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Abstract. This paper considers a 
exible assembly job shop scheduling problem with
sequence dependent setup times, and its objective is the minimization of makespan,
which integrates the process planning and scheduling activities. This is a combinatorial
optimization problem with substantially large solution space, suggesting that it is highly
di�cult to �nd the best solution with the exact search method. In this paper, a
particle swarm optimization based algorithm is proposed, which applies a novel solution
representation method to �t the continuous nature of the algorithm in the discrete modeled
problem. Numerical experiments also have been performed to demonstrate the e�ectiveness
of the proposed algorithm.
c
 2014 Sharif University of Technology. All rights reserved.

1. Introduction

Nowadays, manufacturing systems have to produce
orders in minimum time in order to increase their
competition capability in the market. Production
scheduling is one of the factors to play a direct,
basic role in achieving this goal. The development of
advanced techniques in this �eld of science, thus, is one
of the issues considered by researchers. Flexibility is
also an obvious characteristic of modern manufacturing
systems, which is another factor towards attaining the
mentioned goal. Various de�nitions of 
exibility in
manufacturing systems can be found in the literature.
Benjafaar and Ramakrishman [1] divided 
exibility
into two main groups. The �rst group considers
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exibility in the process of production. Flexibility,
with respect to processes implicates conditions under
which machines have the capability of implementing
more than one operation. The second group also
explains 
exibility with respect to production. This
group itself is divided into three sub-groups. Oper-
ation 
exibility is considered when there are several
alternative machines for implementing an operation
(sometimes this condition is named, routing 
exibility).
Sequencing 
exibility refers to conditions in which
there are several alternative plans for the operation
sequence of a job (this condition is sometimes named,
process plan 
exibility).

Moreover, processing 
exibility is a condition,
under which, in addition to existing alternative opera-
tion sequences for each job, there are various types of
operation in the process plans.

In traditional approaches, the process planning
activity is performed independent of scheduling activ-
ity. In other words, the relation between these two
activities is completely unilateral, and the scheduling
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activity is performed by considering certain and pre-
determined process plans. The separation of process
planning and scheduling activities may cause some
disadvantages. Each one of these activities searches
a vast solution space for �nding a good solution. If
a process plan is not implemented in the scheduling
phase, e�orts made to �nd it would be aborted. Con-
versely, integration of process planning and scheduling
activities provides a unique solution space (however,
more complex). Thus, if two activities are integrated
successfully, a considerable saving occurs in costs re-
lated to solving the problem [2].

In the literature, the above problem is usu-
ally named the Integration of Process Planning and
Scheduling (IPPS) problem. An IPPS problem is also
known as the Flexible Job Shop Scheduling (FJSS)
problem. In fact, any kinds of FJSS problem can
be seen as an IPPS problem. Over the past decade,
di�erent approaches have been proposed for solving the
problem. As for the shop 
oor status, Jain et al. [3]
divided the approaches into two main groups. The �rst
group includes approaches that perform integration
dynamically. In other words, these approaches focus on
shop 
oor conditions to perform the process planning
activity. Sometimes, these types of method are divided
into two sub-groups; closed loop process planning [4]
and distributed process planning [5]. In contrast, the
second group includes methods which consider the
status of the shop 
oor to be fully static and are
named Non-Linear Process Planning (NLPP). This
approach implicates situations in which all possible
process plans for a job are designed before application
to the shop 
oor. On this basis, the process plans
for each job are prioritized based on speci�c criteria.
During the production process, the process plan with
the highest priority is always considered as the �rst
option for utilization in the workshop. If the conditions
are not favorable for use, subsequent priorities will be
considered.

Jain et al. [3] investigated some advantages and
disadvantages of the mentioned approaches and con-
cluded that the second approach (i.e. NLPP) can be a
fair tool for IPPS, and can be utilized in plants where
there are separate departments for process planning
and scheduling without any changes in their organiza-
tion. Moreover, using this approach in order to utilize

exibility, they proposed a methodology, which, due to
its simplicity, is included in most current research. The
integration model focuses on the implementation and
improvement of this model [6].

Considering the NLPP approach, a vast range
of research has been undertaken in past years which
could be classi�ed into two groups, according to the
problem solving method: I) exact solutions, and II)
metaheuristics.

Regarding the �rst group, Tan and Khoshnevis [7]

proposed a polynomial mixed integer programming
model for the IPPS problem and linearized it. �Ozg�uven
et al. [8] presented a mixed integer linear programming
model for solving this problem; they �rst proposed
a new model for the Flexible Job Shop Scheduling
problem with routing 
exibility and compared it with
the only comparable model they found in the literature.
Afterwards, this model was developed considering pro-
cess plan 
exibility.

Because of the di�culty in solving combinatorial
optimization problems in real-size by an exact method,
most studies on the IPPS problem focused on the
use and development of meta-heuristics to �nd high
quality solutions for the problem. In a review study,
Tan and Khoshnevis [2] investigated the capability of
development of various methods to solve the mentioned
problem. The study was focused on introducing process
planning systems based on arti�cial intelligence. Ima-
nipour et al. [9] modeled the problem as a non-linear
mixed integer programming model with the objective
of minimizing maximum lateness, and solved it by two
new versions of the tabu search algorithm. They also
considered transportation times in their model. Ima-
nipour [10] proposed a non-linear mixed integer pro-
gramming for the IPPS problem considering sequence
dependent setup times and developed a tabu search
algorithm to solve the problem. Li and McMahon [11]
proposed an approach based on the simulated anneal-
ing algorithm in order to solve the IPPS problem.
Moon and Seo [12] developed a mathematical model for
solving the problem in a multi plant chain, considering
transportation times. In addition, they presented
an evolutionary algorithm for solving the proposed
model. Moon et al. [13] presented a mixed integer
programming model and an evolutionary algorithm,
based on a topological type, to solve the IPPS problem
in a supply chain. Guo et al. [14] used a modi�ed
Particle Swarm Optimization (PSO) algorithm to solve
the problem in single objective mode. Shao et al. [15]
proposed a modi�ed approach based on the genetic
algorithm for the IPPS problem. Li et al. [6] proposed
a new hybrid algorithm to solve the problem. They
devised a collection of new genetic representations and
genetic operators in the algorithm. They also used the
tabu search algorithm for local search. In addition, Li
et al. [16] presented a mathematical model for the IPPS
problem and proposed an evolutionary based algorithm
to solve it. Wang et al. [17] proposed a new solution
representation to use in the PSO algorithm for this
problem and devised a local search approach to improve
solution quality.

Nourali et al. [18] recently proposed a new math-
ematical model for the IPPS problem. They compared
the literature of the IPPS problem with the assembly
job shop scheduling problem and concluded that the
assembly operation is a neglected issue regarding the
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IPPS problem. So, they de�ned a new problem,
entitled the Flexible Assembly Job Shop Scheduling
(FAJSS) problem, which included the assumptions
of the IPPS problem with the addition of assembly
operation. They proposed a mixed integer linear
programming model to minimize makespan for the
problem, considering sequence dependent setup times,
and solved it using only a branch and bound method.
As mentioned above, it is very di�cult to solve such
a problem by an exact method in real size problems.
So, it is required to develop a powerful approximate
algorithm for searching the large solution space of the
problem.

This paper considers the new problem addressed
by Nourali et al. [18]. However, the major aim is
to develop an e�cient meta-heuristic algorithm based
on PSO to �nd good solutions for large size problems
that cannot be solved optimally by an exact solution
in reasonable time. The algorithm applies a new
solution representation method for this problem, which
is the second achievement of this paper. Problems
of various sizes are also used to test the performance
of the proposed algorithm. The rest of this paper
has been organized as follows: Section 2 is devoted
to the de�nition of the problem. In Section 3, the
PSO algorithm is introduced. Section 4 describes the
proposed algorithm and its components. Section 5
discusses computational results and, �nally, Section 6
includes the concluding remarks and future research.

2. Problem de�nition

Based on the de�nition presented by Nourali et al. [18],
\job" refers to a �nal product which is composed of
some \parts". The parts are assembled, based on
predecessor/successor relationships, according to the
bill of materials, to form a �nal product or a job.
An example is shown in Figure 1. In this �gure,
each rectangle represents a part. The parts have been
labeled with ij, which means the jth part of job i. The
part, ij, may be a root component, a leaf component
or a subassembly of a job. In this �gure, part 10
is a root component, parts 11, 13 and 14 are leaf
components, and part 12 is a subassembly of job 1. It
is assumed that part i0 represents the �nal assembly
for job i and can be considered the �nal product.
Each part requires a set of determined operations,
which are shown in Figure 1 using circles. There
are prede�ned relationships between the operations of
each part. All the scenarios of 
exibility mentioned
in Section 1 are considered in the problem. The
processing times of the operations are di�erent and
deterministic in the alternative machines. The setup
times of the operations are di�erent and sequence
dependent. When the processing part is changed, setup
would be required for the machine. In other words, if

Figure 1. Predecessor/successor relationships for a job
with 5 parts.

the operations of a particular part are processed by a
machine successively, setup will not be required.

Generally, in classical job shop scheduling prob-
lems, a job is considered a batch of identical jobs.
Mckoy and Egbelu [19] indicated that this strategy
leads to an increase in Makespan. Therefore, in this
paper, similar parts are considered as distinct parts. It
is assumed that the setup time between these parts is
equal to zero. It is expected that this assumption will
lead to maximum utilization of 
exibility on the shop

oor.

Some other assumptions and constraints are de-
scribed as follows:

� Cutting operation is not permitted.
� A part can only be processed on one machine at a

time, and a machine can process only one operation
at a time.

� Transportation times are ignored.
� All parts are available at time zero.
� During the time horizon of the schedule, machines

are available and are not broken.

A dummy job is also considered which has only
one part. The number of operations of this part is equal
to the number of existing machines in the workshop
and each operation is performed by only one machine.
All processing times related to this part are equal to
zero. This part is assumed in order to consider the �rst
setup on the machines. In other words, the part which
is processed immediately after the dummy job could be
considered the �rst processed part on the machine.

The aim is to generate a schedule which mini-
mizes the makespan, considering all technological and
resources constraints. (Note that the makespan is
calculated in terms of the completion times of �nal
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products or jobs.) The mathematical formulation of
the problem can be found in Nourali et al. [18].

3. Particle swarm optimization

The PSO algorithm was introduced by Kennedy and
Eberhart [20]. This algorithm, which is designed based
on the simulation of the social behavior of birds in a

ock, was originally adopted for balancing weights in
neural networks. The PSO algorithm is an evolutionary
algorithm that starts with an initial population of
randomly generated individuals, named a swarm. Each
particle in this algorithm indicates a feasible solution
from the solution space. The particles search the
solution space by velocities which are calculated at each
step of the algorithm. Eqs. (1) and (2) are the most
popular relations for updating the velocity and position
vectors of the particles in the PSO algorithm:

~vi(t+ 1) = [W:~vi(t)] +
h
r1:c1:

�
~xipbest � ~xi(t)

�i
+
�
r2:c2:

�
~xgbest � ~xi(t)

��
; (1)

~xi(t+ 1) = ~xi(t) + ~vi(t+ 1): (2)

In this algorithm, the best position vector found by
each particle is reserved in ~xipbest, where i is a counter
for the particles. Also, the best position vector found
by the entire swarm is reserved in ~xgbest. These posi-
tions are considered as leaders for the next movement
of a given particle. The velocity vectors are updated
by Eq. (1), where W is the inertia weight. Researchers
have found that the best performance can be obtained
by initially setting W to some relatively high value,
which corresponds to a system where the particles
move in a low viscosity medium and perform extensive
exploration, and gradually reducing W to a much lower
value, where the system would be more dissipative
and exploitative and would be better at homing in to
local optima [21]. In Eq. (1), c1, which is named the
cognitive learning factor, indicates the learning rate
of each particle from the best solution it has found.
Also, c2, which is named the social learning factor,
indicates the learning rate of each particle from the
best solution found by the entire swarm. The value 2
has been adopted for these parameters in most research
on the PSO algorithm. Parameters, r1 and r2, are
also randomly generated �gures within the range [0,1],
which are used to maintain diversity in the search
process.

4. The proposed algorithm

To solve the FAJSS problem with the sequence depen-
dent setup times, three sub-problems should be solved

simultaneously: (I) selecting the most suitable process
plan for each part, (II) assigning the most suitable
machines for the operations, (III) determination of the
best schedule.

In order to solve these problems simultaneously,
it is required to combine their solution spaces. This
combination is resulted to produce a complicated solu-
tion space. The proposed algorithm has been designed
in such a way as to be able to search this vast solution
space ideally.

4.1. General structure
The general structure of the proposed algorithm can
be found in Figure 2. The algorithm consists of three
nested loops. The duty of the outermost loop is to
�nd the most suitable process plans for the parts,
which, hereinafter, will be named the \process planning
loop". The middle loop is recalled in the process
planning loop, and its duty is to assign the most
suitable machines for operations, with respect to the
selected process plans in the process planning loop.
Henceforth, this loop is named the \routing loop". The
innermost loop, which is recalled in the routing loop,
is responsible for determination of the best schedule,
with respect to the outputs of two outer loops. This
loop is named the \scheduling loop".

Each loop searches the solution space based on the
concepts of the PSO algorithm mentioned in Section 3.
At �rst, a particle from the process planning loop is
initialized randomly and the process plan for the parts
is determined. This process plan is considered the
input for the routing loop. Then, a particle from the
routing loop is initialized randomly, with respect to
the selected process plan, by the process planning loop
to assign machines to the operations. Afterward, the
outputs of these two loops are considered as the input
of the innermost loop, i.e. the scheduling loop. In
this loop, the �rst particle is initialized randomly with
respect to the outputs of other loops, and the �rst
schedule is produced for the problem. Based on this
schedule, the objective function value is calculated for
the �rst time. This value is considered the objective
function value for the �rst particle of the scheduling
loop. Afterwards, the scheduling loop initializes its
other particles and calculates their objective function
value. In order to �nd the most suitable schedule for
the selected process and routing plans, the scheduling
loop begins iterations, according to Eqs. (1) and (2),
and until the occurrence of termination criteria of this
loop, the process continues.

When the scheduling loop is terminated for the
�rst time, the best schedule found by this loop is
considered the objective function value for the �rst
particle from the routing loop. Then, the second
particle from the routing loop is initialized randomly
and new information is reported to the scheduling loop



S. Nourali and N. Imanipour/Scientia Iranica, Transactions E: Industrial Engineering 21 (2014) 1021{1033 1025

Figure 2. General structure of the proposed algorithm.

again. Afterwards, the scheduling loop is recalled, as
before, to �nd the most suitable schedule, with respect
to the selected process plan and new selected routing
plan. The process is continued until all the particles
from the routing loop are initialized. After initializing,
the routing loop begins iterations, based on Eqs. (1)
and (2), like the scheduling loop. After the termination

of the routing loop, the best objective function value
found by this loop is considered the objective function
value for the �rst particle from the process planning
loop. The process planning loop also acts like the other
loops. After the termination of the process planning
loop, the best solution found by this loop is considered
the best schedule for the problem.
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As mentioned at the beginning of this section, in
order to solve the sub-problems simultaneously, it is
necessary to combine their solution space, which results
in an increase in the complexity of problem solving.
The advantage of the proposed structure of this paper
is to choose a part of the solution space at each stage,
and search therein, in order to �nd the best solution.

In such a way, it would be expected to search the
vast solution space of the problem favorably.

4.2. Solution representation method
Originally, the PSO algorithm was designed to solve
continuous problems. Lei [22] addressed two ap-
proaches in the literature for applying this algorithm
in discrete problems, such as the job shop scheduling
problem. In the �rst approach, named discrete PSO,
the position or velocity update method is rede�ned to
apply in discrete problems. The rede�nition is essential
for the application of PSO. On the other hand, the low
performance of the discrete PSO mainly results from
its rede�nition. This is a paradox [22]. The second
approach is to transform the discrete problem into a
continuous one. By this approach, it is not required to
rede�ne the elements of the PSO algorithm. Lei [22]
enumerated the advantages of the second approach
and concluded that the transformation of a discrete
problem into a continuous one is much easier than
rede�nition of the elements of the PSO algorithm.
In this study, the second approach has been adopted
and the problem has been converted into a continuous
problem.

In this section, a new solution representation
method is proposed to solve the FAJSS problem using
the PSO algorithm. The method consists of three
linked levels, and each of them is used in one of the
loops. To better understand the method, an example
is shown in Table 1. This table shows the alternative
process plans and machines for two independent parts.
Each of these parts has two alternative process plans.
Two alternative machines also are available to process
each operation.

4.2.1. Solution representation for process planning
loop

To represent the solution in the process planning loop,
an array in the length of the number of parts is

Table 1. Alternative process plans and machines for two
independent parts.

Parts Process
plans

Operation sequence
Operation

(alternative machines)

1 1
2

3(1,3)!2(1,2)!8(3,4)
3(1,3)!7(1,4)

2 1
2

1(3,5)!2(1,2)!4(2,4)!5(2,3)
2(1,2)!1(3,5)!4(2,4)!7(1,4)

Figure 3. Solution representation for process planning
loop.

considered. This array corresponds to the position
vector of a given particle. Each element of this array
belongs to one of the parts in the problem, and the
selected process plan for each part is interpreted from
the assigned value to the corresponding element in
the array. Figure 3 shows an example of solution
representation in the process planning loop for the
problem mentioned in Table 1. The position vector
corresponding to the particle shown in Figure 3 is
x = (1:35; 2:11). The selected process plan for each
part in this solution representation method is equal to
the biggest integer number below the assigned value
to the corresponding element in the position vector.
Considering Figure 3, the �rst and second process
plans are selected for parts 1 and 2, respectively. The
permitted range for each element in the position vector
in this loop is [1;Npp + 1), where Npp is the number
of available process plans for the corresponding part.

4.2.2. Solution representation for routing loop
In this loop, an array in the length of the total
number of operations of parts is considered the position
vector. It is clear that this number depends on
selected process plans in the process planning loop.
Each element of this array belongs to one of the
operations. Figure 4 shows an example of solution
representation in the routing loop for the problem
mentioned in Table 1, considering the selected process
plans shown in Figure 3. The position vector, which
corresponds to the particle shown in this �gure, is
x0 = (1:24; 1:75; 2:36; 1:94; 2:19; 2:97; 1:07).

In this solution representation method, the
biggest integer number below the assigned value to each
element in the position vector indicates the order of
selected machines for operation.

For instance, in the mentioned example above, the
second machine is selected for the third operation of
part 1. Considering Table 1, it means that machine 4
is selected for this operation. In this loop, the
permitted range for each element in the position vector
is [1 + Nm + 1), where Nm is the number of available
alternative machines for corresponding operations.

4.2.3. Solution representation for scheduling loop
In this loop, the solution representation is based on the
selected process and routing plans in the outer loops.
Figure 5 shows the selected machines for the mentioned
example above.

The preference list concept is the basis of the so-
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Figure 4. Solution representation for routing loop.

Figure 5. Selected machines for operations of the parts.

Figure 6. An example for preference list.

lution representation method in this loop. A preference
list is an array, in which the order of processing on the
machines is determined. The array includes some sub-
arrays, each of them belonging to one of the machines.
Figure 6 shows an example of machine 1 considering
the information in Figure 5. As shown in Figure 6, four
operations have been allocated to machine 1, which can
be processed with the arrangement shown in the �gure.
The signi�cant point about the preference list is that
the arrangement made for processing on the machine
is not a hard rule. In other words, the operation with
the topmost order in the list can be considered for
processing when it's predecessors have been passed.
Otherwise, the next order is considered. By this
de�nition, all generated solutions would be feasible,
which is the best characteristic of the preference list.

With regard to the speci�cations of the preference
list, after generating an arrangement, the scheduling
plan can be obtained. So, the key issue in the use of
this concept for a scheduling loop is how to generate
all permutations of the numbers in the preference
list for searching the solution space of the problem.
This method also should be in accordance with the
continuous nature of the PSO algorithm.

Behroozi and Eshghi [23] utilized an interesting
method proposed by McCa�rey [24] to represent the
solution of a classical job shop scheduling problem
in a hybrid algorithm. McCa�rey [24] designed this
method to generate an arbitrary permutation using
a mathematical construct. This method interprets

Figure 7. Pseudo code for transformation numbers in
base 10 into factoradic form.

each permutation as an ordinary number in base 10
and makes a one to one mapping between them. To
generate permutations in order n by this method, at
�rst, a number in base 10 should be transformed into
factoradic form. This number could be an integer
in the range of [0; n! � 1]. The pseudo code of this
transformation can be found in Figure 7.

In this �gure, i is a counter in factoradic form
from the right, and n is the order of permutations.
Besides, wi indicates the ith number in factoradic form,
and h at the �rst iteration is equal to the number in
base 10. Moreover, bh=ic indicates the biggest integer
number below h=i. We can, for example, represent 59
in factoradic form as (21210). In the factoradic form,
the ith number from the right could be an integer in
the range of [0; i � 1]. To generate a permutation,
the factoradic form should be transformed by a simple
algorithm, which is shown in Figure 8. In this �gure, w0i
indicates the ith number in the permutation from the
left. Also, ordered sets, A and B, mean sets in which
the elements have an ascending order, based on their
values. The output of this transformation would be a
permutation composed by elements in set B. For better
understanding, a transformation is performed for the
mentioned above example and is shown in Figure 9.
At �rst, 59 is transformed into factoradic form by
the algorithm shown in Figure 7. Afterward, the
produced array is transformed into a permutation by
the algorithm shown in Figure 8. For example, consider
the �rst number in factoradic form. This number is the
3rd number in set A. So, the 3rd number from set B
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is considered the �rst number in the permutation and
is deleted from set B, and so on. By this algorithm, 59
is transformed into (32541) as the 59th permutation in
order 5. In order to utilize this method for the solution
representation in the scheduling loop, we introduce two
strategies:

Strategy I: This strategy is similar to the strategy
applied by Behroozi and Eshghi [23]. In this strategy,
an array is considered for each machine as a preference
list. The length of each array is equal to the number
of operations assigned to the corresponding machine.

Figure 8. Pseudo code for transformation of factoradic
form into a permutation.

Figure 10 shows the preference lists for the men-
tioned example in Table 1. By this strategy, each
element of the position vector belongs to a machine
and could have a value in the range of [0;Nam!),
where Nam is the number of assigned operations to
the machine. First, in the algorithm, the biggest
integer number below the value of the element in the
position vector is considered. This value is transformed
into factoradic form. Afterward, the factoradic form
is changed to a permutation in order Nam. This
permutation could be interpreted as a preference list
for the machine. Figure 10 indicates an example of
the solution representation for the scheduling loop by
Strategy I. The position vector for this example is
x00 = (11:62; 1:35; 0:75).

This strategy could be applied successfully only
in situations where the number of assigned operations
to the machines is low. Imagine, for example, that 100
operations are assigned to a machine. Under such a
condition, the element corresponding to this machine
in the position vector could have a value in the range
of [0; 100!). So, the algorithm may be faced with very
large values.

Strategy II: The type of array in this strategy
is partly similar to Strategy I. The main di�erence
between them is in the representation of the position
vector. As mentioned before, in factoradic form, the ith
number from the right could be an integer in the range

Figure 9. An example for transformation of an integer into a permutation.

Figure 10. Solution representation for scheduling loop by Strategy I.
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Figure 11. Solution representation for scheduling loop by Strategy II.

of [0; i� 1]. This characteristic is used in this strategy
to specify the position vector. On this basis, each
element of a given preference list has a corresponding
element in the position vector. This element in the
position vector can have a real value in the range of
[0; i). In addition, the biggest integer number below
this value is considered in factoradic form. After the
formation of the factoradic form, like Strategy I, it is
transformed into a permutation and a preference list
is made. Figure 11 explains this process. By this
strategy, the position vector for the above example
is x00 = (1:25; 2:13; 1:76; 0:43; 1:01; 0:54; 0:71). The
biggest integer number below these values is considered
as the factoradic form and is used to generate the
preference list. Therefore, for the above example, the
preference list would be the same as shown in Figure 10.

Using strategy II, the algorithm no longer needs
to use the number in base 10 and is not faced with
large values. So, this strategy is used for the solution
representation in the scheduling loop.

4.3. Termination criteria
If the number of iterations in each loop reaches a pre-
scribed maximum value, the loop is interrupted. The
algorithm in each loop is also stopped after executing
a speci�ed number of iterations without improvement
in the objective function.

5. Numerical experiment

This section describes the computational tests used to
evaluate the e�ectiveness and e�ciency of the proposed
algorithm in �nding high quality solutions. For this
purpose, we tested the algorithm using some test prob-
lems. The data for the problems were obtained from
the part manufacturing industry. In these problems,
a workshop with 6 machines is considered, whose
machine 6 serves as an assembly station. Also, there
are 10 types of distinct operation, where operation 6 is
the assembly operation. The problems are divided into
three groups; small, medium and large size problems.
Each group, based on the number of available process
plans and alternative machines, is also divided into
4 problems. In the problems, 4 jobs with 15 parts
are considered. Predecessor/successor relationships
between these parts are shown in Figure 12. In the
small size problems, jobs 1 and 2 are considered;

Figure 12. Predecessor/successor relationships for all
parts in the test problems.

therefore, these problems contain 6 parts. The medium
size problems include jobs 1, 2 and 3; consequently,
there are 10 parts in these problems. Finally, the
large size problems consider all jobs with 15 parts.
Also, there are some identical parts in the problems;
parts 11, 12 and 21 are similar to parts 31, 22 and 41,
respectively, which are labeled distinctly.

The number of operations for the parts varies
between 2 to 4. Tables 2 and 3 show the details of
one of the test problems. As seen in Table 3, the setup
times between identical parts have been considered to
be zero. Also, \Dummy" in this table indicates the
dummy job mentioned in Section 2.

To solve these problems, we coded the mathemat-
ical model proposed by Nourali et al. [18] by GAMS
software, which solved them by the branch and bound
method. The running time for solving problems by
the software was limited to 3600 seconds. We also
coded the proposed algorithm by C++ language. This
program, and GAMS software was run on a laptop with
a 2.4 GHz Intel Core i3 processor and 4 GB RAM.
Based on some preliminary experiments, the following
parameters were applied to the proposed algorithm:
The swarm size for each loop is 10. The value of
2 has been considered for both learning factors, c1
and c2. The maximum number of iterations in the
process planning, routing and scheduling loops is 10,
20 and 30, respectively. The maximum number of
iterations, without improvement in objective function
for each loop, is equal to half the maximum number of
iterations. For all the loops, inertia weight is adjusted
via the following relation:

w = wmax � wmax � wmin

NPSO
� t;

where wmax and wmin are the upper and lower bounds
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Table 2. Details of problem P1-1.

Parts Process
plans

Operation sequence
Operation (alternative machines)

Operation sequence
Operation (processing times on alternative

machines respectively)

10 1
2

6(6)!2(1,2)!3(1,3)
6(6)! 3(1,3)!2(1,2)

6(42)! 2(67,46)! 3(91,60)
6(42)! 3(91,60)! 2(67,46)

11 1
2

1(3,5)! 2(1,2)! 4(2,4)! 5(2,3)
2(1,2)! 1(3,5)! 4(2,4)! 7(1,4)

1(40,51)! 2(89,80)!4(82,59)! 5(63,40)
2(89,80)! 1(40,51)! 4(82,59)! 7(97,78)

12,22 1
2

3(1,3)! 2(1,2)! 8(3,4)
3(1,3)! 10(1,5)

3(82,93)! 2(58,45)!8(80,91)
3(82,93)! 10(46,38)

20 1
2

6(6)! 10(1,5)! 7(1,4)
6(6)! 9(4,5)

6(78)! 10(13,15)! 7(91,130) 6(78)! 9(61,57)

21 1
2

2(1,2)! 9(4,5)
9(4,5)! 2(1,2)

2(71,97)! 9(81,69)
9(81,69)! 2(71,97)

Table 3. Sequence dependent setup times for problem
P1-1.

Machines From parts To parts
10 11 12 20 21 22

1 Dummy 29 28 24 14 24 27
10 - 14 22 16 15 18
11 29 - 16 23 16 16
12 25 25 - 28 16 0
20 26 19 25 - 19 19
21 14 23 27 21 - 26
22 25 25 0 28 16 -

2 Dummy 30 19 29 - 23 19
10 - 16 17 - 19 10
11 12 - 21 - 17 24
12 14 17 - - 23 0
20 - - - - - -
21 25 18 29 - - 18
22 14 17 0 - 23 -

3 Dummy 24 27 18 - - 28
10 - 24 16 - - 24
11 14 -20 - - 14 0
12 26 26 - - - 0
20 - - - - - -
21 - - - - - -
22 26 26 0 - - -

4 Dummy - 16 17 27 23 15
10 - - - - - -
11 - - 18 21 16 19
12 - 17 - 19 27 0
20 - 21 12 - 15 30
21 - 15 19 12 - 27
22 - 17 0 19 27 -

5 Dummy - 22 30 16 17 30
10 - - - - - -
11 - - 24 27 19 27
12 - 21 - 23 19 0
20 - 26 19 - 26 19
21 - 30 24 29 - 24
22 - 21 0 23 19 -

6 Dummy 26 - - 30 - -
10 - - - 26 - -
11 - - - - - -
12 - - - - - -
20 30 - - - - -
21 - - - - - -
22 - - - - - -

Figure 13. Gantt chart for problem P1-1.

for inertia weight and are set as 1 and 0.5, respectively.
NPSO is also the maximum number of iterations for
each loop. Due to the non-deterministic nature of the
algorithm, the solutions for each problem have been
obtained with 10 replications. Figure 13 illustrates
a Gantt chart of the solution obtained for the test
problem P1-1. In this �gure, the operations have
been shown by white rectangles and labeled via ijl,
which means the lth operation of part ij and the black
rectangles show setups.

The results for all test problems are shown in
Table 4. With respect to the obtained results, the
following comments can be made:

� The branch and bound method could �nd optimal
solutions for small size problems. Therefore, the
results of these problems can be considered a good
benchmark for the proposed algorithm.

� The branch and bound method failed to �nd the �rst
mixed integer programming solution for one of the
large size problems in determined time limitation.

� Comparison between the results of the branch and
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bound method and the proposed algorithm in small
size problems shows that the algorithm could �nd
the optimal solution in three of them in an ideal
time.

� The investigation of the results obtained by the
branch and bound method in the small size problems
shows that the time of solving by this method
is strongly sensitive to 
exibility levels, while the
proposed algorithm shows much less time sensitivity
to 
exibility levels in �nding the optimal solution for
these problems.

� The obtained results from the proposed algorithm
in medium and large size problems are considerable
compared with the results of the branch and bound
method. In these problems, the best solutions
obtained by the proposed algorithm have a signif-
icant di�erence compared to the best mixed integer
programming solutions obtained by the branch and
bound method. In some cases, this di�erence is
even seen between the average of solutions found
by the algorithm and the best mixed integer pro-
gramming solutions obtained by the branch and
bound method. Moreover, the algorithm has found
these solutions in much less time than the branch
and bound method, which indicates the merit of
the proposed algorithm in solving large size prob-
lems.

6. Conclusions

This paper has proposed a PSO-based optimization
approach to handle a FAJSS problem with sequence
dependent setup times, with the objective of minimiza-
tion of makespan. The algorithm includes three nested
loops, which use a new solution representation to solve
the problem. The e�ectiveness and e�ciency of the
algorithm has been validated by comparing the branch
and bound method on some application instances.
Whereas the parameters of the proposed algorithm
have been adjusted based on limited experiments, the
use of a structured technique is recommended. Besides,
considering the assumptions, such as operation costs
and resource capacity, the development of new methods
for solution representation may be considered for future
research.

Abbreviations

IPPS Integration of Process Planning and
Scheduling

NLPP Non-Linear Process Planning
PSO Particle Swarm Optimization
FAJSS Flexible Assembly Job Shop Scheduling
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