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Abstract. In previous investigations in the �eld of exible ow shop scheduling problems,
the rework probability for operations was ignored. As these kinds of problems are NP-
hard, we present an Enhanced Invasive Weed Optimization (EIWO) algorithm in order
to solve the addressed problem with probable rework times, transportation times with a
conveyor between two subsequent stages, di�erent ready times and anticipatory sequence
dependent setup times. The optimization criterion is to minimize makespan. Although
Invasive Weed Optimization (IWO) is an e�cient meta-heuristic algorithm and has been
used by many researchers recently, to increase the capability of IWO, we added a mutation
operation to enhance the exploration in order to prevent sticking in local optimum. In
addition, an a�nity function is embedded to obstruct premature convergence. With these
changes, we balance the exploration and exploitation of IWO. Since the performance of
our proposed algorithm depends on parameters values, we apply the popular design of
an experimental methodology, called the Response Surface Method (RSM). To evaluate
the proposed algorithm, �rst, some random test problems are generated and compared
with three benchmark algorithms. The related results are analyzed by statistical tools.
The experimental results and statistical analyses demonstrate that the proposed EIWO is
e�ective for the problem.
c 2014 Sharif University of Technology. All rights reserved.

1. Introduction

This research is concerned with scheduling problems
in Flexible Flow Line (FFL) manufacturing systems
with ready time, Anticipatory Sequence Dependent
Setup Times (ASDST), transportation with a conveyor
between two consecutive stages and probable rework
for each job operation. An FFL is also called a
Flexible Flow Shop (FFS), a Hybrid Flow Shop (HFS),
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or a Flow Shop with Multiple Processors (FSMP).
The exible ow shop is a generalized case of the
basic ow shop. It sequences n jobs in a ow shop,
where more than one identical machine at one or more
than one stage is allowable. The exible ow line
environment is fairly common and appears in ow in-
dustries such as steel, petroleum, chemical processing,
packaging [1], automobile assembly [2] and ceramic tile
manufacturing [3]. A brief history of work done on this
problem using various solution methods and di�erent
constraints and assumptions includes the following.

Arthanari and Ramamurthy [4] and Salvador [5]
were among the �rst to de�ne the exible ow shop
problem. They proposed a branch-and-bound method
to tackle the problem. Such a method is an exact
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solution technique, which guarantees optimal solutions.
However, the exact algorithm presented can only be ap-
plied to very small instances. Other exact approaches
for the multi-stage exible ow shop problem were
proposed by many authors, e.g. branch-and-bound
algorithms were given by Brah and Hunsucker [6] and
Moursli and Pochet [7]. Gupta [8] proposed heuristic
techniques for a simpli�ed exible ow shop makespan
problem with two stages and only one machine at
stage two. Azizoglu et al. [9] presented a branch
and bound algorithm to solve the exible ow shop
where the solutions are not restricted to permutation
schedules. Azizoglu et al. [9] a branching scheme
and tested the proposed algorithm on two data sets,
one with small and the other with large processing
times. Sawik [10] modeled a exible ow line with
blocking and reentry. This model was later improved
by Sawik [11]. Lee and Kim [12] proposed a branch and
bound solution approach to minimize total tardiness.
Problem instances of up to 15 jobs were illustrated
to be solvable in reasonable times. Bolat et al. [13]
investigated the two-stage hybrid ow shop scheduling
problem with a single machine at the �rst stage and two
identical machines at the second stage. They solved the
mentioned problem with branch and bound, heuristics,
and genetic algorithms. Sawik [14] proposed more
mathematical models for a exible ow line with tardi-
ness related criteria. Haouari et al. [15] solved a two-
stage regular HFS (unconstrained number of machines
in stages 1 and 2) to minimize makespan criterion
with a very e�ective branch and bound method that
produces optimal solutions for problems up to 1000
jobs in size. However, they showed, in some cases,
that the observed average gap reached more than 4%.
The HFS is modelled as a resource constrained multi-
project scheduling problem with setup times [16].

Since branch & bound algorithms are usually
time consuming for large scale problems (since the
problem is NP-hard), many researchers used heuristic
approaches. Narasimhan and Panwalkar [17] consid-
ered a real-life FFL with one machine at stage 1 and
two machines at stage 2. The CMD (Cumulative
Minimum Deviation) rule was suggested to reduce the
sum of machine idle time and in-process job waiting
time. Later, Narasimhan and Mangiameli [18] pro-
posed the GCMD (Generalized Cumulative Minimum
Deviation) rule, which is an extension of the CMD rule,
for the FFL with �ve criteria. Ding and Kittichart-
phayak [19] developed three heuristics for scheduling in
FFL (Pm1; Pm2; :::; PmS)jjCmax. The computational
results showed that one of their heuristics, called the
Combined Approach, is the best and can solve problem
sets with up to 8 jobs with an average error less than 3%
of the optimal solutions. Sriskandarajah and Sethi [20]
developed simple heuristic algorithms for the two-stage
exible ow shop problem. They discussed the worst

and average case performance of algorithms in order
to �nd minimum makespan schedules. Their solutions
are based on Johnson's rule. Braglia and Petroni [21]
applied data development analysis from the results of
Kadipasaoglu et al. [22] as a means to obtain accu-
rate information about the performance of dispatching
rules. Kurz and Askin [23] contemplate dispatching
rules for the hybrid ow shop with Sequence Dependent
Setup Times (SDST). They studied three types of
heuristics based on some simple greedy algorithms,
insertion heuristics and adaptations of Johnson's rule.
A recent study about the dispatching rule in hybrid
ow shop scheduling problems was carried out by
Lee [24].

Recently, meta-heuristics have become quite pop-
ular compared to other approximate, exact or heuristic
methods for solving complex combinatorial optimiza-
tion problems, such as job shop, ow shop scheduling
problems and many other hard problems [25-36]. Meta-
heuristics have been highly successful in �nding optimal
or near-optimal solutions for any practical scheduling
and sequencing problems, particularly in FFL. Haouari
and M'Hallah [37] used two two-phased heuristics based
on simulated annealing and Tabu search to solve the
two-stage exible ow shop with parallel machines at
each stage. To construct an initial solution, the most
work remaining rule was used to create a priority list.
The objective was to minimize makespan. Tabu search
performed just a little better than simulated annealing.
Riane et al. [38] presented a simulated annealing algo-
rithm to solve the exible ow shop problem in which
only permutation sequences are considered. The paper
emphasized the importance of temperature reduction;
spending too much time at a high temperature wastes
time and decreasing the temperature too quickly will
limit the search to local optima. Negenman [39] tested
a variable depth search method combined with three
simulated annealing heuristics and three Tabu search
heuristics to solve the exible ow shop. The combi-
nation of a variable depth search with the Tabu search
performed the best. Kurz and Askin [40] presented an
Integer Programming (IP) model for HFS with SDST.
Because of the di�culty in solving IP models directly,
they developed a Random Keys Genetic Algorithm
(RKGA) to tackle the studied problem against other
heuristic rules. Zandieh et al. [41] proposed an immune
algorithm, and compared it favourably against the
RKGA of Kurz and Askin [40]. The hybrid ow shop
with unrelated machines and SDST was considered
by Ruiz and Maroto [3]. To tackle the problem, the
authors introduced a genetic algorithm. Naderi et
al. [42] studied a realistic case of ow shops with
parallel machine setup times, where the objective is
makespan minimization. They also assumed that each
job might not need to visit all stages. They introduced
a heuristic, in the form of a dynamic dispatching rule,
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and a meta-heuristic, based on iterated local search.
Behnamian and Zandieh [43] proposed a discrete colo-
nial competitive algorithm to solve a hybrid ow shop
scheduling problem with limited waiting time between
two subsequent stages and sequence dependent setup
times. To understand more literature review about the
hybrid ow shop scheduling problem, readers can refer
to two state-of-the-art papers in this area [44,45].

Among previous investigations in HFS, there are
two studies which are worthy of review because of their
similarity to our study. Naderi et al. [46] proposed
an improved version of simulated annealing to solve
the hybrid ow shop scheduling problem, Anticipa-
tory Sequence Dependent Setup Times (ASDST) and
transportation time between two consecutive stages,
to minimize total completion time and total tardiness.
They showed that their algorithm is better than the
other approaches. Naderi et al. [47] proposed a mixed
integer programming model for small size problems and
also a method, called the Electromagnetism Algorithm
(EMA), to tackle scheduling the FFSSP, with anticipa-
tory sequence dependent setup times and transporta-
tion time, with the aim of minimizing total weighted
tardiness. In these two later reviewed studies, for
travelling between the stages, some transporters, like
the Automatic Guided Vehicle (AGV), are considered.
This type of transportation increases the waiting time
between two consecutive stages because the next job
can be processed when AGV comes back to the loading
centre/point. In other words, for example, if two jobs
were ready to be processed simultaneously, the job with
lower priority should wait until the loading time, the
travelling time and the unloading time �nish.

Regarding the discussed literature and to the
best of our knowledge, in FFSSP with ASDST, trans-
portation time by conveyor, ready time and probable
rework has not been investigated simultaneously. In
order to solve the addressed problem, we developed
a novel meta-heuristic algorithm which is based on
invasive weed optimization. The rest of this paper
is organized as follows. Section 2 elaborates on the

problem considered in this paper, followed by assump-
tions. Section 3 presents the proposed meta-heuristic
method. Section 4 describes generation of the test
data, parameter tuning and analysis of computational
experiments. Finally, section 5 summarizes the major
�ndings of this paper and proposes some promising
directions for future research in this area.

2. Problem de�nition

Flexible ow shop is a kind of machine scheduling
problem. There are n jobs to be processed. Job
j (j = 1; 2; :::; n) has to be processed at each stage
i (i = 1; 2; :::; s) in series. There are mi identical
parallel machines at stage i. The processing times of
job j at stage i are denoted by pi;j . The sequence-
dependent setup time between job j and job k at
stage i is depicted by sijk. For transportation of job j
between stage i and l, three terms are de�ned: Loading
time, travelling time, and unloading time which are
denoted by ltji;l, tti;l and utji;l, respectively. After
processing of each job at each stage on each machine, an
inspection procedure is considered. Inspection time is a
segment of the processing time. After inspection, with
predetermined probability (rpij), each job may need to
rework the procedure which is de�ned by rework time
(rtji ). For better understanding, the problem studied
in this paper is depicted in Figure 1.

The problem mentioned in this study can be
categorized under three sub-problems. The �rst is to
�nd the best sequence for jobs. The second is to de�ne
how the jobs are assigned to machines for processing.
The strategy applied for this purpose is First Available
Machine (FAM), used in the literature [48-50]. The
third is to design a strategy for jobs in the transporta-
tion step. For this issue, two rules are considered.
One is: First In First Out (FIFO), and another is the
priority of jobs in sequence. These rules are discussed
in Subsection 4.2.

Considering the scheduling problems, a certain
number of assumptions have to be made to proceed

Figure 1. Schematic of the problem studied in this paper.
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towards the solution methodologies. Some general and
exclusive assumptions about the considered system in
this work are stated as follows:

� No preemption: A job already started on a station
must be completed before another job can start on
that station, i.e. a new coming job cannot preempt
the already under-process job and, therefore, must
wait for scheduling until the previous job �nishes.

� Each job should be processed once.

� The processing times of the jobs are independent of
the schedule and may be di�erent from one stage to
another.

� No machine can process more than one job simulta-
neously.

� Machines may be idle waiting for the next job
to be released from any previous machine in the
production line.

� Machines never breakdown and are available
throughout the scheduling period.

� The system has no bu�ers between stages (zero
bu�er system).

� Each job should go through all production stages in
the same order as all other jobs.

� Processing time of each job is equal on all processors
at each stage, and each job can be processed on any
processor in the stage (processors are identical).

� Each stage contains at least one processor. In
case of more than one processor, the processors are
considered identical.

� Transportation time is job independent and is re-
lated to the distance between two consecutive stages.

� It is assumed that there is enough labor besides the
conveyors. In other words, there is no delay time for
jobs due to shortage of labor.

The standard ow shop with more than two
machines, with the objective of minimizing makespan,
is considered to be NP-Hard in the strong sense [51].
This problem is considerably more complex because
it adds parallel machines at each stage, ready time,
probable rework, transportation time and anticipa-
tory sequence dependent setup times. As mentioned
above, exible ow-shop problems are NP-Hard. No
algorithms except exhaustive search have ever been
provided for �nding optimal solutions. In order to
solve this weighty matter, we developed an enhanced
version of invasive weed optimization. The detailed
procedure of our proposed algorithm is described in
the next section.

Figure 2. Solution representation in EIWO.

Figure 3. Decoded solution (sequence).

3. Enhanced invasive weed optimization

Invasive Weed Optimization is described by Mehrabian
and Lucas [52]. The IWO algorithm is a numerical
stochastic search algorithm and is a population-based
intelligence algorithm which mimics the colonizing
behavior of weeds in �nding suitable places for growth.
During recent years, many researchers have claimed
that this algorithm has been very e�cient in solving
their studied problems [53-56].

3.1. Population initialization
A bounded number of weeds, called npop, are initialized
randomly by a uniform distribution in a range between
zero and one (see Figure 2). Then, these values are
transformed to sequences for �tness evaluation (see
Figure 3). This way, we have a primary population,
which is called pop1 (i.e. pop1 = npop).

3.2. Reproduction
Reproduction in IWO is the same as reproduction of
chromosomes in GA. Due to the eligibility of the pop-
ulation, each solution that belongs to the population
is allowed to produce seeds within a speci�ed region
centered at its own position. The number of seeds
produced around each solution depends on its relative
�tness in the population, with respect to the best
and worst �tness. The number of seeds produced by
any weed varies linearly from maximum possible seed
(Smax) (for best solution) to minimum possible seeds
(Smin) (for worst solution). The population generated
in this step is denoted by pop. The number of seeds
(Si) around each solution is computed by Eq. (1).

Si = Smin + (npop � ranki)� Smax; (1)

where npop is the highest number of weeds in the colony,
and ranki is the rank of the ith weed in the colony. The
schematical seed reproduction procedure is illustrated
in Figure 4.

For better clari�cation, this concept is shown in
Figure 5. In this �gure, it is assumed that weed1 and
weed5 are the best and worst weeds between �ve given
weeds. So, the number of seeds around weed1 is equal
to Smax and the number of seeds around weed5 is equal
to Smin.

3.3. Spatial distribution
To apply the seed reproduction step, a random value
array in the size of the job number is generated by
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Figure 4. Seeds reproduction procedure [52].

Figure 5. Schematic of seed reproduction procedure for a
problem with 5 weeds.

a normal distribution, with mean equal to zero and
variance @2. Then, the generated values are added to
the previous values of the related weed and, similar
to the �rst step, the real values are transformed into
a sequence for �tness evaluation. This step ensures
that the generated seeds will be produced around the
parent weed, leading to a local search around each
plant. To achieve this purpose, at the beginning of
the algorithm, the value of the standard deviation of
each weed is greater than its value when the algorithm
reaches stopping criteria. If �init and ��nal are the
initial and �nal standard deviations, we can use Eq. (2)
to specify iteration:

�iter =
(itermax � iter)pow

(itermax)pow (�init � ��nal) + ��nal; (2)

where iter is the current iteration number and itermax
equals the maximum number of iterations allowed. An
illustration of decreased standard deviation is shown in
Figure 6. As seen in Figure 6, the standard deviation
is decreased from �initial to ��nal. In Figure 7, it is
assumed that random values are generated by normal
distribution, and one seed is created around the given
solution.

3.4. Mutation
In order to restrict premature convergence or stick in
local optima, we apply a mutation concept. Mutation
is done for each solution of pop2 through mutation

Figure 6. Schematic reduction of standard deviation.

operators. The population resulted from mutation
is called pop3, and the amount of pop3 is equal to
pop2, because we perform the same mutation for each
solution of pop2. The mutation operators used in this
study are swap, insertion and reversion. These policies
are de�ned as below:

� Swap: The position of selected positions (i.e. Jobs
2 (position 2) and job 1(position 5) in Figure 2) are
exchanged (Figure 8(b)).

� Reversion: In this policy, besides conducting swap,
the positions located between the swapped positions
are reversed, too (Figure 8(c)).

� Insertion: In this case, the job in second position is
located immediately after the job at �rst location,
and the other jobs are shifted to the right hand side,
accordingly (see Figure 8(d)).

3.5. A�nity function
An a�nity function was used for avoiding premature
convergence and increasing the diversi�cation. The
a�nity function allows us to generate solutions with
high diversity. We consider a parameter, called a
percentage of a�nity, denoted by PAF, to de�ne the
percentage of good-sorted solutions remaining at each
iteration. Then, the remaining capacity of the popula-
tion is �lled with unique solutions existing among the
present solutions. If unique solutions are not enough
for �lling the remaining capacity of the population, we
have to use repetitive solutions.

3.6. Merge
We merge pop1, pop2 and pop3, then, their �tness
functions are calculated and sorted. After that, npop
solutions are taken by using the sorted solutions con-
sidering the a�nity function. Finally, this population
is used in the next iteration as an initial popula-
tion.

3.7. Termination criterion
The algorithm continues until the maximum iteration
is satis�ed. The framework of our proposed algorithm
is illustrated in Figure 9.
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Figure 7. An example for seed reproduction.

Figure 8. Swap, insertion and reversion mutations.

4. Computational experiments

The objectives of our computational experiments are
two-fold. First, we want to test the e�ciency of the
proposed algorithm. Second, we are interested in
achieving some empirical conclusions, with regard to
certain characteristic factors of the mentioned exible
ow shop.

4.1. Data generation
We �rst describe how the instances are generated. Test
instances are produced with the following combina-
tions of job number (n) and stage (s), where n =
f20; 40; 80; 100g and s = f2; 4; 8g. We also generate
groups of instances with two parallel machines per
stage and groups, where the number of parallel ma-
chines at each stage is sampled from a discrete uniform
distribution in the range [1,6]. The processing times
and anticipatory sequence dependent setup times are
basically generated from a discrete uniform distribution
over the interval [1,99] and [1,50], respectively. For
ready times, integers are uniformly distributed between
0 and 100. Both loading time and unloading time
are generated by uniform distribution in a range be-
tween [1,15]. Travelling times between two subsequent
stages are produced by uniform distribution in a range
between [1,30]. The probability of rework for each
operation is generated by an exponential distribution
(�e��), with mean equal to 0.1 Furthermore, rework

times for the jobs that need to rework the procedure are
generated by a function related to the processing time
of that job on a related machine (Round (U(0:3; 0:6)�
pi;j)). The di�erent levels of the factors result in 24
di�erent scenarios. We produce 10 instances for each
scenario. Therefore, we have 240 instances.

4.2. Parameter setting
Finding the optimum value of parameters in meta-
heuristic algorithms inuences the output of these
algorithms. Due to being time-consuming and re-
quiring more experiments, the majority of investiga-
tors have not applied tuning methods. Researchers
usually refer to parameter values of previous studies
published in this area or consider a �xed time for all
of the algorithms. Before calibration of the proposed
algorithm parameters, we intend to select one rule for
job assignment in the conveyer. So, all algorithms
with both rules, i.e. First In First Out (FIFO) and
Sequence Priority (SP), are run for a random problem.
Figure 10 indicates that the Sequence Priority (SP)
for all algorithms statistically outperforms the other
rule. Hence, for implantation of algorithms, SP is
select.

Response Surface Methodology (RSM) is an opti-
mization tool proposed by Box and Wilson [57]. The
purpose of this method is to �nd the best value of the
response. RSM is a set of statistical and mathematical
techniques and useful for optimizing the stochastic
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Figure 9. Schematic of EIWO.

Figure 10. Comparative analogy to de�ne the jobs how
to assign to conveyors.

function, which is used in estimation of parameters in
various area [58-62].

The stages of RSM are as follows: The introduc-
tory work is the selection of input variables (factors)
and their levels. The second stage includes choosing an
experimental design to acquire minimum variances of
responses and making simulation runs considering the
conditions of experimental design. The third stage is to
constitute a regression meta-model and surface �tting
to obtain approximate responses, and the prediction
and validation of the model equation.

One of the most popular response surface designs
is the Box-Behnken Design (BBD). BBD has three
levels, coded �1, 0 and +1 for low, zero, and high
plane, respectively [63]. The eight di�erent factors
were chosen as main variables; and determined as,
X1; X2; :::; X8, in Table 1. Independent variables used
in this research are coded according to Eq. (3):

xi =
xi � x0

�x
; (3)

where Xi and xi indicate actual value and codi�ed
value, X0 indicates the value of Xi at the center point,
and �x is the step change value [64]. The generalized
response surface model to describe the variation of
response variables is given below [65]:

y=�0+
kX
i=1

�iXi+
kX
i=1

�iiX2
i +
X
i<j

�ijXiXj+"; (4)

where y indicates the predicted response by the re-
sponse surface model, �0 is modi�cation value, �i (i =
1; 2; :::; k) indicates linear inuence, �ij is interaction
inuence and represents the quadratic inuence of Xi.
Xij and Xj are the input variables that a�ect the
response variable, y, which represents random error.

Each algorithm is run using di�erent combina-
tions of factors in Table 1, and there are three replicates
for each combination. For each run, the best makespan
is recorded. The response variables of experiment
are then calculated with obtained makespan for each

Table 1. Coding of experimental factors and levels.

Factors Symbol Coded level
-1 0 1

npop X1 50 100 150
MaxIt X2 50 100 150
Smax X3 6 8 10
Smin X4 1 2 3
@initial X5 0.2 0.25 0.3
@�nal X6 0.002 0.0015 0.001
pow X7 2 2.5 3
PAF X8 0.2 0.3 0.4
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Table 2. Tuned values of the parameters of the proposed algorithm.

Factor npop MaxIt Smax Smin @initial @�nal POW PAF

Symbol X1 X2 X3 X4 X5 X6 X7 X8

Optimal value 150 143 10 3 0.203 0.0014 2.01 0.20

Figure 11. The interaction between MaxIt and Smax in
EIWO.

instance. The factors which have a signi�cant impact
on the algorithm are X1; X2; X3; X2X3; X2X4; X2X8,
and X2

2 . For example, the interaction between X2
and X3 (i.e. MaxIt and Smax) is illustrated in Fig-
ure 11.

Using signi�cant factors, regression models are �t
to the makespan value. After that, we consider the
regression model as an objective function and consider
the range of parameters as a constraint. Now, the
mathematical model is solved and the obtained results
are indicated in Table 2.

4.3. Experimental results
In this section, the Enhanced Invasive Weed Opti-
mization (EIWO) algorithm with tuned parameters
is tested with all random generated test problems.
After obtaining the computational time of our proposed
algorithm, the algorithms were considered as bench-
marks, which were categorized in two groups. The
�rst group contains the popular applied algorithm, as
well as novel recent applied algorithms, including the
Random Key Genetic Algorithm (RKGA) [40], Particle
Swarm Optimization (PSO) [66-68] and Water Flow
algorithms (WF) [69]. The second group is a novel
metaheuristic algorithm, called the Grenade Explosion
Method (GEM) [70]. Our proposed algorithm and
these benchmark algorithms were run in the same time
for each test problem and the results were reported.
All experiments were executed on a personal computer
with an Intel core2do processor of 2.53 GHz and
2 GB of RAM memory. The algorithm was coded by
MATLAB 2011a language.

4.3.1. Evaluation metric
The response variable is based on a usual performance
measure, which is known as RPD (relative percent-
age deviation) to evaluate them. The best obtained
solutions for each instance are calculated. RPD is
computed by the given formula as follows:

RPD =
algsol �minsol

minsol
� 100; (5)

where minsol, the best makespan, is obtained by all
the algorithms, and algsol is the makespan obtained
for a given algorithm in each instance. Also, average
relative percentage deviation RPDis de�ned, according
to Eq. (6):

ARPD = RPD =
PNo.Run
i=1 RPD
No. Run

: (6)

It is clear that for each algorithm, the closer the
obtained limits are to zero, with no-overlapping with
other algorithms in their upper and lower limits, shows
that it has yielded more proper solutions. We �rst
analyze the makespan results and then analyze the
e�ect of some instance factors, such as job number,
stage and machine distribution.

4.3.2. Analysis of makespan
After transformation of makespan for all algorithms
in each test problem, and transformation of makespan
values to RPD and ARPD, the results are shown in
Table 3, in terms of ARPD for a combination of job
number and stage. As can be seen, the enhanced
invasive weed optimization provides better results than
the others. In order to verify the statistical validity of
the results shown in Table 3 and to con�rm the best
algorithm, we have performed a Tuckey test using a
95% con�dence interval. Figure 12 presents the con�-
dence interval of algorithms at a 95% level. Considering
Figure 12, it can be seen that EIWO outperforms the
other algorithms statistically, and after EIWO, RKGA
gets the better solution. Also, there is no signi�cant
di�erence between PSO and GEM.

4.3.3. Sensitive analysis
In this section, we intend to analyze the behavior of
the proposed algorithm and benchmark algorithms in
di�erent situations, such as number of jobs and number
of stages. We plot the Average RPDs (ARPD) of
the algorithms in di�erent levels of the number of
jobs, number of stages and machines in Figures 13, 14
and 15, respectively. Towards this aim, to analyze each
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Table 3. Results in terms of ARPD.

Row Job�stage RKGA PSO IWO EIWO GEM WF

1 20� 4 8.442 15.100 0.688 0.023 13.379 8.862

2 20� 6 4.529 9.344 1.085 0.018 13.706 6.850

3 20� 8 1.636 6.664 1.247 0.128 2.774 5.272

4 20 job 2.153 4.004 1.735 0.604 3.753 8.401

5 40� 4 3.397 7.379 1.448 0.167 8.642 3.580

6 40� 6 5.108 6.172 1.326 0.022 8.398 7.434

7 40� 8 1.837 5.073 1.116 0.288 6.791 5.336

8 40 job 1.929 2.185 1.162 0.093 3.879 2.814

9 80� 4 1.238 5.307 0.837 0.175 5.374 6.830

10 80� 6 0.745 3.483 1.263 0.281 1.266 2.718

11 80� 8 1.741 4.180 1.092 0.041 2.336 3.449

12 80 job 4.430 4.684 0.845 0.096 4.863 7.024

13 100� 4 8.442 15.100 0.688 0.023 13.379 8.862

14 100� 6 4.529 9.344 1.085 0.018 13.706 6.850

15 100� 8 1.636 6.664 1.247 0.128 2.774 5.272

16 100 job 2.153 4.004 1.735 0.604 3.753 8.401

Total Average 3.099 6.131 1.154 0.161 6.263 5.714

Figure 12. Means and interval plot for total problems in
terms of RPD.

Figure 13. Means plot between the type of algorithm
and number of jobs.

Figure 14. Means plot between the type of algorithm
and number of stages.

Figure 15. Means plot between the type of algorithm
and machine distribution.
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factor, we keep the other factors at the same value. The
�rst point to be seen from these �gures is that EIWO, in
all situations, has the best performance in comparison
with other algorithms. As shown in Figure 13, the
results obtained from WF, PSO, and GEM algorithms
have improved as the job numbers have increased. Of
course, there is no signi�cant di�erence between job
numbers 80 and 100 for the PSO algorithm, while
the trends for the other three algorithms are di�erent.
For example, the RKGB algorithm for job numbers 20
through 80, indicates a descending trend (improvement
of the result). But, from job numbers 80 to 100, the
trend is ascending (no improvement of the results).
Moreover, there is little di�erence in the quality of the
results for the various job numbers regarding the EIWO
and IWO algorithms. In fact, a di�erent perspective of
the �gure gives the idea that the analyses for di�erent
job numbers are not the same. They are rather di�erent
from each other; although, for job numbers 40 and
80, the trend of the changes remains the same. For
job number 20, for example, the algorithms regarding
their results are sequenced as: EIWO, IWO and RKGA
followed by WF, GEM and PSO.

For job numbers 40 and 80, the �rst three algo-
rithms are similar to job number 20, but the fourth
ranking of the algorithm for these job numbers belongs
to PSO.

The �fth ranking belongs to the WF algorithm,
and the worst one for that job number goes to GEM.
For job number 100, as previous job numbers, the �rst
three algorithms are similar, but the fourth algorithm
belongs to GEM, the �fth to PSO and the worst
quality goes to the WF algorithm. In Figure 14,
which is related to the quality of the algorithms,
with respect to the number of stages at each phase,
considering the RPD criterion, as the previous �gure,
the better algorithms (the �rst ones) are EIWO, IWO
and RKGA, while ranking for the fourth, �fth and
sixth is rather di�erent. For stages 2, 4 and 8, the
fourth, �fth, and sixth ranking belong to (PSO, WF,
GEM), (GEM, PSO, WF) and (WF, PSO, GEM),
respectively.

Regarding the quality of the algorithms, with
respect to stages, it is seen that for the �rst three
algorithms (RKGA, IWO, EIWO), the trend is not
signi�cant and the results for the three stages are nearly
the same. Nevertheless, for the WF algorithm, the
results obtained for stage 4 shows a better quality
compared to stages 2 and 8. Also, for the algorithm
GEM, the result for stage 8 is better than the other two
stages. For the algorithm PSO, the results for stages 4
and 8 show a higher quality compared to stage 2.

Considering the distribution function of the ma-
chinery, Figure 15 reveals that the four better algo-
rithms have almost a constant trend and the other
two algorithms, in both production methods, show

Figure 16. Algorithm convergences for an example
problem (40� 2).

enhancement. These algorithms are EIWO, IWO,
RKGA and WF, respectively. When the number of
machine are the same and equal to two, the PSO
algorithm takes the �fth place in ranking, and the sixth
belongs to GEM. Nevertheless, when the machinery
is produced randomly, between (1 and 6) with the
same distribution, the quality of the results for GEM
is somewhat better than PSO. Figure 16 shows the
process of algorithm convergences for a speci�c problem
(40� 2) in a speci�c time.

5. Conclusion and further research

To the best of our knowledge, this is the �rst re-
ported investigation into solving the exible ow
shop scheduling problem considering probable rework,
transportation time with a conveyor between two
subsequent stages, di�erent ready time and antici-
patory sequence dependent setup times, to minimize
maximum completion time. To solve the addressed
problem, an e�ective meta-heuristic algorithm, called
enhanced invasive weed optimization, is developed.
Mutation operation and an a�nity function are added
to the original IWO for escaping local optimum and
premature convergence. A comprehensive calibration
by response surface methodology is done in order to
achieve reliable results. The comprehensive set of
computational experiments and statistical analyses for
test problems under di�erent conditions revealed that
EIWO outperformed the other algorithms in terms
of solution quality in the same computational time.
As an interesting future research, one might work
on extending this problem, considering assumptions
that have attracted less interest than the others, such
as random breakdown, preventive maintenance and
resource dependent processing time. Another clue
for future research is solving the multi-objective of
the addressed problem on which we are currently
working.
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