and the weight function of trapezoidal fuzzy probability, is
constructed, and, then, the prospect value of the attribute for every alternative is calculated
through the prospect value function and the weight function. Then, a maximizing deviation
method is used to determine the attribute weights and the weighted prospect value of the
alternative is obtained by weighing the prospect values. All the alternatives are ranked
according to the expected values of the weighted prospect values. Finally, an illustrate
example is given to show the decision-making steps, and the in
uence on decision making
of di�erent parameter values in value and weight functions and di�erent decision-making
reference points.

c
 2014 Sharif University of Technology. All rights reserved.

1. Introduction

Multi-attribute decision-making is an important part
of modern decision science, and it has a wide range of
applications, socially and economically. Because of the
complexity and unknowingness of objective things, and
the vagueness of the human mind, most multi-attribute
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decision making problems are uncertain, which can
be expressed by the fuzziness and randomness of the
attribute values. In fuzziness, the decision attributes
cannot be fully represented by quantitative data in
general. Some attribute values are more suitable
for using fuzzy numbers, including interval numbers,
triangular fuzzy numbers, trapezoidal fuzzy numbers,
linguistic variables, interval linguistic variables, and
intuitionistic fuzzy values, etc. Typically, in a decision-
making problem, there are di�erent types of attribute
value, and we call this decision problem a hybrid
decision problem. In randomness, attribute values of
each alternative can be expressed by random vari-
ables, which can be changed by di�erent natural
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states. Decision makers cannot ascertain the true
state in the future, but they can give a variety of
possible natural states and their probability distribu-
tion.

At present, there is relatively little research
into stochastic hybrid multi-attribute decision making
problems in which fuzziness and randomness appear
simultaneously. Liu and Liu [1] proposed a new
de�nition of the expected value operator of a random
fuzzy variable, and a random fuzzy simulation ap-
proach, which combines fuzzy simulation and random
simulation, is designed to estimate the expected value
of a random fuzzy variable. Then, three types of
random fuzzy expected value model are presented.
Liu and Zhang [2] proposed a multiple attribute de-
cision making approach, based on a relative optimal
membership degree, to deal with multiple attribute
decision making problems under risk, with weight
information unknown and the attribute value as a
linguistic variable. Wang and Gong [3] proposed
an approach based on expectation-hybrid entropy to
process the multi-criteria decision-making problem in
which the criteria weights are precisely known and the
criteria values are interval probability fuzzy random
variables. Liu et al. [4] proposed an extended TOPSIS
method, based on probability theory and uncertain
linguistic variables, to solve the risk multiple attribute
decision making problems in which attribute weight
is unknown and the attribute values take the form
of uncertain linguistic variables under the interval
probability. Liu and Wang [5] proposed a decision
approach based on entropy weight and projection the-
ory to solve hybrid multiple attribute decision-making
problems under the risk of interval probability with
weight unknown.

The above decision model and methods are
mainly based on the assumptions of \full rationality".
The perfect theoretical system was built through a
sophisticated mathematical model and decision making
can be made by selecting the maximization utility
based on the expected utility theory. However, in
actual decision-making, people cannot give a decision
by entire rationality, and all kinds of departure can
appear between actual decision-making behavior and
the predictable decisions of expected utility theory.
In 1947, Simon proposed the principle of \bounded
rationality" in which he states that people only have
a limited rationality in making a decision. In 1970s,
Kahneman and Tversky [6] proposed a prospect the-
ory, on the basis of Simon's \bounded rationality"
and many individual behavior research achievements,
through investigation and tests. Application of the
prospect theory to multi-attribute decision-making is
the developmental direction of decision theory, current
research into which is less, and still in the develop-
mental stage. The main studies are shown as follows.

Lahdelma and Salminen [7] proposed the SMAA-P
method that combines the piecewise linear di�erence
functions of prospect theory with SMAA (Stochastic
Multicriteria Acceptability Analysis). SMAA-P can
be used in decision problems, where DM preferences
(weights, reference points and coe�cients of loss aver-
sion) are di�cult to assess accurately. SMAA-P can
also be used to measure how robust a decision problem
is, with respect to preference information. Wang et
al. [8] proposed a fuzzy multi-criteria decision-making
approach based on prospect theory, with regard to
uncertain multi-criteria decision-making problems in
which the criteria weights are incompletely certain
and the criteria values of alternatives are in the form
of trapezoidal fuzzy numbers. In this method, a
non-linear programming model, which satis�es the
maximum integrated prospect value, can be enacted,
and a genetic algorithm is used to solve the model
to attain the criteria weights. Hu et al. [9] pro-
posed a multi-criteria decision making method based
on linguistic evaluation and prospect theory, with
respect to risk decision making problems. Firstly, the
decision matrix, based on linguistic information, is
transformed into a decision matrix based on intervals,
and a function of di�erence between intervals is de-
�ned. Then, the prospect value of criteria for every
alternative is calculated through the value function
and the decision weight function, and the prospect
value of the alternative is acquired using the weighted
average method. Finally, all the alternatives are
sorted and the optimal one is chosen according to the
prospect values. Wang et al. [10] proposed the multi-
index grey relational decision-making method based on
cumulative prospect theory. Firstly, the [-1,1] linear
transformation operator is used to standardize the
original decision-making information, and the positive
and negative ideal solution can be obtained. Then,
the prospect value function is de�ned according to
the cumulative prospect theory and gray relational
analysis, and an optimization model based on the
comprehensive maximization prospect values is built.
The optimum weight vector can be obtained and the
order of the alternatives is determined. Wang and
Zhou [11] proposed a decision-making approach based
on prospect theory for grey-stochastic multi-criteria
decision-making problems in which probabilities and
the criteria value of alternatives are both interval
grey numbers, and criteria weights are not completely
certain. Firstly, a prospect value function of inter-
val grey numbers can be de�ned, and the prospect
value of each alternative is calculated based on all
other alternatives as the reference point. Then, an
optimization programming model, which satis�es the
algorithm of maximizing deviation, can be enacted,
and the criteria weights are obtained. Finally, the
order of alternatives can be obtained by comparing
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the prospect value of each alternative. Liu et al. [12]
proposed a multi-attribute decision making method
based on prospect theory, with respect to risk decision
making problems with interval probability in which the
attribute values take the form of uncertain linguistic
variables. In this method, the uncertain linguistic
variables are converted to trapezoidal fuzzy numbers,
and the prospect value function of the trapezoidal
fuzzy numbers, based on the decision-making reference
point of each attribute and the weight function of
interval probability, are obtained. The prospect value
of attribute for every alternative is calculated through
prospect value function and the weight function; the
weighted prospect value of alternative is get by using
weighted average method, and all the alternatives are
ranked by the expected values of the weighted prospect
values. Zhang and Fan [13] proposed a method based
on the prospect theory to solve risky multiple attribute
decision making problems with Decision Maker (DM's)
aspirations, where attribute values and probabilities
are both in the form of interval numbers. In this
method, aspirations are regarded as reference points.
Jiang and Cheng [14] proposed a decision-making
analysis approach based on prospect theory to select
the most desirable alternative from the available set
of new product development alternatives. In this
method, the prospect reference point is determined by
considering the evaluation information of competing
product alternatives. Hu et al. [15] proposed a method
based on cumulative prospect theory and set pair
analysis for dynamic stochastic multi-criteria decision
making problems in which criteria weight is unknown
and criteria values are in the form of discrete random
variables. Firstly, the prospect value of alternatives is
calculated on all criteria at di�erent periods, according
to the distribution function. Then, the time series
weight is derived based on the binomial distribution
probability density function, and the criteria weight
coe�cients are ascertained by the algorithm of max-
imizing deviation. Finally, the concepts of identity
degree, contrary degree, and set pair potential are
employed and, thus, the order of alternatives can be
consequently determined.

In the above stochastic fuzzy multi-attribute
decision-making research based on prospect theory, the
hybrid multi-attribute decision making is less. Fan et
al. [16] proposed a decision analysis method based on
cumulative prospect theory for hybrid multi-attribute
decision making problems with decision maker aspira-
tions. However, the randomness of the decision prob-
lems is not considered. At the same time, in fuzziness,
these decision making problems considered only three
types of attribute information: real numbers, inter-
val numbers and linguistic variables. Obviously, the
decision-making problems and the method have certain
limitations. This paper will propose a multi-attribute

decision-making method, based on prospect theory,
with respect to stochastic hybrid multi-attribute de-
cision making problems with interval probability and
unknown attribute weight, where attribute values take
the form of real numbers, interval numbers, triangular
fuzzy numbers, trapezoidal fuzzy numbers, linguistic
variables, uncertain linguistic variables and intuitionis-
tic fuzzy values, respectively.

In order to do so, the remainder of this paper
is as follows. In Section 2, we brie
y review some
basic concepts of interval probability, trapezoidal fuzzy
numbers, linguistic variables, uncertain linguistic vari-
ables, intuitionistic fuzzy sets and prospect theory.
In Section 3, we establish a multi-attribute decision-
making method based on prospect theory, with respect
to stochastic hybrid multi-attribute decision making
problems with interval probability and unknown at-
tribute weight. In Section 4, we give an example to
illustrate the application of the proposed method, and
the in
uence on decision making for di�erent parame-
ters in value function and weight function and di�erent
decision-making reference points. In Section 5, we
conclude the paper.

2. Preliminaries

2.1. Interval probability
De�nition 1 [17]. There are n real interval numbers
[Li; Ui](i = 1; 2; :::; n), if they meet 0 � Li �
Ui � 1(i = 1; 2; :::; n), then they can be used to
describe the probability of basic events in event set

; they are also called n-dimensional interval proba-
bility, abbreviated to n-PRI. For convenience, vectors
L = (L1; L2; :::; Ln)T and U = (U1; U2; :::; Un)T are
introduced, then, n-PRI can be denoted as n-PRI
(L;U).

De�nition 2 [17]. For an n-PRI (L;U), if there
are n positive real numbers, p1; p2; :::; pn, and they
meet

Pn
i=1 pi = 1, Li � pi � Ui(i = 1; 2; :::; n),

then, n-PRI(L;U) is called reasonable, otherwise, it
is unreasonable.

Theorem 1 [18]. A n-PRI is reasonable, i�:
nX
i=1

Li � 1 �
nX
i=1

Ui:

Yager and Kreinovich [18] proposed that if n-
PRI(L;U) is reasonable, then, the probability intervals,
[Li; Ui](i = 1; 2; :::; n), can be transformed into more
precise probability intervals, [�Li; �Ui](i = 1; 2; :::; n),
where:

�Li=max
�
Li; 1�

nX
j=1
j 6=i

Uj
�
; �Ui=min

�
Ui; 1�

nX
j=1
j 6=i

Lj
�
: (1)
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2.2. Trapezoidal fuzzy numbers
1. The de�nition of trapezoidal fuzzy numbers.

De�nition 3 [19]. ~a = (aL; aML; aMU ; aU ) is
called a trapezoidal fuzzy number if its membership
function, a(x) : R! [0; 1], meets:

a(x) =

8>>>>>>>>>>><>>>>>>>>>>>:

x�aL
aML�aL ; x 2 (aL; aML)

1; x 2 (aML; aMU )

x�aU
aMU�aU ; x 2 (aMU :aU )

0; x 2 (�1; aL) [ (aU ;1)

(2)

The element of a trapezoidal fuzzy number
is x 2 R (R represents the set of real numbers).
Its membership function shows that the extent of
element x belongs to fuzzy set, ~a, and it is a regular,
continuous convex function. In four sets of data,
aL; aML; aMU and aU , if any two of them are equal,
the trapezoidal fuzzy number will be degraded into
a triangular fuzzy number. For example, if aML =
aMU , then ~a = (aL; aML; aU ). If any three of
them are equal, or aL = aML; aMU = aU , the
trapezoidal fuzzy number will be degraded into an
interval number, for example, if aL = aML = aMU ,
then, ~a = [aL; aU ]. If four of them are equal, the
trapezoidal fuzzy number will be degraded into a
real number, i.e. ~a = aL.

2. The operation rules of the trapezoidal fuzzy num-
bers.

Let ~a = [aL; aML; aMU ; aU ] and ~b =
[bL; bML; bMU ; bU ] be the two trapezoidal fuzzy
numbers, and � � 0, then, the operation rules are
shown as follows [19]:

~a+ ~b = [aL + bL; aML + bML;

aMU + bMU ; aU + bU ]; (3)

~a� ~b = [aL � bU ; aML � bMU ;

aMU � bML; aU � bU ]; (4)

~a~b = [aLbL; aMLbML; aMUbMU ; aUbU ]; (5)

�~a = [�aL; �aML; �aMU ; �aU ]; (6)

~a� = [(aL)�; (aML)�; (aMU )�; (aU )�]: (7)

3. The distance of the trapezoidal fuzzy numbers.

De�nition 4 [19]. Let ~a = [aL; aML; aMU ; aU ]
and ~b = [bL; bML; bMU ; bU ] be two trapezoidal fuzzy
numbers, then, the distance of ~a and ~b can be
de�ned in Eq. (8) shown in Box I.

4. The comparison method of the two trapezoidal
fuzzy numbers.

De�nition 5 [8]. Let ~a = [aL; aML; aMU ; aU ] and
~b = [bL; bML; bMU ; bU ] be two trapezoidal fuzzy
numbers, then:

(i) If aL � bL, aML � bML, aMU � bMU , aU �
bU , then ~a � ~b.

(ii) If conditions aL � bL, aML � bML, aMU �
bMU , aU � bU , are not met, but meet

aL + aML + aMU + aU

4

� bL + bML + bMU + bU

4
;

then, ~a � ~b.

2.3. Linguistic variables and uncertain
linguistic variables

Let S = (s0; s1; :::; sl�1) be a linguistic term set, where
s� is called the linguistic variable, and l is the odd
number. In practice, l can obtain 3, 5, 7, 9 etc.,
respectively, and S can be de�ned as:

S = (s0; s1; s2) = (poor, fair, good);

S = (s0; s1; s2; s3; s4)

= (very poor, poor, fair, good, very good);

S = (s0; s1; s2; s3; s4; s5; s6)

= (very poor, poor, slightly poor, fair;

slightly good,good, very good);

d(~a;~b) =

r
(aL � bL)2 + (aML � bML)2 + (aMU � bMU )2 + (aU � bU )2

4
: (8)

Box I
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S = (s0; s1; s2; s3; s4; s5; s6; s7; s8)

= (extremely poor, very poor, poor, slightly poor,

fair, slightly good, good, very good,

extremely good):

For any linguistic term set, S, the elements in S
can satisfy the following additional characteristics:

1. The set is ordered: si < sj , if, and only if, i < j;
2. There is the negation operator: neg(si) = sj , and

j = l � i� 1;
3. There is maximum operator: max(si; sj) = si, if

si � sj ;
4. There is minimum operator: min(si; sj) = si, if

si � sj .
De�nition 6 [20]. Let ~s = [sa; sb], sa; sb 2 S and
a � b. sa and sb are the lower and upper limits of
~s, respectively, then, ~s is called an uncertain linguistic
variable.

2.4. Intuitionistic fuzzy sets
De�nition 7 [21]. Let X = fx1; x2; :::; xng be a
universe of discourse. An Intuitionistic Fuzzy Set
(IFS), A in X, is given by A = f< x; uA(x); vA(x) >
x 2 Xg, where uA : X ! [0; 1] and vA : X ! [0; 1],
with the condition 0 � uA(x) + vA(x) � 1, 8x 2 X.
The numbers, uA(x) and vA(x), are the membership
degree and non-membership degree of the element, x,
to the set, A, respectively.

To given element x the pair (uA(x); vA(x)) is
called an Intuitionistic Fuzzy Value (IFV). For con-
venience, pair (uA(x); vA(x)) can be denoted as ~a =
(u�a; v�a), such that u�a 2 [0; 1], v�a 2 [0; 1] and 0 �
u�a + v�a � 1.

2.5. Prospect theory
The prospect theory thinks that the decision maker
will select the course of action based on the prospect
value. The prospect value can be jointly determined by
the value function and the probability weight function,
and it is shown as follows [6]:

V =
kX
i=1

(w(pi)v(�xi)) ; (9)

where V is the prospect value, and v(�x) is the value
function, which is re
ected by the decision makers'
subjective feelings. �xi = xi � x0 is used to express
the value of the deviations from the existing wealth to a
certain reference point, where x0 is the reference point.
When the wealth is larger than the reference point,
we can de�ne the outcome as the gains; otherwise,

we de�ne the outcome as the losses. w(p) is the
probability weight function, which is the monotone
increasing function of probability.

1. The value function.
Kahneman and Tversky [6] think the value

function is a power function, and de�ne it as follows:

v(x) =

(
x�; x � 0
��(�x)� ; x < 0

(10)

where x represents the gains or the losses; the
gains are the positive values and the losses are
the negative values. � and � show the concave-
convex degree of the value function in the gain
and loss regions, respectively, and the conditions
of 0 < � < 1 and 0 < � < 1 show the diminishing
sensibility. The values of � and � are larger, and
the decision maker tends to risk. � shows that
the loss region is steeper than the gain region, and
� > 1 shows the losses aversion. Obviously, we
have v(0) = 0. Regarding parameters �, � and
� in Eq. (10), Kahneman and Tversky [6] obtained
� = � = 0:88 and � = 2:25, and Abdellaoui [22]
suggested that the values of � and � are equal to
0.89 and 0.92, respectively [22].

2. The probability weight function.
Tversky and Kahneman [23] believe that the

probability weight is the subjective judgment of the
decision maker based on the probability, p, of the
event outcome, and it is neither the probability
nor the linear function of the probability. It is
the corresponding weight on the probability. The
probability weight function is de�ned as follows [23]:

w+(p) =
p


(p
 + (1� p)
)1=
 ; (11)

w�(p) =
p�

(p� + (1� p)�)1=� ; (12)

where w+(p) and w�(p) represent the nonlinear
weight function of the gains and the losses, re-
spectively, 
 is the risk gain attitude coe�cient,
and � is the risk loss attitude coe�cient. Tversky
and Kahneman [23] obtained that 
 = 0:61 and
� = 0:72, and Richard and Wu [24] believe that

 = 0:74, � = 0:74.

3. The decision making method

3.1. The description of the decision making
problems

Suppose that there is a stochastic hybrid multi-
attribute decision making problem, which has the set
of alternatives, A = (a1; a2; :::; am), and the set of
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attributes, C = (c1; c2; :::; cn). Let ! = (!1; !2; :::; !n)
be the attribute weight vector, and !j(j = 1; 2; :::; n)
be completely unknown. For each attribute, cj , there
are lj possible statuses, �j = (�1; �2; :::; �lj ), and
ptj = [pLtj ; pUtj ] is the interval probability of status
�t(1 � t � lj), which belongs to attribute cj , where
0 � pLtj � pUtj � 1,

Plj
t=1 pLtj and

Plj
t=1 pUtj �

1. The status value under status �t for attribute
cj , with respect to alternative ai, is xtij , which can
be represented by real numbers, interval numbers,
triangular fuzzy numbers, trapezoidal fuzzy numbers,
linguistic variables, uncertain linguistic variables or
intuitionistic fuzzy values. Based on these, we can
evaluate the alternatives.

3.2. The conversion of di�erent data types to
trapezoidal fuzzy numbers

1. linguistic variables conversion into trapezoidal
fuzzy numbers.

If status value xtij is expressed by the linguistic
label, sk, from linguistic set, S = (s0; s1; :::; sl�1),
and l is an odd number, xiij can be converted to the
trapezoidal fuzzy number, [aLtij ; aMLt

ij ; aMUt
ij ; aUtij ].

The transformation method from the linguis-
tic variable sk(k = 0; 1; :::; l � 1) to the trapezoidal
fuzzy number [aLk ; aML

k ; aMU
k ; aUk ] is shown as fol-

lows:8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

aL0 = aML
0 = aMU

0 = 0

aMU
k = aML

k + 1
2�l�3 (1 � k � l � 2)

aUk = aMU
k + 1

2�l�3 (0 � k � l � 2)

aLk+1 = aMU
k (0 � k � l � 2)

aML
k+1 = aUk (0 � k � l � 2)

aMU
l�1 = aUl�1 = 1

(13)

So, we have:

[aLtij ; a
MLt
ij ; aMUt

ij ; aUtij ] = [aLk ; a
ML
k ; aMU

k ; aUk ]:

According to Eqs. (13), when, l = 7, we can
get the relationship from the linguistic set to their
corresponding trapezoidal fuzzy numbers, which is
shown as follows:

s0 = [0; 0; 0; 0:091];

s1 = [0; 0:091; 0:182; 0:273];

s2 = [0:182; 0:273; 0:364; 0:455];

s3 = [0:364; 0:455; 0:545; 0:636];

s4 = [0:545; 0:636; 0:727; 0:818];

s5 = [0:727; 0:818; 0:909; 1];

s6 = [0:909; 1; 1; 1]:

2. Uncertain linguistic variables conversion into trape-
zoidal fuzzy numbers.

Suppose status value xtij is expressed by
the uncertain linguistic variable, [sa; sb], and the
converted trapezoidal fuzzy number can be ex-
pressed by [aLtij ; aMLt

ij ; aMUt
ij ; aUtij ]. If sa and sb

are represented by trapezoidal fuzzy numbers,
[aL; aML; aMU ; aU ] and [bL; bML; bMU ; bU ], respec-
tively, then, we have [aLtij ; aMLt

ij ; aMUt
ij ; aUtij ] =

[aL; aML; bMU ; bU ].

3. Intuitionistic fuzzy values conversion into trape-
zoidal fuzzy numbers.

Suppose status value xtij is expressed by the
intuitionistic fuzzy value, (u; v), and the converted
trapezoidal fuzzy number can be expressed by
[aLtij ; aMLt

ij ; aMUt
ij ; aUtij ]. Because the intuitionistic

fuzzy value, (u; v), can be converted to interval
number, [u; 1�v], we have [aLtij ; aMLt

ij ; aMUt
ij ; aUtij ] =

[aL; aML; bMU ; bU ].

4. Expression of real numbers, interval numbers and
triangular fuzzy numbers by trapezoidal fuzzy num-
bers.

Suppose status value xtij is expressed by the
real number, a, and the converted trapezoidal fuzzy
number can be expressed by [aLtij ; aMLt

ij ; aMUt
ij ; aUtij ],

then, we have [aLtij ; aMLt
ij ; aMUt

ij ; aUtij ] = [a; a; a; a].
Suppose status value xtij is expressed by

the interval number, [a; b], and the converted
trapezoidal fuzzy number can be expressed
by [aLtij ; aMLt

ij ; aMUt
ij ; aUtij ], then, we have

[aLtij ; aMLt
ij ; aMUt

ij ; aUtij ] = [a; a; b; b].
Suppose status value xtij is expressed by

the triangular fuzzy number, [a; b; c], and the
converted trapezoidal fuzzy number can be ex-
pressed by [aLtij ; aMLt

ij ; aMUt
ij ; aUtij ], then, we have

[aLtij ; aMLt
ij ; aMUt

ij ; aUtij ] = [a; b; b; c].
After the above conversion, the di�erent types

of attribute value can be transformed into trape-
zoidal fuzzy numbers.

3.3. The decision making steps
1. Make the interval probability more precisely.

According to Eq. (1), the interval proba-
bility, under di�erent natural statuses for di�er-
ent attributes, can be made more precisely, and
we can get more precise probabilities, [�pL1

j ; �pU1
j ]
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[�pL2
j ; �pU2

j ]:::[�pLljj ; �pUljj ] (j = 1; 2; :::; n). Further,
they can be expressed by trapezoidal fuzzy prob-
abilities, [�pL1

j ; �pL1
j ; �pU1

j ; �pU1
j ][�pL2

j ; �pL2
j ; �pU2

j ; �pU2
j ]

:::[�pLljj ; �pLljj ; �pUljj ; �pUljj ] (j = 1; 2; :::; n).
2. Convert the di�erent data types to trapezoidal

fuzzy numbers.
According to the method proposed in Section

3.2, we can transform the di�erent data types to
trapezoidal fuzzy numbers. Suppose the converted
trapezoidal fuzzy number of the tth natural status
for the jth attribute, with respect to the ith
alternative, is xtij = (xLtij ; xMLt

ij ; xMUt
ij ; xUtij ).

3. Standardize the decision matrix.
There is an incommensurability measure be-

tween di�erent attributes, i.e. di�erent attributes
have di�erent metrics. Generally speaking, we
cannot directly use the initial attribute values
to do the comprehensive evaluation and ranking
of alternatives; we must standardize the decision
matrix in order to eliminate the in
uences from
di�erent dimensions, units, levels and types of all
attributes

For bene�t attribute:
xtij = (xLtij ; x

MLt
ij ; xMUt

ij ; xUtij );

it can be standardized as follows [19]:

rtij =

 
xLtij
x+U
j

;
xMLt
ij

x+U
j

;
xMUt
ij

x+U
j

;
xUtij
x+U
j

!
; (14)

where r+U
j = max

i;t
(rUtij ).

For cost attribute xtij=(xLtij ; xMLt
ij ; xMUt

ij ; xUtij ),
it can be standardized as follows [19]:

rtij =

 
x�Lj
xUtij

;
x�Lj
xMUt
ij

;
x�Lj
xMLt
ij

;
x�Lj
xLtij

!
; (15)

where r�Lj = min
i;t

(rLtij ).

The standardization steps may be omitted if
the decision data does not have the di�erence in the
dimensions, units, levels and types of all attributes.

4. Select the decision making reference points.
The decision making reference points can be

determined by the decision makers' risk preference
and their mentation. In traditional stochastic fuzzy
multi-attribute decision-making, because there are
no speci�ed reference points, we can use the follow-
ing methods to specify them: (1) zero point; (2)
mean value; (3) the middle value of sorting from
the biggest to the smallest for one attribute under
di�erent alternatives; (4) the worst point; (5) the
best point, and (6), the expected value of each
attribute. We select the expected value of each
attribute as the decision-making reference point of
this attribute.

(i) Probability normalization can be calculated
by:

�ptj =
�pLtj + �pUtjPlj

t=1(�pLtj + �pUtj )
: (16)

(ii) The expected value of the trapezoidal fuzzy
number is:

�rtij =
1
4

(rLtij + rMLt
ij + rMUt

ij + rMt
ij ): (17)

(iii) The expected value of each attribute is:

r0
j =

1
m

mX
i=1

ljX
t=1

(�rtij �ptj): (18)

5. Calculate the value of the value function.
The value function of the trapezoidal fuzzy

number can be calculated as follows:

ztij =
�
v(rLtij � rU0

j ); v(rMLt
ij � rMU0

j );

v(rMUt
ij � rML0

j ); v(rUtij � rL0
j )
�
; (19)

where:

v(�r) =

(
�r�; �r � 0
��(��r)� ; �r < 0

6. Convert the trapezoidal fuzzy probability into
trapezoidal probability weight.

According to Eqs. (11) and (12), we can
convert the t trapezoidal fuzzy probabilities,
(p1
j ; p2

j ; :::; p
lj
j ), into trapezoidal probability weights,

(w1
ij ; w2

ij ; :::; w
lj
ij), i.e.,

[w(�pL1
j ); w(�pL1

j ); w(�pU1
j ); w(�pU1

j )]

[w(�pL2
j ); w(�pL2

j ); w(�pU2
j ); w(�pU2

j )]:::

[w(�pLljj ); w(�pLljj ); w(�pUljj ); w(�pUljj )]

(j = 1; 2; :::; n);

where w(�pLtj ), w(�pMLt
j ), w(�pMUt

j ), w(�pUtj ) can get
w+ or w� according to the positive or negative
numbers of their corresponding (rLtij � r0

j ),(rMLt
ij �

r0
j ),(rMUt

ij � r0
j ) and (rUtij � r0

j ). If they are positive,
then w(�pLtj ), w(�pMLt

j ), w(�pMUt
j ) and w(�pUtj ) can get

w+, otherwise, w� can be adopted.
7. Calculate the value of the prospect function.

According to Eq. (9), we can calculate the
prospect function value zij of the jth attribute, with
respect to the ith alternative:
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zij =
ljX
t=1

(wtijz
t
ij) = (zLij ; z

ML
ij ; zMU

ij ; zUij)

=
� ljX
t=1

�
w(�pLtj )v(rLtij � r0

j )
�
;

ljX
t=1

�
w(�pLtj )v(rMLt

ij � r0
j )
�
;

ljX
t=1

�
w(�pUtj )v(rMUt

ij � r0
j )
�
;

ljX
t=1

�
w(�pUtj )v(rUtij � r0

j )
��

: (20)

8. Calculate the attribute weights.
The stochastic fuzzy multi-attribute decision-

making problems have been converted into fuzzy
multi-attribute decision-making problems by the
prospect value function calculated by the above
steps. In order to determine the attribute
weights, the maximizing deviation method has been
adopted. Suppose Dij(!) is used to represent
the deviation between the prospect function value,
zij , of the jth attribute, with respect to the ith
alternative, and the sum of prospect function value
of the jth attribute, with respect to all alternatives,
then, we have Dij(!) =

Pm
k=1 d(zij ; zkj)!j , k, i =

1; 2; :::;m, j = 1; 2; :::; n where d(zij ; zkj) represents
the distance between the prospect function value zij
of the jth attribute, with respect to the ith alter-
native, and the prospect function value zkj of the
jth attribute, with respect to the kth alternative,
with conditions d(zij ; zkj) � 0 and !j � 0. Total
deviations, Dj(!), under the jth attribute for all al-
ternatives to other alternatives can be expressed as
Dj(!) =

Pm
i=1Dij(!) =

Pm
i=1
Pm
k=1 d(zij ; zkj)!j ,

j = 1; 2; :::; n, and the total deviations, D(!),
under all attributes are expressed as D(!) =Pn
j=1Dj(!) =

Pn
j=1

Pm
i=1
Pm
k=1 d(zij ; zkj)!j . Ac-

cording to the principle of maximizing deviation,
the attribute weight vector, ! = (!1; !2; :::; !n),
can be selected by maximizing the total deviations
of all alternatives on all alternatives. To do this, we
can construct the following optimization model [25]:

maxD(!) =
nX
j=1

Dj(!) =
nX
j=1

mX
i=1

mX
k=1

d(zij ; zkj)!j

s.t.
nX
j=1

!2
j = 1: (21)

We can construct the Lagrange multiplier

function as follows:

L(!j ; �) =
nX
j=1

mX
i=1

mX
k=1

d(zij ; zkj)!j

+ �(
nX
j=1

!2
j � 1): (22)

By solving the above model, we can get:8><>:
@L(!j ;�)
@!j =

Pm
i=1
Pm
k=1 d(zij ; zkj) + 2�!j = 0

@L(!j ;�)
@� =

Pn
j=1 !

2
j � 1 = 0 (23)8>><>>:

2� = �qPn
j=1(

Pm
i=1
Pm
k=1 d(zij ; zkj))2

!j =
Pm
i=1

Pm
k=1 d(zij ;zkj)pPn

j=1(
Pm
i=1

Pm
k=1 d(zij ;zkj))2

(24)

Renormalizing attribute weights, we can get:

!j=
Pm
i=1
Pm
k=1 d(zij ; zkj)Pn

j=1
Pm
i=1
Pm
k=1 d(zij ; zkj)

; j = 1; 2; :::; n
(25)

9. Calculate the weighted prospect function value of
the ith alternative:

zi =
nX
j=1

(!j � zij) = (zLi ; z
ML
i ; zMU

i ; zUi )

=
� nX
j=1

�
!j �

ljX
t=1

�
w(�pLtj )v(rLtij � r0

j )
��

;

nX
j=1

�
!j �

ljX
t=1

�
w(�pLtj )v(rMLt

ij � r0
j )
��

;

nX
j=1

�
!j �

ljX
t=1

�
w(�pUtj )v(rMUt

ij � r0
j )
��

;

nX
j=1

�
!j �

ljX
t=1

�
w(�pUtj )v(rUtij � r0

j )
���

: (26)

10. Rank all alternatives.
Since the weighted prospect values of all al-

ternatives are trapezoidal fuzzy numbers, all alter-
natives can be sorted by their expectation values,
which can be calculated as follows:

Ei =
zLi + zML

i + zMU
i + zUi

4
: (27)

The greater the expectation value, Ei, of the
ith alternative is, the better the alternative is.
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Table 1. The decision making data table.

c1 c2

�1 �2 �3 �4 �1 �2 �3 �4

[0.1,0.2] [0.2,0.7] [0.3,0.4] [0.1,0.5] [0.0,0.2] [0.2,0.6] [0.3,0.6] [0.2,0.4]
a1 [0.7,0.9] [0.7,0.7] [0.4,0.7] [0.9,0.9] (0.2,0.4,0.5) (0.5,0.7 ,0.8) (0.5,0.7,0.9) (0.8,0.9,1.0)
a2 [0.9,0.9] [0.6,0.7] [0.9,0.9] [0.7,0.8] (0.8,0.9,1.0) (0.5,0.6 ,0.7) (0.7,0.7,0.7) (0.5,0.7,0.8)
a3 [0.7,0.8] [0.9,1.0] [0.4,0.5] [0.5,0.5] (0.1,0.2,0.3) (0.8,1.0 ,1.0) (0.8,0.9,0.9) (0.2,0.3,0.4)

c3 c4

�1 �2 �3 �1 �2 �3

[0.2,0.5] [0.3,0.4] [0.3,0.5] [0.3,0.5] [0.2,0.4] [0.4,0.6]
a1 [s5; s5] [s5; s6] [s1; s2] (0.6,0.2) (0.3,0.4) (0.5,0.2)
a2 [s6; s6] [s2; s3] [s1; s2] (0.3,0.4) (0.8,0.0) (0.3,0.4)
a3 [s3; s4] [s4; s5] [s2; s3] (0.4,0.4) (0.7,0.2) (0.9,0.1)

4. Illustrative example

The company is planning to set up a new factory. There
are three alternatives (a1; a2; a3), and four attributes
are considered by decision makers which are direct
bene�ts c1, indirect bene�ts, c2, social bene�ts, c3, and
pollution loss, c4. The attribute weight is completely
unknown. According to the market forecast, there are
four natural statuses in attribute c1 and c2, including
very good, �1, good, �2, fair, �3, and poor, �4, and
there are three natural statuses in attribute c3 and
c4, including very good, �1, good, �2, and fair, �3.
The probability of each natural status is expressed
as the interval probability. The attribute value of
each natural status for each attribute, with respect
to each alternative, is expressed as hybrid types,
including interval numbers, triangular fuzzy numbers,
uncertain linguistic variables and intuitionistic fuzzy
values. Linguistic set. S = (s0; s1; s2; s3; s4; s5; s6) =
(very poor, poor, slightly poor, fair, slightly good,
good, very good) is adopted by the decision makers.
The decision making data is shown in Table 1, and
we obtain the best alternative according to the above
information and the method proposed in this paper.

4.1. The steps of this example
1. Making the interval probability more precisely, we

can get:

[�pL1
1 ; �pU1

1 ] = [0:1; 0:2]; [�pL2
1 ; �pU2

1 ] = [0:2; 0:5];

[�pL3
1 ; �pU3

1 ] = [0:3; 0:4]; [�pL4
1 ; �pU4

1 ] = [0:1; 0:4];

[�pL1
2 ; �pU1

2 ] = [0:0; 0:2]; [�pL2
2 ; �pU2

2 ] = [0:2:0:5];

[�pL3
2 ; �pU3

2 ] = [0:3; 0:6]; [�pL4
2 ; �pU4

2 ] = [0:2; 0:4];

[�pL1
3 ; �pU1

3 ] = [0:2; 0:4]; [�pL2
3 ; �pU2

3 ] = [0:3; 0:4];

[�pL3
3 ; �pU3

3 ] = [0:3; 0:5]; [�pL1
4 ; �pU1

4 ] = [0:3; 0:4];

[�pL2
4 ; �pU2

4 ] = [0:2; 0:3]; [�pL3
4 ; �pU3

4 ] = [0:4; 0:5]:

2. Converting the di�erent data types to trapezoidal
fuzzy numbers, we can get the converted decision
making matrix, as shown in Table 2.

3. Standardize the decision matrix.
The uni�ed dimension and type in the decision

matrix does not need to be standardized.

4. Select the decision making reference points.
According to Eqs. (16)-(18), we can get:

(i) Probability normalization:

�p1
1 = 0:136; �p2

1 = 0:318; �p3
1 = 0:318;

�p4
1 = 0:227; �p1

2 = 0:083; �p2
2 = 0:292;

�p3
2 = 0:375; �p4

2 = 0:250; �p1
3 = 0:286;

�p2
3 = 0:333; �p3

3 = 0:381; �p1
4 = 0:333;

�p2
4 = 0:238; �p3

4 = 0:429:

(ii) The expected value of trapezoidal fuzzy num-
bers:

�r1
11 = 0:800; �r2

11 = 0:700; �r3
11 = 0:550;

�r4
11 = 0:900; �r1

21 = 0:900; �r2
21 = 0:650;

�r3
21 = 0:900; �r4

21 = 0:750; �r1
31 = 0:750;

�r2
31 = 0:950; �r3

31 = 0:450; �r4
31 = 0:500;

�r1
12 = 0:375; �r2

12 = 0:675; �r3
12 = 0:700;



1114 H. Yu et al./Scientia Iranica, Transactions E: Industrial Engineering 21 (2014) 1105{1119

Table 2. The converted decision making matrix.

c1

�1 �2 �3 �4

p [0.10,0.10,0.20,0.20] [0.20,0.20,0.50,0.50] [0.30,0.30,0.40, 0.40] [0.10,0.10,0.40,0.40]
a1 [0.70,0.70,0.90,0.90] [0.70,0.70,0.70,0.70] [0.40,0.40,0.70,0 .70] [0.90,0.90,0.90,0.90]
a2 [0.90,0.90,0.90,0.90] [0.60,0.60,0.70,0.70] [0.90,0.90,0.90, 0.90] [0.70,0.70,0.80,0.80]
a3 [0.70,0.70,0.80,0.80] [0.90,0.90,1.00,1.00] [0.40,0.40,0.50, 0.50] [0.50,0.50,0.50,0.50]

c2

�1 �2 �3 �4

p [0.00,0.00,0.20,0.20] [0.20,0.20,0.50,0.50] [0.30,0.30,0.60, 0.60] [0.20,0.20,0.40,0.40]
a1 [0.20,0.40,0.40,0.50] [0.50,0.70,0.70,0.80] [0.50,0.70,0.70,0 .90] [0.80,0.90,0.90,1.00]
a2 [0.80,0.90,0.90,1.00] [0.50,0.60,0.60,0.70] [0.70,0.70,0.70, 0.70] [0.50,0.70,0.70,0.80]
a3 [0.10,0.20,0.20,0.30] [0.80,1.00,1.00,1.00] [0.80,0.90,0.90, 0.90] [0.20,0.30,0.30,0.40]

c3

�1 �2 �3

p [0.20,0.20,0.40,0.40] [0.30,0.30,0.40,0.40] [0.30,0.30,0.50,0.50]
a1 [0.667,0.833,0.833,1.000] [0.667,0.833,1.000,1.000] [0.000,0.167,0.333,0.500]
a2 [0.833,1.000,1.000,1.000] [0.167,0.333,0.500,0.667] [0.000,0.167,0.333,0.500]
a3 [0.333,0.500,0.667,0.833] [0.500,0.667,0.833,1.000] [0.167,0.333,0.500,0.667]

c4

�1 �2 �3

p [0.30,0.30,0.40,0.40] [0.20,0.20,0.30,0.30] [0.40,0.40,0.50,0.50]
a1 [0.60,0.60,0.80,0.80] [0.30,0.30,0.60,0.60] [0.50,0.50,0.80,0.80]
a2 [0.30,0.30,0.60,0.60] [0.80,0.80,1.00,1.00] [0.30,0.30,0.60,0.60]
a3 [0.40,0.40,0.60,0.60] [0.70,0.70,0.80,0.80] [0.90,0.90,0.90,0.90]

�r4
12 = 0:900; �r1

22 = 0:900; �r2
22 = 0:600;

�r3
22 = 0:700; �r4

22 = 0:675; �r1
32 = 0:200;

�r2
32 = 0:950; �r3

32 = 0:875; �r4
32 = 0:300;

�r1
13 = 0:833; �r2

13 = 0:875; �r3
13 = 0:250;

�r1
23 = 0:958; �r2

23 = 0:417; �r3
23 = 0:250;

�r1
23 = 0:583; �r2

33 = 0:750; �r3
33 = 0:417;

�r1
14 = 0:700; �r2

14 = 0:450; �r3
14 = 0:650;

�r1
24 = 0:450; �r2

24 = 0:900; �r3
24 = 0:450;

�r1
34 = 0:500; �r2

34 = 0:750; �r3
34 = 0:900:

(iii) The expected value of each attribute, i.e.,
the decision making reference points of each
attribute:
r0
1 = 0:720; r0

2 = 0:698;

r0
3 = 0:569; r0

4 = 0:636:

5. Calculate the value of the value function.

According to Eq. (19), the values of the
value function of trapezoidal fuzzy numbers can be
obtained as follows (suppose parameters � = 0:89,
� = 0:92 and � = 2:25):

z1
11 = [�0:061;�0:061; 0:218; 0:218];

z2
11 = [�0:061;�0:061;�0:061;�0:061];

z3
11 = [�0:788;�0:788;�0:061;�0:061];

z4
11 = [0:218; 0:218; 0:218; 0:218];

z1
21 = [0:218; 0:218; 0:218; 0:218];

z2
21 = [�0:319;�0:319;�0:061;�0:061];

z3
21 = [0:218; 0:218; 0:218; 0:218];

z4
21 = [�0:061;�0:061; 0:106; 0:106];

z1
31 = [�0:061;�0:061; 0:106; 0:106];
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z2
31 = [0:218; 0:218; 0:322; 0:322];

z3
31 = [�0:788;�0:788;�0:558;�0:558];

z4
31 = [�0:558;�0:558;�0:558;�0:558];

z1
12 = [�1:185;�0:738;�0:738;�0:507];

z2
12 = [�0:507; 0:004; 0:004; 0:131];

z3
12 = [�0:507; 0:004; 0:004; 0:241];

z4
12 = [0:131; 0:241; 0:241; 0:345];

z1
22 = [0:131; 0:241; 0:241; 0:345];

z2
22 = [�0:507;�0:265;�0:265; 0:004];

z3
22 = [0:004; 0:004; 0:004; 0:004];

z4
22 = [�0:507; 0:004; 0:004; 0:131];

z1
32 = [�1:402;�1:185;�1:185;�0:964];

z2
32 = [0:131; 0:345; 0:345; 0:345];

z3
32 = [0:131; 0:241; 0:241; 0:241];

z4
32 = [�1:185;�0:964;�0:964;�0:738];

z1
13 = [0:126; 0:306; 0:306; 0:472];

z2
13 = [0:126; 0:306; 0:472; 0:472];

z3
13 = [�1:340;�0:975;�0:596;�0:193];

z1
23 = [0:306; 0:472; 0:472; 0:472];

z2
23 = [�0:975;�0:596;�0:193; 0:126];

z3
23 = [�1:340;�0:975;�0:596;�0:193];

z1
33 = [�0:596;�0:193; 0:126; 0:306];

z2
33 = [�0:193; 0:126; 0:306; 0:472];

z3
33 = [�0:975;�0:596;�0:193; 0:126];

z1
14 = [�0:105;�0:105; 0:200; 0:200];

z2
14 = [�0:824;�0:824;�0:105;�0:105];

z3
14 = [�0:358;�0:358; 0:200; 0:200];

z1
24 = [�0:824;�0:824;�0:105;�0:105];

z2
24 = [0:200; 0:200; 0:407; 0:407];

z3
24 = [�0:824;�0:824;�0:105;�0:105];

z1
34 = [�0:595;�0:595;�0:105;�0:105];

z2
34 = [0:087; 0:087; 0:200; 0:200];

z3
34 = [0:306; 0:306; 0:306; 0:306]:

6. Convert the trapezoidal fuzzy probability into
trapezoidal probability weight.

When 
 = 0:61 and � = 0:72, we can get
the trapezoidal probability weight function values
as follows:
w1

11 = [0:163; 0:163; 0:261; 0:261];

w2
11 = [0:254; 0:254; 0:464; 0:464];

w3
11 = [0:329; 0:329; 0:397; 0:397];

w4
11 = [0:186; 0:186; 0:370; 0:370];

w1
21 = [0:186; 0:186; 0:261; 0:261];

w2
21 = [0:254; 0:254; 0:464; 0:464];

w3
21 = [0:318; 0:318; 0:370; 0:370];

w4
21 = [0:163; 0:163; 0:370; 0:370];

w1
31 = [0:163; 0:163; 0:261; 0:261];

w2
31 = [0:261; 0:261; 0:421; 0:421];

w3
31 = [0:329; 0:329; 0:397; 0:397];

w4
31 = [0:163; 0:163; 0:397; 0:397];

w1
12 = [0:000; 0:000; 0:254; 0:254];

w2
12 = [0:254; 0:261; 0:421; 0:421];

w3
12 = [0:329; 0:318; 0:474; 0:474];

w4
12 = [0:261; 0:261; 0:370; 0:370];

w1
22 = [0:000; 0:000; 0:261; 0:261];

w2
22 = [0:254; 0:254; 0:464; 0:421];

w3
22 = [0:318; 0:318; 0:474; 0:474];

w4
22 = [0:254; 0:261; 0:370; 0:370];

w1
32 = [0:000; 0:000; 0:254; 0:254];

w2
32 = [0:261; 0:261; 0:421; 0:421];

w3
32 = [0:318; 0:318; 0:474; 0:474];



1116 H. Yu et al./Scientia Iranica, Transactions E: Industrial Engineering 21 (2014) 1105{1119

w4
32 = [0:254; 0:254; 0:397; 0:397];

w1
13 = [0:261; 0:261; 0:370; 0:370];

w2
13 = [0:318; 0:318; 0:370; 0:370];

w3
13 = [0:329; 0:329; 0:464; 0:464];

w1
23 = [0:261; 0:261; 0:370; 0:370];

w2
23 = [0:329; 0:329; 0:397; 0:370];

w3
23 = [0:329; 0:329; 0:464; 0:464];

w1
33 = [0:254; 0:254; 0:370; 0:370];

w2
33 = [0:329; 0:318; 0:370; 0:370];

w3
33 = [0:329; 0:329; 0:464; 0:421];

w1
14 = [0:329; 0:329; 0:370; 0:370];

w2
14 = [0:254; 0:254; 0:329; 0:329];

w3
14 = [0:397; 0:397; 0:421; 0:421];

w1
24 = [0:329; 0:329; 0:397; 0:397];

w2
24 = [0:261; 0:261; 0:318; 0:318];

w3
24 = [0:397; 0:397; 0:464; 0:464];

w1
34 = [0:329; 0:329; 0:397; 0:397];

w2
34 = [0:261; 0:261; 0:318; 0:318];

w3
34 = [0:370; 0:370; 0:421; 0:421]:

7. Calculate the value of the prospect function.
According to Eq. (20), the prospect function

value zij of the jth attribute, with respect to the
ith alternative, can be obtained as follows:

z11 = [�0:244;�0:244; 0:085; 0:085];

z21 = [0:019; 0:019; 0:148; 0:148];

z31 = [�0:303;�0:303;�0:280;�0:280];

z12 = [�0:261; 0:065;�0:095; 0:168];

z22 = [�0:256;�0:065;�0:057; 0:142];

z32 = [�0:225;�0:078;�0:424;�0:279];

z13 = [�0:368;�0:143; 0:011; 0:260];

z23 = [�0:681;�0:393;�0:178; 0:132];

z33 = [�0:535;�0:205; 0:070; 0:341];

z14 = [�0:386;�0:386; 0:124; 0:124];

z24 = [�0:546;�0:546; 0:039; 0:039];

z34 = [�0:060;�0:060; 0:151; 0:151]:

8. Calculate the attribute weights.
According to Eq. (25), the attribute weight

can be obtained as follows:

!1 = 0:306; !2 = 0:234;

!3 = 0:197; !4 = 0:262:

9. Calculate the weighted prospect function value of
the ith alternative.

According to Eq. (26), the weighted prospect
function value of the ith alternative can be obtained
as follows:

z1 = [�0:309;�0:189; 0:039; 0:149];

z2 = [�0:331;�0:230; 0:007; 0:115];

z3 = [�0:267;�0:167;�0:132;�0:044]:

10. Rank all alternatives.
According to Eq. (27), the expected value of

the weighted prospect function for the ith alterna-
tive can be obtained as:

E1 = �0:0776; E2 = �0:1098; E3 = �0:1525:

Based on the expected values, we can sort the
alternatives:

a1 � a2 � a3:

4.2. Discussion
In order to further explore what the in
uence is
of prospect value function parameters and decision-
making reference points on the results of decision-
making, we re-rank all alternatives by combining the
di�erent parameters in the value function and probabil-
ity weight function, the di�erent decision-making refer-
ence points, and the expected utility theory. The rank-
ing results are shown in Table 3 (suppose the attribute
weight is �xed by ! = (0:306; 0:234; 0:197; 0:262)).

These results show that the decision making
results, based on the prospect theory and the expected
utility theory, are not completely consistent, and the
di�erent parameters and di�erent decision-making ref-
erence points also have a certain in
uence on the order.
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Table 3. The decision-making results by combining the di�erent parameters, the di�erent decision-making reference
points, and the expected utility theory.

The expected utility theory

Expected values E(zi) Ranking

E1 = 0:765
a1 � a2 � a3E2 = 0:735

E3 = 0:758

The prospect theory

The minimum of reference points The maximum of reference points

r0
1 = 0; r0

2 = 0 r0
1 = 1; r0

2 = 1

r0
3 = 0; r0

4 = 0 r0
1 = 1; r0

2 = 1

Expected values E(zi) Ranking Expected values E(zi) Ranking
� = 0:88
� = 0:88

 = 0:61
� = 0:72

E1 = 0:798
E2 = 0:782
E3 = 0:780

a1 � a2 � a3

E1 = �0:904
E2 = �0:947
E3 = �0:927

a1 � a3 � a2

� = 0:88
� = 0:88

 = 0:74
� = 0:74

E1 = 0:835
E2 = 0:814
E3 = 0:820

a1 � a3 � a2

E1 = �0:905
E2 = �0:950
E3 = �0:927

a1 � a3 � a2

� = 0:89
� = 0:92

 = 0:61
� = 0:72

E1 = 0:795
E2 = 0:780
E3 = 0:778

a1 � a2 � a3

E1 = �0:869
E2 = �0:914
E3 = �0:897

a1 � a3 � a2

� = 0:89
� = 0:92

 = 0:74
� = 0:74

E1 = 0:832
E2 = 0:811
E3 = 0:818

a1 � a3 � a2

E1 = �0:871
E2 = �0:917
E3 = �0:896

a1 � a3 � a2

The middle of reference points Expected values

r0
1 = 0:5; r0

2 = 0:5 r0
1 = 0:720; r0

2 = 0:698

r0
3 = 0:5; r0

4 = 0:5 r0
1 = 569; r0

2 = 636

Expected values E(zi) Ranking Expected values E(zi) Ranking
� = 0:88
� = 0:88

 = 0:61
� = 0:72

E1 = 0:196
E2 = 0:157
E3 = 0:150

a1 � a2 � a3

E1 = �0:088
E2 = �0:121
E3 = �0:166

a1 � a2 � a3

� = 0:88
� = 0:88

 = 0:74
� = 0:74

E1 = 0:210
E2 = 0:165
E3 = 0:167

a1 � a3 � a2

E1 = �0:082
E2 = �0:120
E3 = �0:155

a1 � a2 � a3

� = 0:89
� = 0:92

 = 0:61
� = 0:72

E1 = 0:197
E2 = 0:160
E3 = 0:155

a1 � a2 � a3

E1 = �0:078
E2 = �0:110
E3 = �0:153

a1 � a2 � a3

� = 0:89
� = 0:92

 = 0:74
� = 0:74

E1 = 0:211
E2 = 0:168
E3 = 0:172

a1 � a3 � a2

E1 = �0:071
E2 = �0:108
E3 = �0:141

a1 � a2 � a3
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5. Conclusion

Stochastic fuzzy multi-attribute decision-making prob-
lems are widely used in real decision making, and
decision-making based on the prospect theory is more
in line with actual decision-making behavior. This pa-
per proposes a hybrid multi-attribute decision making
method, based on the prospect theory, for stochastic
fuzzy multi-attribute decision-making problems with
interval probability, where the attribute values take the
form of hybrid data types, including real numbers, in-
terval numbers, triangular fuzzy numbers, trapezoidal
fuzzy numbers, linguistic variables, uncertain linguistic
variables and intuitionistic fuzzy values, and the deci-
sion making steps are proposed. This paper analyzes
what the in
uence is of di�erent parameter values in
the value function and probability weight function,
the di�erent decision-making reference points, and
the expected utility theory on the results of decision-
making. The method proposed in this paper is easy to
use and understand. It has enriched and developed the
theory and method of stochastic fuzzy multi-attribute
decision-making problems, and has provided a new idea
for solving these problems. In the future, we will
continue to study applications of the proposed method
in real decision making, such as risk assessment of
projects, etc.
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