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Abstract. In general, reliability is the ability of a system to perform and maintain its
functions in routine, as well as hostile or unexpected, circumstances. The Redundancy
Allocation Problem (RAP) is a combinatorial problem which maximizes system reliability
by discrete simultaneous selection from available components. The main purpose of this
study is to develop an e�ective approach to solve RAP, expeditiously.

In this study, the basic assumption is considering Erlang distribution density for
component failure rates. Another assumption is that each subsystem can have one of cold-
standby or active redundancy strategies. The RAP is a NP-Hard problem which cannot
be solved in reasonable time using exact optimization techniques. Therefore, an approach
that combines an Ant Colony Optimization (ACO) algorithm as a meta-heuristic phase, and
three other heuristics, is used to develop a solving methodology for RAP. Finally, to prove
the e�ciency of the proposed approach, some well-known benchmarks in the literature are
solved and discussed in detail.
c 2014 Sharif University of Technology. All rights reserved.

1. Introduction

Reliability problems are well-known problems in theory
and practice in which the main objective is improving
system reliability to obtain the most e�ective system
possible. In this area, the Redundancy Allocation
Problem (RAP) is a favorite problem, which has at-
tracted the attention of engineers and other researchers
in planning the selection of components for a system,
simultaneously, and where they endeavor to combine
various components by di�erent strategies. Generally,
this problem is formulated in order to maximize system
reliability in which some predetermined constraints,
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such as total weight, total cost, and total volume,
are satis�ed. Due to various practical applications
for RAP, its attractiveness has further grown over
the last decades, in theory. In general, it is possible
to categorize series-parallel systems into three major
parts: reliability allocation, redundancy allocation,
and reliability and redundancy allocation. In the
reliability allocation problems, the reliability of the
components is determined, such that the consump-
tion of a resource under a reliability constraint is
minimized, while the redundancy allocation problem
generally involves the selection of components and
redundancy levels to maximize system reliability, given
various system-level constraints [1]. In fact, we can
implement two approaches to improve the reliability of
such a system using RAP. The �rst is to increase the
reliability of system components, while the second is
using redundant components in various subsystems in
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Figure 1. Structure of series-parallel systems.

the system [2,3]. Mainly, This problem has four major
inputs: � = [�izi ] which represents the failure rate for
component zi in subsystem i, C = [Cizi ] and W =
[Wizi ] which are the cost and weight of component zi
for subsystem i, respectively, and � = [�i(t)] which is
switch reliability in subsystem i at a predetermined
time, t. The general structure of the series-parallel
system is shown in Figure 1, where i indicates the index
of each subsystem.

The general structure of this paper is as follows.
First, a concise and comprehensive literature review
is presented for various studies undertaken over the
last decades. Afterwards, an appropriate mathematical
model is developed in Section 3. Following these
sections, we present developed heuristics algorithms,
which are clari�ed in detail in Section 4. Then, the
proposed model is tested by a benchmark problem in
the computational results part in Section 5. Finally,
this paper is recapitulated in Section 6.

2. Literature review

Reliability is a favorite, appropriate tool in all in-
dustries where its importance cannot be concealed.
Various applications of reliability problems in practical
areas have resulted in the attractiveness of such kinds
of problems in theoretical areas over the last decades,
and various models and algorithms are presented in
the literature which can generate appropriate solutions
for reliability problems, expeditiously. As a matter
of fact, it can be said that RAP is one of the
most important problems to cover various shortages
in industry. It is proven that RAP in series systems
is a NP-complete problem [4]. One of the most
important studies was presented by Coit and Smith [5]
who reviewed di�erent optimization approaches. Their
paper proposed a new approach, based on the Genetic
Algorithm (GA), which can solve general classes of
the redundancy allocation problem. Along with these
studies, various researchers endeavored to develop a

model to allocate redundant components to subsystems
to increase system reliability [6,7]. Another noticeable
study was developed to maximize system reliability
in a series system with multiple-choice constraints
incorporated into each subsystem [8]. Sung and
Cho also considered an applicable constraint, which
was the system budget in their mathematical model.
This problem was formulated as a nonlinear binary
integer programming problem, which is NP-hard. In
2009, a Multi-state Series-Parallel System (MSPS) with
capacitated binary components, which could provide
di�erent multi-state system performance levels, was
presented by Ramirez-Marquez and Coit [9]. In to-
day's market, it is very important to optimize costs,
and Bris, et al. presented research which focused
on this subject [10]. Yalaoui, et al. developed a
model for series-parallel reliability problems, which
tried to minimize a concave objective function [11].
Ruan and Sun [12] proposed an exact method to
minimize total costs in series reliability systems with
multiple component choices. This model was based on
the nonlinear integer programming problem approach
with a non-separable constraint function. Nahas and
Nourelfath [13] developed an ant system to solve the
reliability optimization problem for a series system
with multiple-choice constraints incorporated at each
subsystem, to maximize system reliability subject to
the system budget. Zhao, et al. [14] developed a multi-
objective Ant Colony System (ACS) meta-heuristic
to provide solutions for the reliability optimization
problem of series-parallel systems. In this type of
problem, selection of components with multiple choices
and redundancy levels to produce maximum bene�ts
was assumed, where the cost and weight constraints at
the system level were considered. Another study con-
centrated on modeling the reliability and redundancy
maintenance of queening systems using controlled semi-
Markov processes [15]. In that paper, they attempted
to �nd the conditional extreme of the considered
functional and determine the structure of the distribu-
tions, which prove a corresponding extreme. A study
by Ahmadizar and Soltanpanah [16] concentrated on
choosing one technology for each subsystem in order to
maximize the reliability of the whole system, subject to
the available budget. Furthermore, they proposed an
e�cient ACO approach to generate a solution using an
ant based algorithm on both pheromone trails modi�ed
by previous ants, and heuristic information considered
as a fuzzy set.

In this study, two main goals are considered.
The �rst is presenting a mathematical model which is
simpler in comparison to the ones in the literature. In
other words, it would be easier to solve this model using
common techniques to solve optimization problems.
The second is developing an e�ective algorithm for
resulting appropriate solutions in a reasonable time
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period. This algorithm is comprised of four stages, as
follows:

1. Use of an ACO algorithm which tries to �nd an
initial solution;

2. By replacing the used component in each subsystem
with another to �nd a better-o� solution from the
view point of the objective function;

3. Modifying the determined strategy among subsys-
tems to generate a better-o� solution from the view
point of the objective function;

4. Using a tabu search algorithm to �nd a more
appropriate solution among the adjacencies of a
generated solution.

3. Mathematical model for RAP

As various models in the literature, we consider two
di�erent strategies for components of subsystems in
RAP: active and standby. In the �rst, which is
active strategy, all redundant components will start
to work simultaneously from time zero. On the other
hand, according to the various categories of redundancy
strategies, there are three di�erent types of cold, warm
and hot strategies, instead of the second strategy
which is known as the standby strategy. In the cold
one, components do not fail before their start time of
operation. In warm variants, in comparison to cold
ones, it will be more likely that components will fail
before starting to operate the system. If we use the
hot variant, whether the components work or not, their
failure rates will be constant anyway. Therefore, we can
propose a mathematical model to consider two di�erent
types of active and standby strategies in our problem.
However, in the standby redundancy arrangement, the
redundant components are sequentially used in the
system at component failure times, and each redundant
component in the standby systems can be operated
only when it is switched on. When the component in
operation fails, one of the redundant units is switched
on to continue the system operation [17].

By considering two di�erent proposed strategies,
the following de�nition for three important parameter
sets in our mathematical model can be presented:
A Consists of all subsystems that are

working, based on an active redundant
strategy.

S Includes subsystems that have a
standby-cold redundant strategy.

N Represents those subsystems that do
not have any redundant strategy. In
other words, each subsystem in this
group has just one component.

Other noti�cations, parameters, and variables are as

follows:
S Number of subsystems;
i Index of subsystems where i =

1; 2; � � � ; si;
ni Number of components used in

subsystem i;
N Set of all ni(n1; n2; � � � ; nS);
nmax;i Upper bound of ni(ni � nmax;i8i);
mi Number of available component choices

for a subsystem, i;
zi Index of used component (among

di�erent mi types of components) in
subsystem i(zi 2 f1; 2; � � � ;mig);

Z Set of all zi(z1; z2; � � � ; zS);
t Mission time;
R(t; z; n) System reliability at time t for

designing vectors, z and n;
ri;zi(t) Reliability of component zi for

subsystem i at time t;
�i;zi ;Ki;zi Scale and shape parameters for the

Gamma distribution of component zi
in subsystem i, respectively;

C;W System level constraint limits for cost
and weight, respectively;

Ci;zi ;Wi;zi Cost and weight for component zi in
subsystem i, respectively;

�i(t) Failure/detection switching reliability
of subsystem i at time t.

According to these de�nitions, Relations (1), (2),
and (3) are proposed in this study.

maxR(t; z; n):

S.T. : (1)

SX
i=1

Ci;zini � C; ni 2 f1; 2; � � � ; nmax; ig; (2)

SX
i=1

Wi;zini �W; ni 2 f1; 2; � � � ; nmax; ig; (3)

where, Eqs. (2) and (3) will enforce the model not to
exceed total cost and weight from predetermined upper
bounds, respectively. Moreover, according to our active
and standby-cold redundant strategies, R(t; z; n) will
be calculated by Eq. (4):

R(t; z; n) =
Y
i2A

(1� (1� (ri;zi(t))
ni))
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�Y
i2S

0@ri;zi(t)+

0@ni�1X
x=1

tZ
0

�xi f
(x)
i;zi(u)ri;zi(t�u)du

1A1A
�Y
i2N

ri;zi(t): (4)

According to [17], we can calculate R(t; z; n) by the
following equation:

R(t; z; n) =
Y
i

2 A
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!!
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0@e��i;zi�t � Ki;zi�1X
l=0

(�i;zi � t)l
l!

1A :
(5)

As mentioned before, RAP is a NP-complete problem.
Therefore, we need to develop e�ective algorithms
to solve this model, expeditiously. In the following
section, we will propose a four phase algorithm to solve
our model, consisting of Relations (1), (2), and (3). It is
necessary to mention that Relation (1) will be replaced
by Relation (5).

4. Heuristic algorithm to solve RAP

To encode the solution, we must consider a matrix in
such a way that the strategy of each subsystem, type
of used component, and number of used components
are determined. Therefore, we utilize a matrix with
three rows and S columns. In Figure 2, an example of
encoding the solution is shown with ten subsystems.

For instance, in Figure 2, the third subsystem
is working based on the active redundancy strategy,
where �ve components of the fourth type of component
are selected for this subsystem.

Figure 2. Encoding Solution for a Sample Problem.

4.1. First phase: Ant colony optimization
algorithm

Generating an appropriate solution in a reasonable
time period is an important goal which has resulted
in raising the attractiveness of ant colony algorithms.
This type of algorithm was �rstly introduced by Dorigo,
et al. [18]. The main idea of ant systems is based on
the behavior of natural ants that succeed in �nding
the shortest path from their nest to food sources by
communicating via a collective memory consisting of
pheromone trails. Ants tend to follow a path with
a high pheromone level, when many ants move in
a common area, and they move randomly when no
pheromone is available. On the other hand, ants
do not choose their directions based on the level of
pheromones exclusively, but rather take the proximity
of the nest and food source into account, respectively.
This process is illustrated in Figure 3.

To tune the algorithm parameters, we used
the well-known Taguchi approach, \Ro" and \Tao
Weight", as the parameters which can be controlled,
completely. Moreover, \Lambda Weight" will be cal-
culated by subtracting Tao Weight from one. Table 1
shows the parameter levels using the Taguchi approach.

Orthogonal array for controllable factors with
system reliability and Signal to Noise ratio (SN) values
are shown in Table 2. Noticeably, we use SNL because
we want to increase system reliability.

SNL = �10� log

 
1
n

nX
i=1

(System Reliability)2
i

!
:
(6)

Figure 3. (a) Real ants follow a path between nest and
food source. (b) An obstacle appears on the path; ants
choose whether to turn left or right with equal probability.
(c) Pheromone is deposited more quickly on the shorter
path. (d) All ants have chosen the shorter path.

Table 1. Factors and levels for the parameter design.

Controllable
factors

Levels

Ro Low (0.01) Medium (0.05) High (1)

Tao weight Low (0.2) Medium (0.5) High (0.8)

Lambda weight = 1� Tao weight
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Table 2. Parameter design with inner arrays.

In
n
er

ar
ra

ys

Run 1 2 3 4 5 6 7 8 9

Ro 1 1 1 2 2 2 3 3 3
Tao

weight
1 2 3 1 2 3 1 2 3

R
es

p
on

se
s

(s
ys

te
m

re
li
ab

il
it

y)

SR1 0.9369 0.9160 0.9160 0.9290 0.8901 0.9273 0.8929 0.9375 0.9260

SR2 0.9090 0.9580 0.9018 0.9481 0.8942 0.9093 0.8929 0.9443 0.9181

SR3 0.9090 0.9290 0.9366 0.9412 0.9237 0.9827 0.9483 0.9150 0.9392

SR4 0.9397 0.9188 0.9188 0.9318 0.8927 0.9301 0.8956 0.9403 0.9288

SR5 0.9117 0.9609 0.9045 0.9509 0.8968 0.9120 0.8956 0.9471 0.9208

SR6 0.9117 0.9317 0.9394 0.9441 0.9264 0.9856 0.9512 0.9177 0.9421

SR7 0.9360 0.9151 0.9151 0.9281 0.8892 0.9264 0.8920 0.9366 0.9251

SR8 0.9081 0.9570 0.9009 0.9471 0.8933 0.9084 0.8920 0.9433 0.9171

SR9 0.9081 0.9280 0.9356 0.9403 0.9227 0.9817 0.9474 0.9141 0.9383

SR10 0.9378 0.9169 0.9169 0.9300 0.8910 0.9283 0.8938 0.9384 0.9270

SR11 0.9099 0.9590 0.9027 0.9490 0.8950 0.9102 0.8938 0.9452 0.9190

SR12 0.9099 0.9299 0.9375 0.9422 0.9246 0.9836 0.9493 0.9159 0.9402

SR13 0.9190 0.9350 0.9188 0.9401 0.9033 0.9405 0.9121 0.9329 0.9285

SR14 0.9175 0.9366 0.9190 0.9411 0.9044 0.9415 0.9136 0.9326 0.9287

SR15 0.9182 0.9348 0.9205 0.9405 0.9053 0.9442 0.9154 0.9316 0.9296

SNL -0.7375 -0.5864 -0.7369 -0.5361 -0.8842 -0.5415 -0.8049 -0.6059 -0.6448

Figure 4. Main e�ects plot for SN ratios.

We know that the best parameters result in higher SNL,
and this noti�cation leads us to determine values as
Ro = 0:05, Tao Weight = 0:8, and Lambda Weight =
0:2. These results are shown in Figure 4.

4.1.1. The procedure of the ant colony algorithm
� Step 1 (Initialization). All parameters in an ant

colony algorithm are primarily initialized. The algo-
rithm is terminated when it reaches 2000 iterations.

The number of ants will be determined by the num-
ber of subsystems. Pheromone information weight is
0.80 and component failure rates information weight
is 0.2. Pheromone values (�) on each path are
initialized with random values drawn from interval
[0:10; 0:25]. It is noticeable that pheromone values
are considered a matrix, where its dimensions are
the maximum number of component types among
subsystems plus one, and the number of subsys-
tems. Therefore, with this matrix, it is possible to
determine subsystem strategies, component types,
and number of components according to the value
of the pheromones. Moreover, the value of �, which
is the rate of pheromone updating, is equal to 0.05,
and random number, q, will be generated in interval
[0; 1].

� Step 2 (Initial solution construction). A random
initial solution (S0) is generated. It is noticeable
that the redundant strategy of each subsystem is
determined by a generated random number which
is less than or greater than the related pheromone
value. Moreover, the component type will be
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determined according to Eq. (7):

i = arg

 
max
j

 
0:8� �ijP

j �ij
� 0:2� �ijP

j �ij

!!
;

8i = 1; 2; � � � ; S; (7)

where, the arg function determines the index that
has the maximum value of parenthesis. In this
equation, S is the number of used subsystems,
and �i;j and �i;j are pheromone rate and problem
information rate of path (i; j), respectively. On
the other hand, the number of components will be
determined according to Constraints (2) and (3),
while it is trying to maximize all the pheromones.
Moreover in this step, the value of the objective will
be calculated according to Eq. (5).

� Step 3 (Local improvement). In this step, a
swapping procedure is used. First, according to a
generated random number, one of the used compo-
nents of each subsystem will be determined and will
be replaced by another component, and it is not
important whether it is used in a related subsystem
or not. This swapping procedure will be repeated
while no possible replacement can be occurred.

� Step 4 (Best solution improvement). After all
ants complete their solutions, the best solution in
iteration is selected, and the algorithm tries to
improve, such as in Step 3.

� Step 5 (Pheromone updating). The best solution
is used to update the pheromone matrix, where
Eqs. (8) and (9) are utilized to update this matrix:

�ij(t+ 1) = (1� �)� �ij(t) + (10 � �)��ij(t); (8)

��ij(t) =

(
1 if (i; j) 2 the best solution
0 Otherwise

(9)

To prevent the algorithm from converging to a
solution, when the value of the pheromone becomes
less than 0.001, it will change to a new value that
is selected randomly from [0:10; 0:20]. This interval
was the best among more than 10,000 iteration and
20 di�erent problems.

4.2. Second phase
In this phase, the best generated solution in the
previous phase will be considered as an initial solution.
Afterwards, for each subsystem, i, all mi components
will be assigned, one by one. For all new systems, the
value of the objective function will be generated. Then,
for the one generated system whose value of objective
function is better than the initial solution, the initial
solution will be replaced with the related solution. The
best solution in this phase will be considered an initial

solution for the next phase. It is noticeable that for
each step of this phase, the solution should be feasible
according to the proposed constraints.

4.3. Third phase
This phase has the same approach as the previous
one, where the only di�erence is to assign di�erent
strategies for each subsystem to generate a new feasible
solution. In this phase, all comparisons between the
initial solution and new feasible solutions will be done
to select the best one.

4.4. Fourth phase
As the other phase, this phase will improve the best
founded solution before this step by searching among
the adjacencies of each solution. Suppose that the
solution at the end of phase three is named the
best solution. In the structure of this solution, the
subsystems with maximum and minimum values of
reliability are called Max and Min, respectively, where
the number of components in each of these two subsys-
tems is supposed to be nmax and nmin, correspondingly.
Therefore, we can de�ne the structure of the best
solution as the following relation:

Best solution = fnmax; nmin; n�g: (10)

Now, we can de�ne following adjacencies:

fnmax + 1; nmin + 1; n�g; (11)

fnmax + 1; nmin; n�g; (12)

fnmax; nmin + 1; n�g; (13)

fnmax � 1; nmin + 1; n�g; (14)

fnmax � 1; nmin + 2; n�g; (15)

fnmax � 2; nmin + 1; n�g; (16)

fnmax � 2; nmin + 2; n�g; (17)

fnmax � 2; nmin + 3; n�g: (18)

Now, for any feasible solution among these adjacencies,
if any better-o� solution, in comparison to the best
solution, until this step, is found, it will be replaced
and considered as the best solution till now.

This phase will be repeated while no better
feasible solution can be found for RAP. Then, phases
2 to 4 will be repeated again for iteration.

5. Computational results

To evaluate and validate the proposed algorithm for
RAP, a general benchmark example is solved. This



1078 A. Ghafarian Salehi Nezhad et al./Scientia Iranica, Transactions E: Industrial Engineering 21 (2014) 1072{1082

Table 3. Problem parameters.

Sub-
system

i

Type choice 1
(zi = 1)

Type choice 2
(zi = 2)

Type choice 3
(zi = 3)

Type choice 4
(zi = 4)

�i;zi ki;zi ci;zi wi;zi �i;zi ki;zi ci;zi wi;zi �i;zi ki;zi ci;zi wi;zi �i;zi ki;zi ci;zi wi;zi

1 0.00532 2 1 3 0.00072 1 1 4 0.00499 2 2 2 0.00818 3 2 5

2 0.00818 3 2 8 0.00062 1 1 10 0.00431 2 1 9

3 0.01330 3 2 7 0.01100 3 3 5 0.01240 3 1 6 0.00466 2 4 4

4 0.00741 2 3 5 0.01240 3 4 6 0.00683 2 5 4

5 0.00619 1 2 4 0.00431 2 2 3 0.00818 3 3 5

6 0.00436 3 3 5 0.00567 3 3 4 0.00268 2 2 5 0.00041 1 2 4

7 0.01050 3 4 7 0.00466 2 4 8 0.00394 2 5 9

8 0.01500 3 3 4 0.00105 1 5 7 0.01050 3 6 6

9 0.00268 2 2 8 0.00010 1 3 9 0.00041 1 4 7 0.00094 1 3 8

10 0.01410 3 4 6 0.00683 2 4 5 0.00105 1 5 6

11 0.00394 2 3 5 0.00355 2 4 6 0.00314 2 5 6

12 0.00236 1 2 4 0.00769 2 3 5 0.01330 3 4 6 0.01100 3 5 7

13 0.00215 2 2 5 0.00436 3 3 5 0.00665 3 2 6

14 0.01100 3 4 6 0.00834 1 4 7 0.00355 2 5 6 0.00436 3 6 9

example is compromised of 14 parallel subsystems
with 3 or 4 components for each subsystem. For
this example, costs, weights, and Gamma distribution
parameters are shown in Table 3. In this problem,
the main objective is maximizing total system re-
liability at time 100 hours, with the constraint of
maximum allowed values, 130 and 170, for total cost
and total weight, respectively. Also, both active and
standby strategies are possible for each subsystem,
where the reliability of each switch is supposed to be
0.99 [17].

This problem is solved by the proposed algorithm
and the results are shown in Table 4. These results
indicate the e�ciency of this algorithm to solve RAP.
As is obvious in this table, the proposed algorithm
generates better-o� solutions in comparison to other
algorithms in the literature. Moreover, if we compare
the optimum solution with the generated solution of
this study, we can understand that for all subsystems,
the same strategy and number of components are
gained.

To prove the e�ectiveness of the presented algo-
rithm, 300 iterations, consisting of 20 periods and 15
iterations per period, are applied to the benchmark
(Table 5).

These results indicate that applying the proposed
algorithm for diverse iterations results in an appro-

priate average for solving time with low standard
deviation. To prove this noti�cation, two statistical
tests are presented.

Average solving time for 300 iterations is 0.855,
and its standard deviation is 0.0092. Now, while time
is expected to have normal distribution, we do the
following two statistical tests:(

H0 : � = 0:85
H1 : � > 0:85

(19)

We know that t = �x��0
s=
p
n is a t-student statistic that can

be used to analyze this statistical test. If this value was
greater than t(n�1;1��2 ), hypothesis H0 will be rejected
with a probability of (1��=2). According to the values
and di�erent iterations, we have:

t =
�X � �0

s=
p
n

=
0:855� :85
:0092

= 0:54: (20)

Now, if we consider doing this test with � = 0:05,
t(299;0:975) = 1:97 would be determined, and, there-
fore, we cannot reject H0 with a probability of
0.975.

Noticeably, we can do the following statistical test
for standard deviation, and we should use the chi-
squared statistics, X2 =

Pn
i=1(xi��x)2

�2
0

, to infer from
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Table 4. Comparing the generated solution with another
one in the literature.

i GA solution [17]

zi ni Redundancy Subsystem
reliability

1 1 2 Cold-standby 0.9968321
2 1 2 Active 0.9974954
3 4 3 Active 0.9994866
4 3 3 Cold-standby 0.9984228
5 2 2 Active 0.9950927
6 2 2 Active 0.9996008
7 1 2 Cold-standby 0.9983469
8 1 3 Cold-standby 0.9980610
9 1 2 Active 0.9990942
10 1 2 Cold-standby 0.9950308
11 1 4 Cold-standby 0.9994005
12 1 3 Cold-standby 0.9960789
13 3 2 Cold-standby 0.9996323
14 3 2 Active 0.9975090

System reliability 0.9704796

i Four-phase algorithm solution

zi ni Redundancy Subsystem
reliability

1 3 4 Active 0.9999347
2 1 2 Cold-standby 0.9992941
3 4 3 Active 0.9994866
4 3 3 Cold-standby 0.9984228
5 2 3 Active 0.9996562
6 4 2 Cold-standby 0.9987983
7 1 2 Cold-standby 0.9983469
8 3 2 Cold-standby 0.9983469
9 1 2 Cold-standby 0.9995271
10 2 3 Cold-standby 0.9984228
11 3 2 Cold-standby 0.9992867
12 4 2 Cold-standby 0.9980460
13 2 2 Active 0.9999001
14 3 2 Cold-standby 0.9990069

System reliability 0.9865580

i Optimum solution [17]

zi ni Redundancy Subsystem
reliability

1 3 4 Active 0.9999347
2 1 2 Cold-standby 0.9992941
3 4 3 Active 0.9994866
4 3 3 Cold-standby 0.9984228
5 2 3 Active 0.9996562
6 2 2 Cold-standby 0.9997720
7 1 2 Cold-standby 0.9983469
8 3 2 Cold-standby 0.9983469
9 1 2 Cold-standby 0.9995271
10 2 3 Cold-standby 0.9984228
11 3 2 Cold-standby 0.9992867
12 4 2 Cold-standby 0.9980460
13 2 2 Active 0.9999001
14 3 2 Cold-standby 0.9990069

System reliability 0.9875198

this test that we cannot reject hypothesis H0 with a
probability of (1 � �), if the value of X2

(n�1;�) be less
than the calculated X2:(

H0 : �2 � 0:0093
H1 : �2 > 0:0093

(21)

where:

X2 =
Pn
i=1(xi � �x)2

�2
0

=
0:025

0:00922 = 298:17; (22)

and, for � = 0:05, X2
(299;0:05) = 100, which means that

hypothesis H0 would not be rejected.
According to these tests, we can state that the

proposed algorithm results in an appropriate solving
time with low standard deviation.

Furthermore, the following table contains the
solving time of the presented algorithm with the exact
solution for some problems in short scale, which can
be solved using both exact models and the proposed
algorithm. This indicates that in comparison to the
exact model, the proposed algorithm solves di�erent
problems, e�ciently (Table 6). This feature is invalu-
able, especially in solving large scale problems, which
is a considerable issue in practice.

6. Conclusion

In this paper, a four phase algorithm is developed
to solve RAP. This algorithm is compromised of one
meta-heuristic and three e�ective heuristics, where the
results indicate the e�ciency of the proposed algorithm
to solve RAP, expeditiously. The main structure of this
algorithm is that the best generated solution of each
phase is considered the initial solution of the following
step. Therefore, at each phase, the initial solution
will be improved with high probability. As a new
approach, rather than considering some constraints,
such as weight and cost, we consider the redundancy
strategy and number of components in each subsystem.
On the other hand, we summarize the mathematical
model more simply using common optimization tech-
niques.

Future research areas on Relations (1) to (3), can
be extended as per the following suggestions:

� Applying other meta-heuristic algorithms rather
than ACO in the �rst phase of the proposed algo-
rithm.

� Utilizing extra heuristic phases to improve the gen-
erated solution as much as possible in a reasonable
time period.

� Modeling the problem using various types of com-
ponents in each subsystem, simultaneously.
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Table 5. Solving time of the proposed algorithm.

Solving time (second)
Periods Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 Iteration 7 Iteration 8

1 0.859375 0.843750 0.843750 0.843750 0.859375 0.863281 0.855469 0.859375
2 0.855469 0.839844 0.851563 0.839844 0.855469 0.855469 0.882813 0.859375
3 0.855469 0.843750 0.847656 0.843750 0.855469 0.855469 0.859375 0.855469
4 0.855469 0.839844 0.843750 0.839844 0.859375 0.855469 0.859375 0.855469
5 0.855469 0.839844 0.843750 0.843750 0.855469 0.851563 0.859375 0.863281
6 0.855469 0.839844 0.839844 0.839844 0.855469 0.859375 0.859375 0.855469
7 0.847656 0.839844 0.839844 0.839844 0.855469 0.859375 0.859375 0.859375
8 0.859375 0.839844 0.839844 0.839844 0.855469 0.855469 0.855469 0.859375
9 0.855469 0.839844 0.839844 0.835938 0.855469 0.859375 0.859375 0.859375
10 0.855469 0.839844 0.835938 0.839844 0.847656 0.855469 0.855469 0.867188
11 0.855469 0.843750 0.839844 0.839844 0.859375 0.859375 0.859375 0.871094
12 0.855469 0.851563 0.843750 0.839844 0.859375 0.859375 0.855469 0.875000
13 0.867188 0.839844 0.839844 0.839844 0.855469 0.855469 0.855469 0.859375
14 0.851563 0.867188 0.839844 0.832031 0.855469 0.855469 0.859375 0.859375
15 0.875000 0.839844 0.839844 0.816406 0.867188 0.859375 0.859375 0.859375
16 0.859375 0.839844 0.839844 0.839844 0.871094 0.855469 0.843750 0.859375
17 0.855469 0.843750 0.835938 0.839844 0.871094 0.859375 0.859375 0.855469
18 0.855469 0.839844 0.839844 0.835938 0.859375 0.855469 0.859375 0.859375
19 0.859375 0.839844 0.839844 0.839844 0.855469 0.863281 0.859375 0.859375
20 0.867188 0.839844 0.839844 0.839844 0.859375 0.863281 0.855469 0.859375

Max 0.875000 0.867188 0.851563 0.843750 0.871094 0.863281 0.882813 0.875000
Min 0.847656 0.839844 0.835938 0.816406 0.847656 0.851563 0.843750 0.855469

Standard
deviation

0.005998 0.006475 0.003646 0.005846 0.005650 0.003206 0.006778 0.005085

Period Iteration 9 Iteration 10 Iteration 11 Iteration 12 Iteration 13 Iteration 14 Iteration 15

1 0.859375 0.859375 0.859375 0.859375 0.859375 0.859375 0.859375
2 0.859375 0.859375 0.855469 0.859375 0.859375 0.859375 0.859375
3 0.859375 0.859375 0.859375 0.859375 0.859375 0.859375 0.859375
4 0.859375 0.855469 0.867188 0.859375 0.859375 0.871094 0.855469
5 0.859375 0.851563 0.859375 0.859375 0.855469 0.859375 0.855469
6 0.855469 0.859375 0.875000 0.859375 0.855469 0.882813 0.859375
7 0.859375 0.859375 0.855469 0.855469 0.859375 0.859375 0.859375
8 0.855469 0.859375 0.859375 0.855469 0.859375 0.859375 0.859375
9 0.855469 0.843750 0.859375 0.867188 0.859375 0.855469 0.871094
10 0.859375 0.847656 0.859375 0.863281 0.855469 0.859375 0.855469
11 0.855469 0.859375 0.859375 0.871094 0.855469 0.855469 0.878906
12 0.859375 0.859375 0.855469 0.859375 0.859375 0.863281 0.859375
13 0.859375 0.859375 0.859375 0.859375 0.859375 0.859375 0.859375
14 0.863281 0.859375 0.859375 0.871094 0.855469 0.855469 0.859375
15 0.859375 0.859375 0.859375 0.859375 0.859375 0.859375 0.859375
16 0.882813 0.859375 0.855469 0.878906 0.855469 0.859375 0.859375
17 0.855469 0.855469 0.859375 0.855469 0.859375 0.859375 0.863281
18 0.859375 0.855469 0.863281 0.855469 0.859375 0.859375 0.859375
19 0.863281 0.871094 0.851563 0.859375 0.867188 0.855469 0.855469
20 0.859375 0.859375 0.847656 0.855469 0.855469 0.855469 0.859375

Max 0.882813 0.871094 0.875000 0.878906 0.867188 0.882813 0.878906
Min 0.855469 0.843750 0.847656 0.855469 0.855469 0.855469 0.855469

Standard
deviation

0.005846 0.005447 0.005510 0.006270 0.002798 0.006321 0.005506
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Table 6. Solving time for di�erent problems using
proposed algorithm.

System level
constraint limits

Solving time (second)

Cost Weight Four-phase algorithm

130 170 0.839844
131 171 0.855469
132 172 0.847656
133 173 0.839844
134 174 0.851563
135 175 0.855469
136 176 0.855469
137 177 0.839844
138 178 0.839844
139 179 0.843750
140 180 0.843750
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