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Abstract. Along with the widespread use of Taguchi methods in product design,
de�nition of the loss function has been integrated with numerous models which require
quality cost estimation. In this paper, the economic-statistical design of a variable
sampling X-bar control chart is extended using the Taguchi loss function to improve chart
e�ectiveness from a quality cost point of view. The e�ectiveness of the proposed schemes
is evaluated by comparing optimal expected costs and statistical performance with each
other and with the �xed sampling policy. Results indicate a satisfactory performance for
the proposed models.

c
 2014 Sharif University of Technology. All rights reserved.

1. Introduction

Variability is an intrinsic characteristic of any produc-
tion or service process. Generally speaking, process
variation can be classi�ed into two major categories
of common cause and special cause. The common
or chance cause variation is an inherent part of any
process and can only be altered if the process nature
itself is altered. On the other hand, special or
assignable causes of variation are unusual disruptions
in the process which should be removed immediately
in order to bring the process under statistical control.
The principal function of a control chart is to help the
management distinguish between these two di�erent
sources of variation.

To design a control chart to monitor a process,
sample size (n), sampling interval (h), and control
limit coe�cient (k) should be determined. A control
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char is referred to as Fixed Ratio Sampling (FRS),
when samples of �xed size at �xed sampling intervals
are obtained from the process. When any of these
parameters are allowed to vary, then the control chart
is referred to as an adaptive control chart. Adap-
tive control charts lead to improved statistical results
compared to sixed ratio sampling control charts [1,2].
Variable Sample Size (VSS), Variable Sampling In-
terval (VSI), and Variable Sample Size and Sam-
pling Interval (VSSI) are examples of adaptive control
schemes.

Statistical and economical designs of control
charts are two main approaches to design an optimum
control chart. The statistical approach focuses on chart
statistical performance. However, in the economic
design of control charts, the emphasis is on economic
issues, such as the cost associated with sampling and
inspection, the cost associated with investigating an
out-of-control signal and repairing the process, and
the cost associated with producing nonconforming
products. In order to design a control scheme with im-
proved performance, with respect to both viewpoints,
the economic-statistical design of control schemes was
proposed by researchers.

Bai and Lee [3] proposed the �rst economic design
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of an X control chart with a VSI scheme. The economic
design of a VSS Shewhart chart was developed by
Park and Reynolds [4]. Economically designed VSSI
Shewhart charts were considered by Das and Jain [5]
and Park and Reynolds [4]. Yu and Chen [6] focused
on designing a VSI X control chart in a continuous
process. Lin et al. [7] and Chen and Yeh [8] extended
the economic design of adaptive control charts for
the case of non-normal observations. Several studies
contributed to the development of the economic design
of adaptive control charts [1,3,9-15].

Moreover, the Taguchi loss function, which con-
siders loss to society as a quadratic function of product
quality, has been used by many researchers to develop
control schemes. This is in concordance with the
main principle of six sigma methodology, where the
main object is to reduce deviations around the tar-
get. Several researchers have applied the loss function
approach in the economic design of control charts.
Alexander et al. [16] studied an economic model for an
X control chart with the Taguchi loss function. Serel
and Moskowitz [17] used the Taguchi loss function to
develop the joint economic design of an Exponentially
Weighted Moving Average (EWMA) for mean and
variance. Niaki et al. [18,19] extended the Lorenzen-
Vance [20] cost function using the multivariate Taguchi
loss approach. Recently, Yeong et al. [21] studied eco-
nomic and economic statistical designs of the synthetic
chart using loss functions.

This paper focuses on extending the X control
chart with an adaptive scheme considering the Taguchi
quality loss function. The remainder of this paper
is organized as follows. In Section 2, the adaptive
X control chart is developed. Section 3 describes
the proposed algorithm. In Section 4, an illustrative
example is given to evaluate the performance of the
proposed methodology. Our conclusion is provided in
the �nal section.

2. Adaptive X control chart

In an adaptive X control chart, in addition to the
usual control limit with coe�cient LX , a warning limit,
denoted by wX , is considered. In the VSSI scheme, usu-
ally, two sampling intervals, h2 < h1, and two sample
sizes, n1 < n2 , are used. Sampling size and sampling
interval are established based on the position of the �rst
sampling statistic on the chart. In this regard, if the
prior sample mean (i � 1) falls in the warning region,
the chart design (n2; h2; LX ; wX) should be used for
the current sample point (i). Alternatively, if the prior
sample point (i � 1) falls in the central region, the
chart design (n1; h1; LX ; wX) should be employed for
the current sample point (i). When n1 = n2 = n and
h2 < h1, then, VSSI X simpli�es to the VSI X chart.
When n1 < n < n2and h1 = h2 = h, the VSSI X chart

reduces to the VSS X chart. Hence, the VSSI control
scheme can be de�ned as follows:

(hi;ni; LX ; wX) =(
(h1; n1; LX ; wX) if Xi�12 central region
(h2; n2; LX ; wX) if �Xi�12 warning region(1)

An important statistical measure, which deter-
mines the performance of an adaptive control chart, is
the adjusted average time to signal or AATS. If the
assignable cause occurs according to an exponential
distribution with parameter �, then, the expected time
interval in which the process remains in control is 1=�.
Hence, AATS can be de�ned as:

AATS = ATC � 1
�
; (2)

where the Average Time of Cycle (ATC) is the av-
erage time from the start of production until the
�rst signal after the process shift. The memory
less property of the exponential distribution allows
the computation of the ATC using the Markov chain
approach [22].

2.1. Markov chain approach
According to the VSSI scheme, at each sampling stage,
one of the following transient states is met, according
to the status of the process (in or out-of-control), size
of the sample (small or large) and sampling frequency
(short or long). The process is in state 1, if the prior
sample point (i � 1) falls in the central region or the
process is actually in-control.

State 1: Position of sample statistic is jZj � w and
the process is in-control;

State 2: Position of sample statistic is w < jZj � k
and the process is in-control;

State 3: Position of sample statistic is jZj � w and
the process is out-of-control;

State 4: Position of sample statistic is w < jZj � k
and the process is out-of-control;

State 5: Position of sample statistic is jZj > k and
the process is out-of-control (true alarm state).

If the position of the sample statistic is jZj > k
while the process status is out-of-control, then a true
alarm is signaled and the absorbing state (State 5) is
arrived. In order to model the VSSI scheme based on
the Markov chain approach, transition probabilities, pij
(i is the prior state and j is the current state), should be
de�ned. The transition probability matrix, P = [pij ],
is given as follows:
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p =

266664
p11 p12 p13 p14 p15
p21 p22 p23 p24 p25
0 0 p33 p34 p35
0 0 p43 p44 p45
0 0 0 0 1

377775 ; (3)

where the transition probabilities are de�ned as:

p11 = Pr(jZj � wj jZj � k)� e��h1 ;

p12 = Pr(w < jZj � kj jZj � k)� e��h2 ;

p13 = Pr(jZj � wj jZj � k)� (1� e��h1);

p14 = 1� p11 � p12 � p13;

p21 = Pr(jZj � wj jZj � k)� e��h1 ;

p22 = Pr(w < jZj � kj jZj � k)� e��h2 ;

p23 = Pr(jZj � wj jZj � k)� (1� e��h1);

p24 = 1� p21 � p22 � p23;

p31 = p32 = 0;

p33 = Pr(jY j � wjY � N(�
p
n1; 1));

p34 = Pr(w < jY j � kjY � N(�
p
n1; 1));

p35 = 1� p33 � p34;

p41 = p42 = 0;

p43 = Pr(jY j � wjY � N(�
p
n1; 1));

p44 = Pr(w < jY j � kjY � N(�
p
n2; 1));

p45 = 1� p43 � p44: (4)

The product of the average number of visiting a
transient state and the corresponding sampling interval
determines the period, ATC.

ATC = b0(I�Q)�1h; (5)

where I is the identity matrix of order four; b0 =
(p11; p12; p13; p14) is the vector of starting probability;
and Q is the transition matrix without elements asso-
ciated with the absorbing state. h0 = (h1; h2; h1; h2)
is the vector of sampling intervals corresponding to the
transient states. The average number of samples (ANS)
in the VSSI scheme is determined as follows:

ANS = b0(I�Q)�1�; (6)

where �0 = (n1; n2; n1; n2) is the vector of the sample
sizes corresponding to the transition states. The

expected number of false alarms per cycle is given in
Eq. (7):

ANS = b0(I�Q)�1f; (7)

where f = (�1; �2; 0; 0) is the vector of false alarms
probabilities in each transition state.

2.2. Taguchi loss function
In Taguchi philosophy, a loss incurs when the quality
characteristic of interest deviates from its target value.
The purpose of loss function is to re
ect the economic
loss associated with variations and deviations from
the target. Variation reduction is equivalent to lower
loss and higher quality. Computation of production
costs based on quadratic loss function, to economically
design control charts, has been suggested by many au-
thors [16,19,23-27]. In this paper, we also use Taguchi
loss function, de�ned as L(X) = K(X�T )2, whereX is
a key quality characteristic, K is a positive coe�cient,
and T is the target. Suppose the speci�cation limits
for the quality characteristic of interest are T �� and
the cost of rework or scrap for one unit of product is
A. The coe�cient, K, is de�ned as K = A

�2 .
When the process is in control, the quality charac-

teristic, X, follows a normal distribution with mean �0
and variance �2

0 . It is desirable for the location of the
in-control mean to coincide with the target location.
However, if �0 is di�erent from T , a �xed bias impacts
all manufactured items. The expected quality cost per
unit of product when the process is in control, J0,
is [27]:

J0 =
+1Z
�1

K(x� T )2f(x)dx =
+1Z
�1

K(x� �0 + �0 � T )2

f(x)dx = K[�2
0 + (�0 � T )2]: (8)

When an assignable cause occurs, the process mean
shifts to �1 = �0 + �0. The expected quality cost per
unit when the process is out of control, J1, is given by:

J1 =
+1Z
�1

K(x� �1 + �1 � T )2f(x)dx

=
+1Z
�1

K(x� �0 � ��0 + �0 + ��0 � T )2f(x)dx

= K[�2
0 + (�0 � T )2 + �2�2

0 � 2��0(�0 � T )]: (9)

2.3. Cost model
Following renewal reward process assumption, the ex-
pected quality cost per hour is computed as the ratio
of the expected cost per cycle to the expected cycle
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time. A quality cycle consists of one period when the
process is in-control and two periods during an out-of-
control state. The expected length of a quality cycle is
calculated as follows:

ET = ATC + T0 �ANF + T1: (10)

ET is composed of the in-control portion (including
interruptions for false alarms) and the time to locate
and repair the process, T1. T0 is the average time to
search when the process is in-control.

The costs of producing nonconformities while
in- and out-of-control, sampling and inspection costs,
costs of false alarms, and locating and removing an
assignable cause are elements of the expected cost
per cycle. Each individual cost element is derived as
follows:

EC =C0(1=�) + C1 � (AATS) + s�ANS

+ f0 �ANF +W; (11)

where s is the sampling cost, f0 is the cost of false
alarms, and W is the cost associated with locating
and repairing the process. Moreover, C0 and C1 are
the expected costs associated with producing non-
conformities while the process is in-control and out-of-
control, respectively. If p units are produced per hour,
then, C0 = J0p and C1 = J1p. The expected cost per
hour incurred by the process can be obtained as:

EA =
EC
ET

: (12)

In the economic-statistical design of an adaptive X
control chart, the design vector consists of control
limits, LX , warning lines, wX , sample sizes, n1 and n2,
and sampling frequencies, h1 and h2. The objective is
to �nd a design vector that minimizes EA, subject to
some constraints. Hence, the optimization problem can
be de�ned as:

Min EA(n1; n2; h1; h2; LX ; wX)

Subject to :

AATS � AATSM ;

ANF � ANFM ;

hmin � h2 < h1 � hmax;

0 < w < L � Lmax;

1 � n1 < n2 � nmax (integers): (13)

In the optimization model, constraints ANF � ANFM
and AATS � AATSM are added to form the best

protection against false alarms and to detect process
shifts as quickly as possible. The minimum and
maximum values of possible sampling intervals between
successive samples, hmin and hmax, are added to keep
the chart more practical. In this research, the values of
hmin = 0:01 and hmax = 8 are used because sampling
intervals less than 0.01 and greater than 8 hours may
be awkward in a work shift.

3. Solution algorithm

The economic-statistical optimization model has some
discrete and continuous decision variables. Hence,
the Genetic Algorithm (GA), which has been used
in several studies, can be considered to optimize this
problem [19,27-31]. The objective of GA is to obtain
a global optimum solution. GA starts to generate a
new generation or population using a collection of small
possible solutions in a parallel process. The quality of
solutions presented by GA depends on GA parameters.
GA parameters are population size (Npop), crossover
(CP), Number of Elite (NE), Number of Generations
(GN), and mutation rate. The key parameters, which
should be determined at the beginning of the algorithm
and should be used while applying the algorithm, are
described below.

GA starts to work using some possible initial
solutions referred to as \initial population". Each
population has Npop chromosomes, which are produced
from the solution. In this research, each chromosome
consists of �ve genes, each of which is representative of
a decision variable. The decision variable of the model
includes (n1; n2; h1; h2; LX ; wX).

The cost function is calculated for the chromo-
somes of each generation. The best chromosomes will
be selected for crossover purposes. Each generation
includes the Xkeep superior chromosome and Npop �
Xkeep children, which have been generated through the
crossover.

The mutation operator is employed to prevent
the GA from converging into a local optimum value.
Selected chromosomes for mutation are not among the
best of each generation essentially. The elite of each
generation will be transferred directly to the next gen-
eration to prevent losing the best chromosomes. The
elitism operator is actually a method for maintaining
the best chromosomes of each generation. After the
mutation, for each chromosome, the cost function will
be calculated. Then, the chromosomes will be ranked.
The stopping criterion, the number of iterations in
the algorithm, will be investigated, and the loop will
continue until an optimum solution is obtained.

In the algorithm developed in this paper, mu-
tation rate is considered a liner combination of the
other parameters. The optimized combination of GA
parameters is often accomplished using a trial and
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error method, which is a hard process, due to the
multiplicity of possible states. The optimum values
for four GA parameters have been determined using
Taguchi orthogonal array. Many analysts in the
�eld of Economic-Statistical Design (ESD) of control
charts have already recommended using this method to
determine the optimum value of GA parameters [22,29].
Nine combinations of control parameters in three dif-
ference levels will be considered by L9 orthogonal array.
Table 1 shows the value for each of the parameters.

The algorithm iterated three times (Y 1,Y 2, and
Y 3) for each of the levels. Then the results are obtained
from running the algorithm for 27 times. Since the
objective function for the problem is a minimizing
one, the signal-to-noise ratio (SN), de�ned as below,
is calculated to evaluate the results of the experiments.

SN = �10 log
�

1
r

rX
i=1

Y 2
i

�
: (14)

In Eq. (14), r is the number of replicates for each level.
Solution values for each level of parameters and the SN
value for each level is tabulated in Table 2. The sum
of the SN ratio for each level of the GA parameters is

shown in Table 3. The optimized combination of the
levels of four GA parameters, Npop = 500, CF = 0:5,
NE = 6 and NG = 100, are recommended, based on
the maximum of SN for each level.

4. Numerical analysis

To illustrate the application of the developed adaptive
X control chart, numerical analysis has been under-
taken. Logical ranges for each of the control chart
parameters: Sampling size, sampling interval, and
control limit coe�cient range, have been considered
to be [1,30],[0.1,8] and [1,5], respectively. Cost and
process parameters are as follows: Sampling cost is
s = 5$, cost of detecting a reasonable deviation is
W = 1000$, cost of false signal is f0 = 1500, average
time to search for a false signal is T0 = 5 hour, and the
average time to detect the deviations and modify the
process is T1 = 2 hour; process mean increases by 1.5
standard deviation (� = 1:5).

Also, the quadratic loss function coe�cient is
K = 1, the actual process average is equal to the
characteristic's target value, and the process variance
is �2

0 = 1. The average process in-control period is

Table 1. Levels for each of the model parameters.

Parameter Range Level 1 Level 2 Level 3

Population size (Npop) 100-900 100 500 900

Crossover Fraction (CF) 0.1-0.9 0.1 0.50 0.90

Number of Elites (NE) 4-10 4 6 10

Number of Generations (NG) 50-150 50 100 150

Table 2. The objective values for each level of GA parameters.

Runs Npop CF NE NG Y 1 Y 2 Y 3 SN

1 100 0.10 2 50 121.848 123.106 123.106 -41.7760

2 100 0.50 6 100 121.848 123.106 121.848 -41.7463

3 100 0.90 10 150 123.106 123.106 123.106 -41.8056

4 500 0.10 6 150 121.848 121.848 121.848 -41.7164

5 500 0.50 10 50 121.848 121.848 121.848 -41.7164

6 500 0.90 2 100 121.848 121.848 121.848 -41.7164

7 900 0.10 10 100 121.848 121.848 121.848 -41.7164

8 900 0.50 2 150 121.848 121.848 121.848 -41.7164

9 900 0.90 6 50 121.848 121.848 121.848 -41.7164

Table 3. The sum of SN ratio for each level of GA parameters.

Npop CF NE NG

Level 1 -125.3279 -125.2088 -125.2088 -125.2088

Level 2 -125.1491* -125.1790* -125.1790* -125.1790*

Level 3 -125.1491* -125.2383 -125.2383 -125.2383

* largest sum of SN ratio for each parameter within di�erent levels [33].
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equal to 100. If the production rate is equal to Pr =
100, the production cost for each defective product,
while the process is under in-control and out-of-control
conditions, will be equal to C0 = 100J0 and C1 =
100J1, respectively.

In the proposed model, solutions are evaluated
based on the objective function of quality costs. The
minimum cost solution for �xed ratio sampling is
(n; h; LX) = (4; 8:0; 2:15), with the cost equal to
$119.50, where the average number of false signals
is equal to ANFClassic = 0:375, and the adjusted
average time to signal is equal to AATSClassic = 60:0
hours. However, the VSSI scheme solution vector is
(n1; n2; h1; h2; LX ; wX). The optimum economic costs
achieved by solution vector (n1; n2; h1; h2; LX ; wX) =
(1; 22; 8:00; 8:00; 2:43; 1:30), which will result in a cost
equal to $118.60. In this scheme, ANFVSSI = 0:183 and
AATSVSSI = 46:55 hours are obtained. The optimum
VSI scheme is equal to (n1; n2; h1; h2; LX ; wX) =
(4; 4; 8:00; 0:10; 2:19; 1:75). This scheme results in a
cost equal to $119.45, ANFVSI =0:361, and AATSVSI =
56:69 hours. On the other hand, the optimum economic
cost of the VSS scheme achieved by the solution vector
(n1; n2; h1; h2; LX ; wX) = (1; 23; 8:00; 8:00; 2:44; 1:23)
is $118.60 per hour, with ANFVSS = 0:177 and
AATSVSS = 46:63 hours.

Comparison of the adaptive schemes with the FRS
scheme shows the e�ciency of the proposed model.
Cost reduction due to using the VSSI plan is equal
to 119:50�118:60

119:50 = 0:8%. Furthermore, the average
number of false signals has remarkably decreased to
ANFVSSI = 0:183 from ANFClassic = 0:375 (51.20
% improvement). The AATSClassic = 60:0 hours has

reduced to AATSVSSI = 46:55 hours, which indicates
22.42% improvement. For this process shift size, the
VSS scheme performs as well as the VSSI scheme, in
terms of both cost and statistical measures. The VSI
scheme shows better performance compared to the FRS
scheme, but the di�erence is not signi�cant. Since a
control chart is designed to detect a variety of shift sizes
in the process mean, other shift sizes need to be inves-
tigated and this will be examined in the next section.

5. Sensitivity analysis

Investigation of the e�ects of changes in the esti-
mated values of model parameters has been recom-
mended in previous studies [19,32]. In this section,
the e�ect of the process mean shift of sizes � 2
f0; 5; 1; 0; 1; 5; 2; 0; 2; 5; 3; 0g will be evaluated.

The optimum solutions of adaptive schemes for
di�erent process mean shift sizes are tabulated in
Tables 4 to 6. As shown in Table 4, the corresponding
cost for small process mean shifts is less than the cost
value for larger shift values. However, the proposed
model o�ers better AATS for larger shift values, which
will result in early identi�cation of assignable causes.

Also, the optimum solutions of the classic scheme
are evaluated for di�erent process mean shift sizes. The
e�ect of process mean shift on the optimum solution
of the classic scheme is summarized in Table 7. The
performance of each adaptive scheme when the process
is facing di�erent shift sizes can be concluded by
comparing these results. To better understand the
di�erence in each scheme, the cost and AATS of each
scheme are compared in Figures 1 and 2, respectively.

Table 4. E�ect of process mean shift on the optimum solution of the VSI scheme.

� n1 n2 h1 h2 LX wX ANF AATS EA

0.5 4 4 8.00 0.10 2.19 1.75 0.361 56.69 119.46
1.0 7 7 8.00 0.10 2.79 1.34 0.078 5.87 120.14
1.5 4 4 4.53 0.10 3.08 1.38 0.054 2.88 120.78
2.0 3 3 2.86 0.10 3.32 1.62 0.035 1.67 121.46
2.5 2 2 1.86 0.10 3.39 1.65 0.040 1.10 121.85
3.0 2 2 1.52 0.10 3.61 2.05 0.021 0.83 123.09

Table 5. E�ect of process mean shift on the optimum solution of the VSS scheme.

� n1 n2 h1 h2 LX wX ANF AATS EA

0.5 1 22 8.00 8.00 2.43 1.30 0.183 46.55 118.60

1.0 5 11 7.73 0.10 3.01 1.39 0.040 6.22 119.65

1.5 3 6 3.80 0.10 3.33 1.51 0.026 2.70 120.14

2.0 2 4 2.28 0.10 3.51 1.61 0.021 1.56 120.56

2.5 1 3 1.25 0.10 3.70 1.61 0.019 1.02 120.77

3.0 1 2 1.07 0.10 3.64 1.68 0.028 0.75 121.28
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Table 6. E�ect of process mean shift on the optimum solution of the VSSI scheme.

� n1 n2 h1 h2 LX wX ANF AATS EA
0.5 1 23 8.00 8.00 2.44 1.32 0.177 46.63 118.60
1.0 8 14 8.00 8.00 2.51 1.57 0.145 7.43 121.77
1.5 6 9 5.06 5.06 2.75 2.02 0.116 3.49 123.12
2.0 4 6 3.05 3.05 2.95 2.23 0.103 2.00 123.96
2.5 3 4 2.13 2.13 3.10 2.36 0.089 1.31 124.59
3.0 2 3 1.41 1.41 3.19 2.33 0.101 0.92 124.90

Table 7. E�ect of process mean shift on the optimum
solution of classic scheme.

� n h LX ANF AATS EA

0.5 4 8.00 2.15 0.375 60.00 119.50
1.0 10 8.00 2.49 0.153 6.74 122.06
1.5 6 5.07 2.69 0.139 3.53 123.25
2.0 4 3.06 2.90 0.121 2.02 124.07
2.5 3 2.13 3.07 0.099 1.32 124.66
3.0 2 1.41 3.14 0.121 0.93 125.06

Figure 1. Comparison of cost in adaptive and classic
schemes.

As shown in Figures 1 and 2, when a small shift
(i.e. 0.5 standard deviation) incurs in the process,
VSSI and VSS perform better compared to VSI and
classic schemes. However, when the process is faced
with moderate or large shift sizes (i.e. 1 or 2 standard
deviation), VSSI and VSI schemes are always superior
to VSS and classic schemes, in terms of both cost and
AATS.

6. Conclusions

In this research, adaptive X control charts are devel-
oped to monitor process mean, while process operating
costs and deviation from the target are considered

Figure 2. Comparison of AATS in adaptive and classic
schemes.

simultaneously. The relationship between process mon-
itoring costs and deviations from the designed target
value is incorporated in the model considering Taguchi
loss function. Adaptive schemes, consisting of VSS,
VSI, and VSSI schemes, are compared with the classic
FRS scheme. Evaluation of the optimum solutions
shows that shift size in the process mean in
uences
expected cost, as well as adjusted average time to
signal. The proposed adaptive schemes remarkably
improve both quality cost and alarm rates. Sensitivity
analyses of the proposed model show that VSSI and
VSS perform better in comparison to VSI and classic
schemes when the chart is optimized for identifying
small shifts in the process. However, VSSI and
VSI schemes are always better than VSS and classic
schemes when the process is facing moderate or large
shift sizes. Hence, one can conclude that the proposed
adaptive schemes are superior to the FRS scheme, in
both aspects of process monitoring costs and statistical
measures.
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