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Abstract. This paper develops a model for illustrating how a manufacturer can use
his initiative to organize retailers when they make decisions as independent actors. The
candidate retailers are able to distribute products over geographically dispersed markets
with stochastic demands. Each manufacturer's decision about selecting a set of retailers
results in a unique distribution network design. Taking transportation and inventory costs
into account, each candidate retailer determines order quantity to satisfy market demand,
while the manufacturer speci�es the wholesale price, pursuing uniform or retailer-speci�c
pricing policies, depending on trade legislation. In this single period problem and under
mild assumptions on demand distribution, we show that a non-cooperative equilibrium
exists for each distribution network design. We also propose distinctive coordination
mechanisms corresponding to pricing policies. Using these mechanisms in each design of
the distribution network, the pro�ts of the manufacturer and retailer are better compared
to those in non-cooperative situations. Lastly, numerical examples presented in this paper,
comprised of the sensitivity analysis of some key parameters, seek to compare the results
of di�erent distribution network designs under various pricing policies, yielding some
applicable managerial insights.
c
 2014 Sharif University of Technology. All rights reserved.

1. Introduction and literature review

The goal of a supply chain network design is to
maximize the pro�t of a �rm while customer needs,
such as demand and responsiveness, are satis�ed. A
manager should take many trade-o�s into account
during network design, such as those between inventory
and transportation costs, facility and processing costs,
the costs of coordinating operations and responsiveness
to customers. Generally, the holding inventory in
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some facilities enables �rms to enjoy a reduction in
inventory holding and facility costs, however, normally
raising transportation costs. For example, the central-
ized distribution of PCs enables Dell to bene�t from
inventory aggregation, while it accepts an acceptable
increase in transportation costs using package carrier
customers [1]. If transportation costs rise dramatically,
the company must either reduce the responsiveness to
customers or use decentralized distribution schema to
hold inventory closer to the customer.

Decentralized decision-making and decentralized
distribution imply two disparate subjects. Supply
Chains (SCs) are typically decentralized, which inti-
mates that they are composed of independent �rms,
each with its own regularly con
icting goals [2]. Decen-
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tralized decision-making models often apply the game
theory approach to analyze the interactions of SC par-
ticipants with regard to a single decision maker SC (a
centralized SC). However, decentralized or centralized
distribution schemas discuss how inventory spreads
through a distribution network. In the decentralized
distribution schema, a distinct inventory is kept to
satisfy the demand at each source of demand, and, in
centralized distribution, the inventories are aggregated
in a central distribution center or warehouse and all
demands are satis�ed from this facility.

Transportation and inventory tradeo� is a critical
analysis of the Distribution Network Design (DND) [3].
In the case of demand uncertainty, the centralized DND
reduces inventory cost due to the impact of inventory
aggregation [4]. Eppen [4] appears to be the earliest
study to identify inventory cost saving from the cen-
tralization of multi-location newsvendor problems. He
showed that inventory cost saving decreases as the cor-
relation between demand increases. Chen and Lin [5]
extended Eppen's results for the general distribution
of demand uncertainty. Cherikh [6] and Lin et al. [7]
developed the models considering a pro�t maximiza-
tion approach. Chang and Lin [8] extended Eppen's
model by adding the consideration of transportation
costs. Chen et al. [9] is believed to be the �rst to take
pricing, along with inventory control decisions, into
account in a distribution system with one supplier and
multiple retailers. These researchers analyzed the idea
of risk pooling from stock centralization from a single
decision maker prospective. In contrast, Anupindi
and Bassok [10] investigated the inventory aggregation
e�ect in multi-decision makers SC, which consists of
one manufacturer and two retailers. They showed that
although centralization (where the inventory at the
central location is owned jointly by the retailers) is
always advantageous to the retailers, it may not bene�t
the manufacturer.

If markets are geographically dispersed, the ad-
vantages of inventory aggregation in a centralized net-
work diminish because of high transportation costs for
serving faraway markets. Accordingly, the bene�ts of a
decentralized DND, where each retailer serves nearby
markets, may far outweigh those of a centralized one.
For instance, with few facilities, Amazon.com incurs a
lower inventory cost compared to Borders, which has
about 450 stores. On the other hand, Borders has lower
transportation costs [1]. We ask, what is the optimal
design of a distribution network in geographically
dispread markets which incurs minimum inventory and
transportation costs for the manufacturer? How do the
strategies of independent retailers a�ect the optimal
design of the distribution network?

In the newsvendor context, besides stocking quan-
tity, price is also an important business behavior
a�ecting the pro�tability of the �rms. Petruzzi and

Dada [11] extended the newsvendor problem by in-
corporating selling price and stocking quantity from
a single decision maker prospective. Numerous types
of research investigated these factors in a distribu-
tion network as a multi-decision maker system. For
instance, Lariviere and Porteus [12] gave a complete
analysis of a wholesale price contract between a manu-
facturer and a newsvendor retailer, and they showed
that the contract cannot result in SC coordination.
Dong and Rudi [13] investigated wholesale pricing in a
one-manufacturer and two-retailer distribution system,
where transshipment was allowed between the retailers
(see also [10]). Chen [14] showed that if the SC retailer
is a newsvendor that makes the order quantity decision,
his order quantity is contingent on the wholesale pricing
decision of the manufacturer.

Generally, in one-manufacturer and multi-retailer
systems, the manufacturer may adopt two di�erent
wholesale pricing policies: \retailer-speci�c" or \uni-
form". In the absence of explicit limitations, a pro�t
maximizing manufacturer would normally prefer to
set di�erent wholesale prices for distinctive retailers.
This may be a reasonable policy when the retailers
are su�ciently geographically dispersed. Nevertheless,
several problems may prevent a manufacturer from
implementing a retailer-speci�c pricing policy. For
example, when the local retailers are close together, in
order to avoid con
ict with retailers and to maintain
equality, the manufacturer may set uniform wholesale
prices for the retailers. Some trade legislations, such as
the antitrust law (see e.g., [15,16]), may also prohibit
the sale of identical goods, or services are transacted at
di�erent prices from the same provider, which is also
called third degree price discrimination (see also [17-
20] for further discussion about di�erences between
price discrimination and uniform pricing policies). Ad-
ditionally, the operational and supervisory costs of
a retailer-speci�c pricing policy may be higher than
a uniform policy. How does the pricing policy of
a manufacturer a�ect the manufacturer's wholesale
price(s) and retailers' order quantities? How does
the pro�tability of each distribution design vary with
regard to these pricing policies?

In recent years, several practitioners and aca-
demics have paid growing attention to the utiliza-
tion of game theory in the coordination of SC par-
ticipants. Coordination mechanisms are contractual
agreements which enable a decentralized channel (in-
cluding independent DMs) to operate in a centralized
fashion (where the decisions are taken by a single
DM) [21]. These contractual agreements also fa-
cilitate long-term partnerships and make the terms
more explicit [22]. The favorite approach to reach
coordination is often to retain decentralized decision-
making but to organize the costs and revenues of all
participants in order to align their objectives with
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the system wide objective. Cachon [22] reviewed the
literature of coordination mechanisms and discussed
corresponding side-payments. The coordination mech-
anisms are commonly categorized as buy-back [23-
28], markdown money [29,30], revenue sharing [31-
35] price discount [36-39], sale-rebate contracts [40-
42], quantity 
exibility and so on. A stream of
literature has recently emerged that takes concurrent
adoption of two mechanisms, for instance, returns
with a wholesale-price-discount [14], sales-rebate and
return [43], and a consignment contract with revenue
sharing [44]. Chen [14] showed that the coordination
mechanism composed of a wholesale-price-discount and
return policy encourages the retailer to order more and
ameliorates retailer loyalty. While the contract slightly
lowers the manufacturer's pro�ts, it can signi�cantly
enhance the pro�t of the retailer, as well as total SC
e�ciency.

Under the return policy, manufacturer commits
to buying back the unsold inventory of goods at the
end of their selling season. Therefore, such a policy
can be employed in newsvendor-style products that
have a short (limited) life cycle, such as newspapers or
magazines, fashion apparel, holiday products, electrical
products, records, etc. Tsay [45] argued that buy-back
contracts are mechanisms by which a manufacturer
can increase initial retail orders through converting
his pro�t payo� from certain to uncertain. Therefore,
the manufacturer accepts exposure to risk and pop-
ular vernacular tends to label this as a \sharing" or
\transfer" of risk. Wang and Zipkin [46] investigated
a two-stage supplier-retailer agent system, employing
a buyback mechanism. Xiao et al. [28] integrated
the buyback contract of the manufacturer with the
customer return policy as a single framework. Since
the buyback contract is a favorite solution to the double
margination e�ect [47], we employ a buy back contract
to coordinate each design of the distribution network
under the retailer-speci�c pricing policy. As discussed
by Pasternack [23], coordinating multiple distinctive
retailers with a uniform coordination mechanism is
not possible. Accordingly, under a uniform pricing
policy, we propose a wholesale discount with the
revenue-sharing contract, which partially coordinates
each distribution design. While the wholesale price
discount boosts SC pro�tability, the revenue-sharing
contract based on side-payments makes all-members
better o� compared to a situation without SC coordi-
nation (see [21] for further discussion of side-payment
contracts).

In many industries, manufacturers have the au-
thority to select and organize a set of retailers in
order to lower distribution costs. Each manufacturer's
decision about candidate retailers results in a unique
DND. The presence of distribution network decisions
adds one new dimension to the relationship between

manufacturers and retailers, and underscores the im-
portance of manufacturer capability in contracting
with independent retailers to serve geographically dis-
persed markets. To the best of the authors' knowledge,
no research has been found in the context of multi-
location newsvendors and a decentralized decision-
making structure to investigate the manufacturer's
authority to make distribution design decisions. Ac-
cording to this gap in the literature, there are three
main contributions to this research: First, we study
the optimal DND for a manufacturer whose retailers
are independent DMs. In particular, the manufacturer,
the SC leader, sets the wholesale price, and then the
candidate retailers, the SC followers, as multi location
newsvendors, determine optimal stoking quantities.
Second, we put forward and compare two well-known
pricing policies that may be pursued by the manufac-
turer in each DND. Third, we propose coordination
mechanisms, corresponding to the two pricing policies,
as solutions to the double marginalization problem. Ta-
ble 1 demonstrates that the proposed approach covers
new possible features in the multi-location newsvendor
problem in comparison with other existing models.

The rest of the paper is organized as follows. In
the next section, we �rst study equilibrium solutions for
a given distribution design under uniform and retailer-
speci�c pricing policies. Afterwards, optimal design
of a distribution design is investigated. Section 3
gives numerical examples to demonstrate our results
and insights. In Section 4, we provide managerial
discussions about the model, with some directions for
future research in this context. The paper concludes in
Section 5. Proofs are given in the Appendix.

2. Non-cooperative equilibria and supply chain
coordination for �xed distribution network

Consider a distribution SC network consisting of one
manufacturer and a set of retailers which serve multiple
markets. In this section, we take into account a given
DND, i.e. the retailer channels are selected by the
manufacturer to supply the markets. Each retailer,
as an independent distribution channel, sells the prod-
ucts of the manufacturer to nearby markets. The
manufacturer, as a leader, �rst declares the wholesale
price and then his retailers, as followers, respond to
the manufacturer's decision, which conforms to \leader
and follower" game principles. The manufacturer may
adopt a uniform or a retailer-speci�c pricing policy.

We �rst evaluate Stackelberg equilibrium under
both pricing policies. Afterwards, we propose co-
ordination mechanisms based on wholesale discount
and buyback agreements to coordinate distribution
networks under uniform and retailer-speci�c pricing
policies, respectively. A proper allocation of the
coordination surplus pro�t provides all members with
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Table 1. Comparison of the features of the proposed model with the existing models.

Features Eppen [4] Chang and
Lin [8]

Chen
et al. [9]

Bakal
et al. [48]

Kang and
Kim [49]

Chen [14] Proposed
model

No. of retailers FMa FM FM FM FM Sb VMc

Multi-location
newsvendor

Considered Considered Not
considered

Considered Not
considered

Not
considered

Considered

Geographically
dispersed
markets

Not
considered

Not
considered

Not
considered

Considered Considered Not
considered

Considered

Transportation
costs

Not
considered

Considered Not
considered

Not
considered

Considered Not
considered

Considered

Manufacturer
pricing authority

Not
considered

Not
considered

Considered Not
considered

Not
considered

Considered Considered

Pricing strategies
of manufacturer

Not
considered

Not
considered

Not
considered

Not
considered

Not
considered

Not
considered

UPd & RSPe

Coordination
mechanisms

Not
considered

Not
considered

Considered Not
considered

Not
considered

Considered Considered

Manufacturer
authority to

select retailers

Not
considered

Not
considered

Not
considered

Not
considered

Not
considered

Not
considered

Considered

aFM: Fixed and Multiple, bS: Single, cVM: Variable and Multiple, dUP: Uniform Pricing, eRSP: Retailer-Speci�c Pricing.

the opportunity to achieve more pro�tability than in
the non-cooperative situation.

2.1. Manufacturer's pricing and retailers'
ordering decisions with no coordination:
Stackelberg equilibrium

The manufacturer's products have short life cycles
such as regarding style or seasonal items. The retail-
price, p, at the retailers' location is exogenously de-
termined. Let sets of N and I denote, in turn,
markets and candidate retailers that are geographically
dispersed. Consider a given distribution network, k,
with a set of selected retailers, I[k](� I). Since the
retail-price is identical, the customers in the markets
choose the retailer with the lowest transportation
cost (commonly the nearest retailer). The selected
retailer, i(2 I[k]), should pay extra transportation cost,
TCi, to receive products from the manufacturer. In
the non-cooperative case, the manufacturer produces
products with unit cost, c, and sets wholesale price(s),
w[k](< p � TCi) (or wi[k](< p � TCi), in the retailer-
speci�c pricing policy). Afterwards, the retailer
decides to order quantity qi[k], with regard to the
nearby market demands and manufacturer wholesale
price(s).

The customers in market j bear transportation
cost, TCij , to receive orders, where retailer i is the
retailer with the lowest transportation cost. TCi and

TCij are cost parameters, which depend on the struc-
tures of the distribution network such as geographic
location, distance, infrastructure, and transportation
equipment. When customers in market j choose a
nearby retailer, i, it is assumed that the market's
demand, dj , is random and depends on the retail-price
in the market location, pij(= p + TCij). Following
Petruzzi and Dada [11], the additive-demand, which is
regularly used in pricing and newsvendor contexts, is
de�ned as:

dj(pij ; "j) = yj(pij) + "j ; (1)

where yj(pij) = aj � bjpij is a deterministic term,
sensitive to price, and "j is a random term with Prob-
ability Density Function (PDF) fj(:), and Cumulative
Distribution Function (CDF) Fj(:). It is supposed that
random terms of market demand have a similar type
probability distribution. Since demand does not hold
any negative value, we assume that random term "j has
a lower bound, Aj . Therefore, to ensure that demand
dj(pij ; "j) is non-negative, the lower bound must be
larger than �aj , i.e. "j is well de�ned in the range
[Aj ;1), where Aj > �aj . Such assumptions are com-
monly used in an economic context with an additive
demand curve (for instance, see [11]). We assume the
PDF of random terms, transportation costs, and retail
price, p, are known to the manufacturer and to his
retailers, as well.
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If the manufacturer chooses retailer i in the
distribution design, k, the retailer satis�es the demands
of nearby markets, Ni[k], where Ni[k] = fj 2 N :
TCij < TClj ;8l 2 I[k]g. Therefore, the retailer faces
the demand, which is formulated as:

di[k] =
X

j2Ni[k]

dj(pij ; "j) =
X

j2Ni[k]

yj(pij) + �i[k]; (2)

where �i[k] =
P
j2Ni[k]

"j is the sum of the random
terms with PDF gi[k](:), and CDF Gi[k](:). We assume
that computation of PDF gi[k](:)(8i 2 I[k]) is possible
through the probability properties of random variables,
" = f"1; :::; "ng. When the random variables are
independent and identically distributed with PDF f(:),
�i[k] has the density gi[k](:), if gi[k](:) has an in�nity
divisible property [50]. Several distributions, such as
exponential, gamma, normal, lognormal, chi-squared
and Cauchy distributions, have this property [51,52].
For instance, the sum of independent exponentially
distributed random variables with identical PDF is a
random variable with a gamma density. Generally, if
the distribution of random terms, ", belong to the class
of stable distributions, the shape of distribution retains
after summation [50]. For independent and identical
random terms, ", with general distributions, �i[k] can
be approximated by normal distribution according to
the central limit theorem, if the number of markets,
(jNi[k]j), is su�ciently large [53]. Additionally, in the
case of non-identical and dependent normal random
variables, �i[k](8i 2 I[k]) is normally distributed accord-
ing to multivariate normal distribution properties [54]
(see, [4,8] for further discussion of correlated demands).
Random variable �i[k] is well de�ned in the range
[Bi[k];1), where Bi[k] =

P
j2Ni[k]

Aj � �Pj2Ni[k]
aj

assures that retailer i deals with the non-negative
demand from the markets in the distribution network
design, k.

2.1.1. Retailer best response order decisions
In the given distribution network design, k, we assume
that a subset of retailers, I[k], is selected by the
manufacturer. Consistent with Petruzzi and Dada [11],
we apply the transformation of variable Zi[k] = qi[k] �P
j2Ni[k]

yj(pij) as retailer i's safety stock level. If the
demands of the markets during the selling period do not
exceed qi[k], i.e., zi[k] � �i[k], then, the revenue of the
retailer is pdi[k], and each of the leftovers (qi[k] � di[k])
is disposed at the unit salvage value, vi(< c). On the
other hand, if the demands exceed qi[k], i.e. zi[k] < �i[k],
then, the retailer's revenue is pqi[k] and each of the
di[k]� qi[k] of unmet demands incurs a shortage cost of
ui. Let subscripts M and Ri denote the manufacturer
and retailer, i, respectively. The random pro�t of
retailer i is obtained as sales revenue plus the salvage
value, minus shortage and procurement costs. Thus,

when the manufacturer adopts a uniform pricing policy,
w[k], the retailer i's random pro�t under distribution
design k, �Ri[k], is given as:

�Ri[k](w[k]; zi[k]) =8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

p
�P

j2Ni[k]
yj(pij) + �i[k]

�
+vi(zi[k] � �i[k])� (w[k]

+TCi)
�P

j2Ni[k]
yj(pij) + zi[k]

�
;

zi[k] � �i[k]; 8i 2 I[k]

(p� w[k] � TCi)
�P

j2Ni[k]
yj(pij)

+zi[k]

�
� ui(�i[k] � zi[k]);

zi[k] < �i[k];

(3)

De�ning �i[k](zi[k]) =
R zi[k]
Bi[k]

(zi[k] � x)gi[k](x)dx and
�i[k](zi[k]) =

R1
zi[k]

(x� zi[k])gi[k](x)dx, we have:

E
�
�Ri[k](w[k]; zi[k])

�
=
�
p� w[k] � TCi

�
X

j2Ni[k]

yj
�
pij
�
�
�
w[k] + TCi � vi

�
�i[k](zi[k])

�
�
p+ui�w[k]�TCi

�
�i[k](zi[k]); 8i 2 I[k]: (4)

�i[k](zi[k]) and �i[k](zi[k]) represent the expected left-
over and the expected storage of retailer i in distri-
bution design k, respectively. Likewise, if the manu-
facturer pursues the retailer-speci�c pricing policy, the
expected pro�t of retailer i can be computed as follows:

E
�
�Ri[k](wi[k]; zi[k])

�
=
�
p� wi[k] � TCi

�
X

j2Ni[k]

yj
�
pij
�
�
�
wi[k] + TCi � vi

�
�i[k](zi[k])�

�
p+ ui � wi[k] � TCi

�
�i[k](zi[k]); 8i 2 I[k]: (5)

The �rst and second partial derivatives of
E�i[k]

�
�i[k](w[k]; zi[k])

�
w.r.t. zi[k] are:

@E
�
�Ri[k]

�
=@zi[k] = �

�
w[k] + TCi � vi

�
Gi[k](zi[k])

+
�
p+ ui � w[k] � TCi

��
1�Gi[k](zi[k])

�
;
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@2E
�
�Ri[k]

�
=@z2

i[k] =

�
�
p+ ui � w[k] � TCi

�
gi[k](zi[k]):

Since E
�
�Ri[k](w[k]; zi[k])

�
is a concave function of

zi[k], we conclude that for a given wholesale price, w[k]
(similarly, for a given wi[k] in Eq. (5)), the �rst order
condition leads to the optimum order quantity:

q�i[k] =
X

j2Ni[k]

yj(pij) + z�i[k]

=
X

j2Ni[k]

�
aj � bj(p+ TCij)

�
+G�1

i[k]

�
p+ ui � w[k] � TCi

p+ ui � vi
�
: (6)

Regarding the risk of shortage of retailer i in distri-
bution design, k, we de�ne the probability, P (zi[k] <
"i[k]) = 1��i[k], where �i[k] is referred to as the service
level. Thus, ��i[k] = Gi[k](z�i[k]) = (p + ui � w[k] �
TCi)=(p + ui � vi) and ��i[k] = Gi[k](z�i[k]) = (p + ui �
wi[k]�TCi)=(p+ui� vi) indicate the optimum service
level of the retailer under the uniform and retailer-
speci�c pricing policies, respectively. In the case of
a uniform pricing policy, the following corollary sums
up the e�ects of wholesale price and transportation
costs on order quantity, service level, and the optimal
expected pro�t of the retailers.

Corollary 1.

(i) The closeness of a retailer to markets, which
reduce the dispatching costs, causes an increase
in the quantity that the retailer orders and his
service level. Likewise, the closeness of a retailer
to the manufacturer boosts his service level and
order quantity, as well. Moreover, the greater
the wholesale price, the lower all retailers' order
quantity and service level will be.

(ii) The nearness of a retailer to his markets and
the manufacturer boosts the optimal expected
pro�t of the retailer. Additionally, an increase in
wholesale price deteriorates the optimal expected
pro�t of all retailers.

A similar corollary can be drawn for the retailer-
speci�c pricing policy. Several researchers showed
that the centralized distribution schema, which inte-
grates inventory in a single location, reduces inventory
costs [4-8]. However, we conclude from Corollary 1
that if markets are geographically dispersed, the high
dispatching costs of serving them from a single retailer
shrink the retailer's order quantity and service level, as

well as the expected pro�t. Therefore, a distribution
network design should select a minimum number of
retailers that are as close as possible to the markets in
order to balance inventory cost savings with dispatch-
ing cost increases.

2.1.2. Manufacturer's best response pricing decision:
Non-cooperative Stackelberg equilibria

This section considers the relationship between the
manufacturer and a set of retailers in a given distribu-
tion design using a non-cooperative Stackelberg struc-
ture. Speci�cally, we suppose that the manufacturer, as
a Stackelberg leader, has the initiative and can enforce
his wholesale strategy on the retailers. Under a uni-
form pricing policy, the manufacturer sets the uniform
wholesale price, w[k], for all retailers in distribution
design, k. For a given w[k] of the manufacturer, each re-
tailer, as a Stackelberg follower, obtains the best order
quantity according to Eq. (6). The manufacturer can
anticipate retailer order quantities for any wholesale
price. Therefore, he determines the uniform wholesale
price to maximize his expected pro�t, based on the best
order quantities of the retailers. Thus, the problem
reduces to:

maxE
�
�M [k]

�
w[k])) =

�
w[k] � c

� X
i2I[k]� X

j2Ni[k]

yj(pij) + �i[k](z�i[k])��i[k](z�i[k])
�
;
(7)

s.t. : Gi[k](z�i[k]) =(p+ ui � w[k] � TCi)
=(p+ ui � vi); 8i 2 I[k]: (8)

Since z�i[k] = �i[k]

�
z�i[k]

� � �i[k]
�
zi[k]�

�
and q�i[k] =P

j2Ni[k]
yj(pij)+z�i[k], objective function (7) represents

the manufacturer's expected pro�t gained from his re-
tailers in distribution network, k. Following Ross [53],
let us de�ne ri[k](:) = gi[k](:)=

�
1�Gi[k](:)

�
as the

hazard (or failure) rate of random variable, �i[k]. The
hazard rate, ri[k](:), gives an estimation of percentage
decrease in the retailer's i stock out probability by
increasing the stocking quantity by one unit [12]. In
Proposition 2, we show that the existence of Stackel-
berg equilibrium, (w�[k]; q

�
i[k]), 8i 2 I[k] depends on the

non-decreasing property of hazard rate, ri[k](:). Several
of the commonly applied demand distributions have
non-decreasing hazard rates, such as normal, uniform,
logistic, extreme value, chi-squared, exponential, and
the special case of gamma and beta [55].

Proposition 1. Under the uniform pricing policy,
if the demand uncertainty of each selected retailer is
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in the class of non-decreasing hazard rate distribu-
tion, there exists a unique Stackelberg equilibrium,
(w�[k]; q

�
i[k]), 8i 2 I[k] for given distribution design, k,

which satis�es:�
w�[k] � c

� X
i2I[k]

1�
w�[k] + TCi � vi

�
ri[k](z�i[k])

=
X
i2I[k]

� X
j2Ni[k]

yj
�
pij
�

+ z�i[k]

�
; (9)

q�i[k] =
X

j2Ni[k]

yj(pij) + z�i[k]; (10)

where:

z�i[k] = G�1
i[k]

�
(p+ ui � w�[k] � TCi)=(p+ ui � vi)

�
:

When di�erent wholesale prices are allowed, the man-
ufacturer pursues a retailer-speci�c pricing policy. Let
us denote wholesale prices o�ered to the retailers in
distribution design, k, by w[k] = fwi[k] : i 2 I[k]g.
Under this circumstance, the manufacturer problem is
transformed into:

maxE
�
�M [k](w[k])

�
=
X
i2I[k]

E
�

�Mi[k](wi[k])
�

=
X
i2I[k]

(wi[k] � c)
� X
j2Ni[k]

yj(pij) + �i[k](z�i[k])

��i[k](z�i[k])
�
; (11)

s.t. : Gi[k](z�i[k]) =(p+ ui � wi[k] � TCi)
=(p+ ui � vi); 8i 2 I[k]; (12)

where E
�
�Mi[k](wi[k])

�
represents the manufacturer's

pro�t from retailer, i, in distribution design, k.

Proposition 2. Under the retailer-speci�c pricing
policy, if the demand uncertainty of each selected
retailer is in the class of non-decreasing hazard rate
distribution, there exists a unique Stackelberg equi-
librium, (w�i[k]; q

�
i[k]), 8i 2 I[k], for given distribution

design, k, which satis�es:

wi[k]� =

c+ (TCi � vi)ri[k](z�i[k])
�P

j2Ni[k]
yj(pij) + z�i[k]

�
1� ri[k](z�i[k])

�P
j2Ni[k]

yj(pij) + z�i[k]

� ;
(13)

Gi[k](z�i[k])=(p+ui�wi[k]�TCi)=(p+ui � vi): (14)

A retailer-speci�c pricing policy implies that the man-
ufacturer employs independent strategies for the retail-
ers, which can be interpreted as distribution networks
comprised of a set of independent distribution channels.
Thus, the optimum strategy for each retailer (in each
channel) in Proposition 2 is consistent with a single
channel distribution, such as the one proposed by
Chen [14] (when TCi = vi = 0).

2.2. Supply chain coordination in a given
distribution design

Under non-cooperative SC, the retailers shoulder the
responsibility of unsold products and the manufacturer
maximizes his pro�t, regardless. There are two mar-
gins, and neither the manufacturer nor the retailers
consider the entire distribution network margin at the
time of decision-making. Thus, the double marginaliza-
tion e�ect prevents the SC from reaching a system-wide
pro�t. To coordinate the SC, we design an appropriate
side-payment contract, which enables the decentralized
channels to perform as if they were operating in a
centralized fashion. Such a contractual mechanism
should properly allocate the surplus pro�t (obtained
from coordination) between channel members to make
them better o� compared to the situation without con-
tract (we refer the reader to [21] for further discussion).

2.2.1. System-wide optimum for a given distribution
network design

To provide a benchmark, we �rst �nd the optimal
ordering decision of retailers that maximizes the total
pro�t for a given DND, as if its members are performing
in a centralized fashion. For such a system, let qoi[k], z

o
i[k]

and �oi[k] denote the globally optimal order quantity,
safety stock level, and service level of retailer, i, in
distribution design, k, respectively. The system-wide
pro�t in distribution design, k, is:

�[k] = �M [k] +
X
i2I[k]

�Ri[k]: (15)

Let z[k] = fzi[k] : i 2 I[k]g be the safety stock level of
retailers in distribution design, k. The expected value
of the system-wide pro�t is then the sum of Eqs. (4)
and (7), i.e:

E
�
�[k](z[k])

�
=
X
i2I[k]

E
�

�i[k](zi[k])
�

=
X
i2I[k]

(p� c� TCi) X
j2Ni[k]

yj(pij)

� (c+ TCi � vi)�i[k](zi[k])

� (p+ ui � c� TCi)�i[k](zi[k]); (16)
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where E
�
�i[k](zi[k])

�
represents the expected channel

i's pro�t. The expected system-wide pro�t under the
retailer-speci�c pricing is also obtained from the sum
of Eqs. (5) and (11), which is equal to Eq (16), as
well. Therefore, the system-wide optimal solution is
not contingent upon the pricing policy and wholesale
price of the manufacturer, and only depends on the
safety stock levels of retailers.

Proposition 3. For a given distribution design, k,
the unique optimal order quantity of qoi[k] that maxi-
mizes channel-wide pro�t is:

qoi[k] =
X

j2Ni[k]

yj(pij) + zoi[k] =
X

j2Ni[k]

yj(pij)

+G�1
i[k]

�
p+ ui � ci � TCi

p+ ui � vi
�
; 8i 2 I[k]: (17)

The service level of retailer, i, under cooperation (cen-
tralized decision-making) is �oi[k] = Gi[k](zoi[k]) = (p +
ui�ci�TCi)=(p+ui�vi). Taking w�[k] > c (or w�i[k] >
c) into account, it is straightforward that retailers'
service levels are boosted due to cooperation through
a distribution network, i.e., �oi[k] � ��i[k];8i 2 I[k].
Likewise, we can conclude that qoi[k] � q�i[k]; 8i 2 I 0[k] (or
equivalently zoi[k] � z�i[k]) under both pricing policies of
the manufacturer. By comparing cooperative SC with
a non-cooperative one, the following corollary can be
drawn.

Corollary 2. Regardless of the pricing policy of the
manufacturer and the structure of the distribution
design, the expected system-wide pro�t of the dis-
tribution network is constantly not smaller than the
expected total pro�t of the distribution network design
under non-coordination.

To enjoy the surplus pro�t of a centralized
decision-making structure and increments in retailer
service levels, the manufacturer should o�er appropri-
ate incentives to his retailers in each design of decen-
tralized distribution (decentralized decision-making).
Now, let 
[k] � 0 (according to Corollary 2) denote
this system-wide surplus pro�t, i.e.:


[k] = E
�

�[k](zo
[k])
�� E ��[k](z�[k])

�
; (18)

where zo
[k] = fzoi[k]; 8i 2 I[k]g and z�[k] = fz�i[k];8i 2

I[k]g are optimal safety stock levels of retailers
in cooperative SC and non-cooperative SC, respec-
tively.

Coordination mechanisms are distinctive under
uniform and retailer-speci�c pricing policies. When
the manufacturer pursues a retailer-speci�c pricing
policy, he will be able to employ a unique coordina-
tion mechanism for each retailer. In this situation,

all traditional coordination mechanisms (mentioned
in [22]) may yield the completely coordinated distri-
bution network. In Section 2.2.2., we propose the
buy-back contract for coordinating each design of the
distribution network. Nevertheless, when it comes
to a uniform pricing policy, the manufacturer should
use a uniform mechanism to coordinate all retailers
in a distribution network. Pasternack [23] discussed
that a uniform buyback mechanism would not coor-
dinate multiple distinctive retailers. We found that
not only buyback contracts but also no other sim-
ple traditional coordination mechanisms, mentioned
by Cachon [22], may simultaneously coordinate all
distinctive retailers, because the resulting e�ect on
retailer pro�tability will not be consistent. That is,
some retailers may not pro�t from coordinating a
distribution network with a uniform buyback mecha-
nism, whereas other retailers may excessively bene�t
from the contract. In Section 2.2.1, we investigate a
partial coordination mechanism, where the manufac-
turer ignores some part of his initiative in wholesale
pricing, and retailers commit the manufacturer to
paying some part of the channels' surplus pro�ts,
instead.

2.2.2. Partial coordination mechanism for uniform
pricing policy under retailer commitments

From Corollary 2, we found that the incentive mech-
anism that induces retailers to order more, boosts
SC's pro�t, i.e. SC pro�t is an increasing function
in qi[k] for qi[k] 2 [q�i[k]; q

o
i[k]]. However, when the

manufacturer exploits his dominant position in setting
wholesale price, he sets w�[k] according to Proposition 1.
The retailer, i, then orders q�i[k], inevitably; thus, SC
performance reaches the minimum. In this situation,
Cachon [22] concluded that an increase in retailer
power can actually improve SC performance. We
investigate a revenue sharing contract in which the
manufacturer, by ignoring some part of his dominant
position in pricing, enables SC to achieve a part of
coordination surplus pro�t, 
[k].

We now describe the coordination mechanism in
which the manufacturer o�ers a contract of a wholesale
price discount (represented by ŵ[k], where ŵ[k] 2
[c; w�[k]]) and the retailers consent to transfer a part
of the channels' pro�ts in return. Let TRi[k] be the
transfer (side) payment given by retailer, i, to the
manufacturer under distribution design, k. Moreover,
let ẑi[k] = G�1

i[k]

�
(p+ ui � ŵ[k] � TCi)=(p+ ui � vi)�

denote the optimum safety stock level of retailer, i,
under the wholesale price discount, ŵ[k]. We refer to
such a contract as a discount-revenue sharing contract,
(ŵ[k]; ẑ[k];TR[k]), where ẑ[k] = fzi[k]; i 2 I[k]g and
TR[k] = fTRi[k]; i 2 I[k]g. Thus, under the contract,
the expected pro�t of retailer, i, in distribution design,
k, can be found as follows:
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E
�

�Ri[k](ŵ[k]; ẑi[k]; TRi[k])
�

= (p� ŵ[k] � TCi)
X

j2Ni[k]

yj(pij)

� (ŵ[k] + TCi � vi)�i[k](ẑi[k])

� (p+ ui � ŵ[k] � TCi)�i[k](ẑi[k])TRi[k];

8i 2 I[k]: (19)

The manufacturer's expected pro�t can be written
conveniently as:

E
�

�M [k](ŵ[k]; ẑ[k];TR[k])
�

=

X
i2I[k]

�
(ŵ[k] � c)

� X
j2Ni[k]

yj(pij)

+ �i[k](ẑi[k])��i[k](ẑi[k])
�

+ TRi[k]

�
: (20)

The expected value of the system-wide pro�t is then
the sum of Eqs. (19) and (20), i.e.:

E
�

�[k](ŵ[k]; ẑ[k])
�

=
X
i2I[k]

�
(p� c� TCi) X

j2Ni[k]

yj(pij)

� (c+ TCi � vi)�i[k](ẑi[k])

� (p+ ui � c� TCi)�i[k](ẑi[k])
�
: (21)

Now, we can compute the surplus pro�t of the partial
coordination for the SC as:


̂[k] = E
�
�[k](ŵ[k]; ẑ[k])

�� E ��[k](z�[k])
�
:

It is noteworthy that only if the manufacturer makes
no pro�t from the sale, i.e. ŵ[k] = c, can distribution
network become completely coordinated, and we have
ẑi[k] = zoi[k]; 8i 2 I[k] and 
̂[k] = 
[k]. Complete
coordination needs a binding commitment and honest
relationship among members. To be more speci�c,
by setting appropriate side payments, the retailers
should undertake that the manufacturer becomes more
pro�table, as compared to the case of non-cooperative
wholesale pricing (in Proposition 1). However, if the
manufacturer has some doubt about retailer commit-
ment, the partial coordination may come about. In
this case, the manufacturer retains the pro�t margin,

ŵ[k] � c(> 0). Thus, channels fail to reach complete
coordination, i.e. ẑ[k] < zoi[k];8i 2 I[k] and 
̂[k] < 
[k].
The manufacturer tends to use his pricing initiative
when profound mistrust exists, that is, he sets ŵ[k] =
w�[k], and the non-cooperation case takes e�ect, i.e.
ẑi[k] = z�i[k];8i 2 I[k] and 
̂[k] = 0. Corollary 3
summarizes the e�ect of wholesale discount on pro�t
surplus under a partial coordination contract.

Corollary 3.

(i) In each distribution design, a lower wholesale
discount (higher ŵ[k]) will shrink the possible
surplus pro�t of coordination (
̂[k]).

(ii) If the demand uncertainty of each selected retailer
is in the class of non-decreasing hazard rate dis-
tribution, as the wholesale price (ŵ[k]) increases
towards its non-cooperative optimum (w�[k]), the
surplus pro�t of coordination (
̂[k]) becomes more
sensitive to slight changes in the wholesale price
(ŵ[k]).

If a properly-developed side-payment scheme
makes the (partial) coordination stable, each member
must be better o� than in the non-cooperative situ-
ation. To be more speci�c, if 
̂[k] > 0, the transfer
payments should satisfy the following conditions:

E
�
�M [k](ŵ[k]; ẑ[k];TR[k])

�
>E

�
�M [k](w�[k]; z

�
[k])
�
;

(22)

E
�
�Ri[k](ŵ[k]; ẑi[k]; TRi[k])

�
>E
�

�Ri[k](w�[k]; z
�
i[k])
�
:

(23)

2.2.3. Coordination mechanism for retailer-speci�c
pricing policy

We now investigate buy-back contracts between the re-
tailers and the manufacturer to coordinate each distri-
bution design network. Under the price-discrimination
policy, the manufacturer can use a retailer-speci�c buy-
back contract to induce retailer, i, to order quan-
tity, qoi[k]. We refer to such a contract as buy-back
(wi[k]; bi[k]; zoi[k]) for retailer, i. According to the
contract, if retailer, i, encounters an excess inventory
(i.e. qoi[k] > di[k]), then, he will be able to return
the unsold product to the manufacturer at the buy-
back price, bi[k]. The manufacturer then shoulders the
transportation of the products and disposes of them
at the unit salvage value v (< c). It is assumed
that bi[k] � wi[k] + TCi;8i 2 I[k], which implies that
retailers do not directly bene�t from ordering excessive
quantities and returning them to the manufacturer.
Moreover, we have bi[k] > vi[k];8i 2 I[k]; otherwise,
the retailer prefers to dispose of the products himself.
Let w[k] = fwi[k]; 8i 2 I 0[k]g, b[k] = fbi[k];8i 2 I 0[k]g,
and zo

[k] = fzoi[k]; 8i 2 I 0[k]g denote, in turn, wholesale
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prices, buy-back prices, and optimal safety stock levels,
corresponding to active retailers in distribution design,
k. When the manufacturer considers a buyback con-
tract (w[k];b[k]; zo

[k]), the expected pro�t of retailer, i,
under the coordination condition is:

E
�

�Ri[k](wi[k]; bi[k]; zoi[k])
�

= (p� wi[k] � TCi)
X

j2Ni[k]

yj(pij)

� (wi[k] + TCi � bi[k])�i[k](zoi[k])

� (p+ ui � wi[k] � TCi)�i[k](zoi[k]); 8i 2 I[k]:
(24)

The expected pro�t of the manufacturer under the
coordination condition is

E
�

�M [k](w[k];b[k]; zo
[k])
�

=
X
i2I0[k]

�
E
�

�Mi[k](wi[k]; bi[k]; zoi[k])
��

=
X
i2I0[k]

�
(wi[k] � c)

� X
j2Ni[k]

yj(pij)

+ �i[k](zoi[k])��i[k](zoi[k])
�

� (bi[k] + TCi � v)�i[k](zoi[k])
�
; (25)

where E
�

�Mi[k](wi[k]; bi[k]; zoi[k])
�

represents the man-
ufacturer's pro�t obtained from coordination with
retailer, i, in distribution design, k. Moreover, the
expected channel-wide pro�t under the contract is:

E
�

�̂i[k](zoi[k])
�

= E
�

�Mi[k](wi[k]; bi[k]; zoi[k])
�

+E
�

�Ri[k](wi[k]; bi[k]; zoi[k])
�

= (p� c� TCi)X
j2Ni[k]

yj(pij)� (c+ 2TCi � vi)�i[k](zoi[k])

�(p+ ui � c� TCi)�i[k](zoi[k]) = E
�

�i[k](zoi[k])
�

+(v � TCi � vi)�i[k](zoi[k]):

E
�

�i[k](zoi[k])
�

is the optimum expected pro�t of
channel, i, when the manufacturer and retailer, i, work
as an integrated channel (see Eq. (16)). It is worthy to
note that when v > TCi + vi, the buy-back contract
provides more bene�t than the integrated channel.
Since E

�
�̂i[k](zoi[k])

�
is a decreasing function of TCi,

the �nancial attractiveness of the buyback contract
diminishes when the physical returning of products is
excessively costly (for example, due to long distances).
However, a buyback contract may be wholly bene�cial
for channel i, if the salvage value of the speci�c product
in the manufacturer plant is considerably higher than
the salvage value in retailer i's location (for instance,
because of advanced recycling machinery in manufac-
turing plants and the ability to reuse salvage). The
case of v < TCi + vi is also possible, which implies
that physically returning products is not pro�table as
an integrated channel. The buy-back mechanism for
channel i will be more bene�cial, compared to non-
cooperative pricing (in Proposition 2), if v � TCi � vi
is su�ciently high, that is, as in Eq. (26) shown in
Box I.

We focus on the coordination mechanism based on
a buyback contract for the manufacturer and retailer i
in Proposition 4 and Corollary 4.

Proposition 4. Under distribution design k, chan-
nel i can be coordinated by the buy-back contract
(wi[k](bi[k]); bi[k]; zoi[k]) with bi[k] < bi[k] < bi[k],
where:

wi[k](bi[k]) =(p+ ui � TCi)
� (p+ ui � bi[k])Gi[k](zoi[k]); (27)

bi[k] = (p+ ui)

�
ui
P
j2Ni[k]

yj(pij)+E
�

�Ri[k](w�i[k]; z
�
i[k])

�
qoi[k]Gi[k](zoi[k])� �i[k](zoi[k])

;
(28)

v � TCi � vi >
E
�

�i[k](zoi[k])
�
� E

�
�Mi[k](w�i[k]; z

�
i[k])

�
� E

�
�Ri[k](w�i[k]; z

�
i[k])

�
�i[k](zoi[k])

: (26)

Box I
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bi[k] = vi

�
(v�TCi�vi)�i[k](zoi[k])�E

�
�Mi[k](w�i[k]; z

�
i[k])
�

qoi[k]Gi[k](zoi[k])� �i[k](zoi[k])
:

(29)

Proposition 4 shows that both the manufacturer and
retailer i obtain more pro�t than the non-cooperative
Stackelberg equilibrium, when the manufacturer sets
bi[k] in the range of bi[k] to bi[k]. The range of buy-
back price can be computed by Eq. (30) shown in
Box II.

From Proposition 3 and Eq. (30), we can draw the
following corollary.

Corollary 4.

(i) The range of (bi[k]; bi[k]) for coordination with
retailer i exists (or equivalently the buyback
contract is possible), if the buyback contract
a�ords more pro�t, compared to non-cooperative
pricing.

(ii) Retailer i withdraws from the buy-back contract
if the manufacturer sets bi[k] too high (i.e. bi[k] >
bi[k]); on the other hand, if the manufacturer sets
the bi[k] too low (i.e. bi[k] < bi[k]), then, he will
not pro�t, compared to non-cooperative pricing.

(iii) The range of bi[k]; bi[k] shrinks as transportation
cost (TCi) increases, or when v � vi decreases.

Corollary 4 means that if bi[k] does not fall in
the range of (bi[k]; bi[k]), one of the members leaves the
coordination contract.

2.3. The distribution design decision
Now, we study the optimal distribution decision of
the manufacturer. The manufacturer faces a set of
candidate retailers I to distribute products through-
out the markets. Each subset, I[k], of candidate
retailers set I represents a possible design of distri-
bution. Considering the pro�t of each distribution
design, the manufacturer chooses the design that
maximizes his expected pro�t. That is, under the
non-cooperative situation, the optimum distribution
designs in uniform and retailer-speci�c pricing policies
are, in turn, k� = arg

k
maxE

�
�M [k](w[k])

�
, and k� =

arg
k

maxE
�
�M [k](w[k])

�
. In the case of cooperative

strategies, optimum distribution designs in a discount-
revenue sharing contract (ŵ[k]; ẑ[k];TR[k]) and a buy-
back contract (w[k];b[k]; zo

[k]), are, in turn:

k� = arg
k

maxE
�
�M [k](ŵ[k]; ẑ[k];TR[k])

�
; (31)

k� = arg
k

maxE
�

�M [k](w[k];b[k]; zo
[k])
�
: (32)

When multiple distribution designs generate a similar
pro�t for the manufacturer, other criteria, such as total
sale quantity or (and) the service levels of retailers, can
also be applied.

3. Numerical examples

The numerical example, depicted in Figure 1, is com-
prised of a manufacturer, two potential retailers, and
four demand markets. The data for this example was
constructed for easy interpretation purposes; thus, the
retailers, as well as the markets, are considered identi-
cal (except transportation costs illustrated in Figure 1).
Since normal distribution is a non-decreasing hazard
rate distribution, which is most commonly employed

Figure 1. The SC network structure and transportation
costs for the numerical example.

bi[k] � bi[k] =
E
�

�̂i[k](zoi[k])
�
� E

�
�Mi[k](w�i[k]; z

�
i[k])

�
� E

�
�Ri[k](w�i[k]; z

�
i[k])

�
qoi[k]Gi[k](zoi[k])� �i[k](zoi[k])

: (30)

Box II
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in modeling demand functions, let us consider that
the random terms of market demand are normally
distributed, i.e. "j � N(0; �2

j )8j 2 N , and �jj0 =
cov("j ; "j0) = �j�j0�8j; j0 2 N&j 6= j0, where � is the
correlation coe�cient of random terms. We assume
that the default values of parameters are as follows:

p = 18; c = 4; N = f1; 2; 3; 4g;
I = f1; 2g; u1 = u2 = 1; v1 = v2 = 2;

and:

8j 2 N; aj = 100; bj = 2; �j = 30:

With regard to the manufacturer's decision about the
selection of retailer(s), there are three distribution
network designs indicated as I[1] = f1g, I[2] = f2g,
and I[3] = f1; 2g. If only one retailer is selected in
the distribution design, products are distributed among
markets in a centralized manner, and the retailer
will monopolize all markets, i.e. N1[1] = N2[2] =
f1; 2; 3; 4; 5g and N1[2] = N2[1] = fg. However,
when the manufacturer chooses both retailers, we
have N1[3] = f1; 2; 3g and N2[3] = f4; 5g, regarding
transportation costs. It is straightforward from the
property of the sum of the dependent normal variables
that �1[1] = �2[2] � N(0; 1202), �2[1] = �1[2] = 0,
�1[3] � N(0; 902), and �2[3] � N(0; 302) (we refer the
reader to Eppen [4] for further discussion).

Table 2 demonstrates the di�erences and similar-
ities between the optimal values of the pricing policies
calculated according to Propositions 1 and 2. Firstly,
in distribution designs 1 and 2, in which a retailer is a
monopolist, the optimal values are identical under both
pricing policies. Secondly, in both pricing policies, a
monopolist retailer earns more pro�t compared with a
two-retailer distribution, because markets are divided
between retailers. Consequently, from a retailers'
viewpoint, each retailer often has an incentive to
persuade the manufacturer to exclusively distribute
products throughout the markets. Thirdly, in two-
retailer distribution (k = 3), the e�ect of a pricing

policy on retailer pro�t varies from retailer to retailer.
Speci�cally, retailer 1's pro�t under the uniform pricing
policy is lower than the pro�t under the retailer-speci�c
pricing policy; however, the situation is contrary for
retailer 2. Finally, from the manufacturer's point of
view, two-retailer distribution is preferred under both
pricing policies.

Figures 2 and 3 illustrate how the non-cooperative

Figure 2. The manufacturer's expected pro�t in each
distribution design versus the correlation coe�cient under
the pricing policies.

Figure 3. The retailers' expected pro�t in distribution
design 3 versus the correlation coe�cient under the
pricing policies.

Table 2. Comparison of the optimal values between two pricing polices (� = 1).

Uniform pricing policy Retailer-speci�c pricing policy
k 1 2 3 1 2 3

w�[k] 12.619 12.836 12.73 - - -
(w�1[k]; w

�
2[k]) - - - (12.619,-) (-,12.836) (12.653,12.977)

(��1[k]; �
�
2[k]) (0.287,-) (-,0.304) (0.281,0.31) (0.287,-) (-,0.304) (0.285,0.295)

(z�1[k]; z
�
2[k]) (-67.42,-) (-,-61.624) (-52.298,-14.875) (-67.42,-) (-,-61.624) (-51.094,-16.123)

(q�1[k]; q
�
2[k]) (178.58,-) (-,178.374) (133.702,47.125) (178.58,-) (-,178.374) (134.906,45.877)

(�R1[k];�R2[k]) (261.598,-) (-,288.026) (187.123,85.295) (261.598,-) (-,288.026) (197.432,73.816)
�M[k] 1539.19 1576.056 1578.611 1539.19 1576.056 1579.174
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optimal pro�ts of the manufacturer and retailers de-
pend on the correlation of market demand under both
pricing policies. From Figure 2, we know that the
expected pro�t of the manufacturer in all distribution
designs and under both pricing policies decreases with
the dependency of the markets. The �gure also implies
that, as the dependency of the markets diminishes, the
centralized distribution by retailer 2 generates more
pro�t for the manufacturer than the other distribution
designs. However, when the markets are excessively
dependent, the manufacturer prefers two-retailer dis-
tribution under both pricing policies; see also Table 2.
In two-retailer distribution, the retailer-speci�c policy
yields more pro�t for the manufacturer compared with
the uniform pricing policy, as the dependency of the
markets decreases. Figure 3 illustrates the retailer's
pro�t often increases with market dependency. More-
over, the �gure demonstrates that the growth of retailer
1's pro�t in the retailer-speci�c pricing is higher than
the uniform pricing policy. However, the situation is
contrary for retailer 2.

We now compute globally optimal values as if
the SC is operating in a centralized pattern and all
decisions are made by the manufacturer. Since system-
wide pro�t (15) does not depend on wholesale price,
Table 3 gives the globally optimal values for both
pricing policies, according to Proposition 3.

In the case of partial coordination under a uniform
pricing policy, Figure 4 illustrates the change in the

Figure 4. The expected pro�t of SC in each distribution
design versus the wholesale discount (� = 1).

pro�t of the total SC with respect to the wholesale
price. The �gure depicts that the total (system-wide)
pro�t of the SC, in distribution design k, is maximized
when the wholesale price is set to be equal to the pro-
duction cost (i.e. ŵ[k] = c), and minimized when the
wholesale price is set to be equal to the non-cooperative
wholesale price (i.e. ŵ[k] = w�[k]), which is consistent
with Corollary 3. We also know from the �gure that
centralized distribution by retailer 2 is more pro�table
for the SC, compared to other distribution designs.
Surplus pro�t, 
̂[k], should be divided among parties
by transfer payments, TR[k], to insure Inequalities (22)
and (23). The more the surplus pro�t, the higher the
bargaining space for the parties will be. Since the
retailers bargain with the manufacturer over transfer
payments, TR[k], a part of 
̂[k] is commonly transferred
to the manufacturer. Therefore, the �nal pro�t of the
manufacturer, according to Eq. (31), is the selection
criterion of the distribution design.

In Figures 5-8, we investigate how the buyback
prices in
uence the pro�ts of the manufacturer and
the retailers under the retailer-speci�c pricing policy.
It is obvious from the �gures that an increase in
buyback price o�ered to a retailer decreases retailer
pro�t, however, it increases manufacturer pro�t, which
is consistent with Corollary 4. Figure 5 demonstrates
that for a given buyback price o�ered by the manu-
facturer, retailer 1 in design 1 gains more pro�t than
retailer 2 in design 2.

The pro�ts of the retailers in a two-retailer distri-
bution are depicted in Figure 7, which imply that for a
similar buyback price o�ered to the retailers, retailer 1

Figure 5. The retailers' expected pro�t in distribution
designs 1 and 2 versus the buyback prices (� = 1).

Table 3. The globally optimal values of the network designs for the correlation coe�cient � = 1.

k �o1[k] �o2[k] zo1[k] zo2[k] qo1[k] qo2[k] �[k](zo
[k]) 
[k]

1 0.794 - 98.495 - 344.495 - 2494.699 693.911
2 - 0.824 - 111.468 - 351.468 2592.042 727.96
3 0.794 0.824 73.871 27.867 259.871 89.867 2563.803 712.774
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Figure 6. The manufacturer's expected pro�t in
distribution designs 1 and 2 versus the buyback prices
(� = 1).

Figure 7. The retailers' expected pro�t in distribution
design 3 versus the buyback prices (� = 1).

Figure 8. The manufacturer's expected pro�t in
distribution design 3 versus the buyback prices (� = 1).

obtains further pro�t, compared to retailer 2. With
being given buyback prices in each distribution design,
Figures 6 and 8 provide the manufacturer's pro�t, and
the manufacturer is able to choose the most pro�table
design, according to Eq. (32).

4. Managerial insights and extensions

We derive the following managerial implications from
the corollaries and numerical examples:

� Although integrating inventory in a single location
reduces inventory costs, it may result in high trans-
portation costs in geographically dispersed markets
that should be borne by the retailers. Transporta-
tion costs also a�ect manufacturer pro�ts because
an inappropriate distribution network increases the
�nal product price in the markets, on the one hand,
and shrinks retailer order quantities on the other.
Therefore, in selecting the optimal distribution
design, a careful analysis between inventory cost
savings and transportation cost factors should be
carried out.

� Pricing policies exert great in
uence on the pro�ts
of the manufacturer and retailer. To be more
speci�c, manufacturer pro�ts under retailer-speci�c
pricing are always higher than the pro�ts made
under a uniform pricing policy. However, some
trade legislations, such as antitrust laws or the
Robinson act, may strictly forbid the manufacturer
from discriminating in price.

� Increasing market demand dependency leads to
higher retailer pro�ts but lower manufacturer prof-
its. Furthermore, when market demands are
extremely dependent, both uniform and retailer-
speci�c pricing policies yield similar pro�ts for the
manufacturer.

� In the partial coordination under the uniform pric-
ing policy, the advantages of coordination diminish
when wholesale price increases. Moreover, the
impact of wholesale price discount on the growth
of SC surplus pro�t shrinks when wholesale price
decreases. Therefore, the manufacturer can con-
siderably raise SC pro�t surplus by setting a slight
discount, which provides open space for bargaining
with the retailers.

� In the buyback coordination mechanism for retailer-
speci�c pricing, if the buyback contract is more
pro�table than in the non-cooperative case, there
is a win-win contract for the retailer and manufac-
turer. However, retailer willingness for coordination
declines as the buyback price increases. Moreover,
the advantages of a buyback contract diminish when
the geographical distance between a retailer and
manufacturer increases. Therefore, other mecha-
nisms, such as \markdown money" (see Tsay [29]),
where the retailer disposes of the remaining products
and the manufacturer charges the retailer for the
products, may be more bene�cial.

� This research can be extended in several directions.
First, we assume that the retail price is the same for
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all retailers, which is exogenously given. In the real
world, the retailers may jointly set order quantities
and retail prices. Therefore, the price competition
of retailers for markets in each DND will be very
interesting. Second, in the real world application
of the model, when the manufacturer faces many
candidate retailers, metaheuristic algorithms for
DND could also be an interesting extension. Lastly,
we proposed a wholesale-discount with revenue-
sharing and buyback contracts for coordinating
each distribution network under the uniform and
retailer-speci�c pricing policies, respectively. One
can develop our model utilizing other well-known
coordination mechanisms.

5. Conclusions

We considered a distribution network problem in ge-
ographically dispersed markets under demand uncer-
tainty environments. Each candidate retailer, as an
independent decision maker, determines order quantity,
and the manufacturer dictates the wholesale price by
adopting either the uniform or retailer-speci�c pricing
policy. For each design of the distribution network,
the non-cooperative equilibrium was computed as a
benchmark. We showed that coordination mechanisms,
wholesale-price discounts with revenue sharing and
buy-back contracts ensure a win-win situation for
parties compared to non-cooperative situations. The
e�ects of market demand dependency, wholesale price
discount, and buyback prices on player pro�ts and
manufacturer distribution design decisions were mainly
discussed. We found that the optimal distribution
design is contingent upon the dependency of market
demands. When the demands are independent, the
centralized distributions are more pro�table than the
decentralized ones for the manufacturer. This paper
also suggests that in design k, coordination quality
under the uniform pricing policy is partial, when c <
ŵ[k] < w�[k], and in the cases of ŵ[k] = c and ŵ[k] =
w�[k], in turn, pure coordination and non-coordination
situations take place. Furthermore, the advantages
of a buyback contract, where unsold products are
physically returned to the manufacturer, are highly
a�ected by the geographical location of retailers, and
salvage values of products in the manufacturer and
retailer locations.
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Appendix

Proof of Corollary 1.

(i) Di�erentiating optimal order quantity (Eq. (6))
w.r.t. TCij , TCi and w[k], respectively, results
in:

@ q�i[k]=@TCij = �bjand@q�i[k]=@TCi

= @q�i[k]=@w[k] = ��(p+ ui � vi)g(z�i[k])
��1

;

The optimum expected pro�t of the retailer is:

E
�

�Ri[k](w[k]; z�i[k])
�

= (p� w[k] � TCi)

� X
j2Ni[k]

yj(pij)� (w[k] + TCi � vi)�i[k](z�i[k])

� (p+ ui� w[k] �TCi)�i[k](z�i[k]); 8i 2 I[k];
(A.1)

where Gi[k](z�i[k]) = (p+ui�w[k]�TCi)=(p+ui�
vi); 8i 2 I[k].

(ii) Taking derivative of Eq. (6), w.r.t. w[k] by using
the chain rule, we have:

@E
�

�Ri[k](w[k]; z�i[k])
�
=@w[k] = � X

j2Ni[k]

yj(pij)

� �i[k](z�i[k]) + �i[k](z�i[k]) =

� X
j2Ni[k]

yj(pij)� z�i[k]:

It is straightforward to show that:

@E
�

�Ri[k](w[k]; z�i[k])
�
=

@w[k] = @E
�

�Ri[k](w[k]; z�i[k])
�
=@TCi < 0:

Additionally, we have:

@E
�

�Ri[k](w[k]; z�i[k])
�
=@TCij =

� bj(p� w[k] � TCi) < 0

Proof of Proposition 1. Taking ri[k](z�i[k]) =
gi[k](zi[k])=[1 � Gi[k](z�i[k])] into account, the �rst- and
the second-order derivatives of Eq. (7) w.r.t. w[k] are
calculated by Eqs. (A.2) and (A.3) as shown in Box III
If we have:

(w[k] � c)
�
dri[k](z�i[k])=dz

�
i[k] + r2

i[k](z
�
i[k])

�
+ 2(c+ TCi � vi)r2

i[k](z
�
i[k]) > 0;

for each i 2 I[k], then E
�
�M [k](w[k])

�
is a concave

function of w[k]. Since we know c � vi, 8i 2 I[k],
the conditions dri[k](z�i[k])=dz

�
i[k] + r2

i[k](z
�
i[k]) > 0, 8i 2

I[k], which hold for all non-decreasing hazard rate
distributions.

Barlow and Proschan (Barlow, R.E. and
Proschan, F., Statistical Theory of Reliability and
Life Testing: Probability Models, Florida state Univ.,
Tallahassee (1975).) assure the concavity of the
function. Under such conditions, a unique Stackelberg
equilibrium (w�[k]; q

�
i[k]), 8i 2 I[k] exists which satis�es

Eqs. (A.2) and (8).

Proof of Proposition 2. Considering the negative
sign of second-order derivative of E

�
�[k](z[k])

�
w.r.t.

zi[k];8i 2 I[k], and @2E
�
�[k](z[k])

�
=@zi[k]@zl[k] = 0,

8i; l 2 I[k], i 6= l, Hessian matrix of the expected

@E
�
�M [k](w[k])

�
@w[k]

=
X
i2I[k]

24 X
j2Ni[k]

yj(pij) + z�i[k] � w[k] � c
(w[k] + TCi � vi)ri[k](z�i[k])

35 ; (A.2)

@2E(�M [k](w[k]))
@w2

[k]
= � X

i2I[k]

2664 (w[k] � c)
�
dri[k](z�i[k])
dz�i[k]

+ r2
i[k](z

�
i[k])

�
+ 2(c+ TCi � vi)r2

i[k](z
�
i[k])

(w[k] + TCi � vi)2r3
i[k](z

�
i[k])

3775 : (A.3)

Box III
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pro�t (Eq. (16)) is negative de�nite at z[k] (Bazaraa,
M.S., Sherali, H.D. and Shetty, C.M., Nonlinear Pro-
gramming: Theory and Algorithms, John Wiley & Sons
(2006).)

Bazaraa et al., 2006). Accordingly, the expected
pro�t is jointly concave on z[k] and the �rst order
condition @E

�
�[k](z[k])

�
=@zi[k] = 0, 8i 2 I 0[k] results

in Eq. (17).

Proof of Corollary 2. Total pro�t of a decentral-
ized distribution network is independent of manufac-
turer's wholesale price (prices) and equals to Eq. (16).
Since qoi[k]; 8i 2 I[k] are unique optimal order quan-
tities of system-wide pro�t (Eq. (16)), and taking
qoi[k] > q�i[k];8i 2 I[k] into account, we conclude

that E
�

�[k](zo
[k])
�
> E

�
�[k](z�[k])

�
, where zo

[k] =
fzoi[k];8i 2 I[k]g and z�[k] = fz�i[k]; 8i 2 I[k]g.

Proof of Corollary 3. Considering ri[k](ẑi[k]) =
gi[k](ẑi[k])=[1 � Gi[k](ẑi[k])], the �rst- and second-order
derivatives of system-wide pro�t (Eq. (21)) w.r.t.
ŵ[k] are @E

�
�[k](ŵ[k]; ẑ[k])

�
=@ŵ[k]= �Pi2I0(ŵ[k] �

c)
�
(ŵ[k] + TCi � vi)ri[k](ẑi[k])

�
and:

@2E
�
�[k](ŵ[k]; ẑ[k])

�
@ŵ2

[k]
= �X

i2I02664(ŵ[k]�c)
�
dri[k](ẑi[k])
dẑi[k]

�
+(c+TCi�vi)ri[k](ẑi[k])

(ŵ[k]+TCi�vi)2r2
i[k](̂zi[k])

3775 (A.4)

Since ŵ[k] � c > vi, it follows that
@E
�
�[k](ŵ[k]; ẑ[k])

�
=@ŵ[k] � 0. Furthermore,

@2E
�
�[k](ŵ[k]; ẑ[k])

�
=@ŵ2

[k] < 0 is satis�ed by all
non-decreasing hazard rate distribution.

Proof of Proposition 3. The expected pro�t of
retailer i under buy-back contract (wi[k]; bi[k]; zi[k])
becomes:

E
�

�Ri[k](wi[k]; bi[k]; zi[k])
�

= (p� wi[k] � TCi)

� X
j2Ni[k]

yj(pij)� (wi[k] + TCi � bi[k])

� �i[k](zi[k])� (p+ ui � wi[k] � TCi)

��i[k](zi[k]); 8i 2 I 0: (A.5)

Since the E
�
�Ri[k](wi[k]; bi[k]; zi[k])

�
is a concave func-

tion of zi[k], solving the �rst order condition results in:

Gi[k](ẑi[k]) =
p+ ui � wi[k] � TCi

p+ ui � bi[k]
: (A.6)

When channel i is completely coordinated, the optimal
safety stock level of the retailer should satisfy ẑi[k] =
zoi[k] (which is also equal to q̂i[k] = qoi[k]). Regarding
Eqs. (17) and (A.6), by solving ẑi[k] = zoi[k] for w, we
have:

wi[k](bi[k]) =(p+ ui � TCi)� (p+ ui � bi[k])

Gi[k](zoi[k]) = (p+ ui � TCi)

� (p+ ui � bi[k])(p+ ui � c� TCi)
(p+ ui � vi) :

(A.7)

Both the manufacturer and retailer i accept buy-back
contract (wi[k]; bi[k]; zoi[k]), if such a contract ensures
they will be more pro�table relative to the case of non-
cooperative wholesale pricing (Proposition 2). Con-
sequently, the buy-back contract should satisfy the
following conditions:

E
�

�Ri[k](wi[k]; bi[k]; zoi[k])
�
>

E
�

�Ri[k](w�i[k]; z
�
i[k])

�
; (A.8)

E
�

�Mi[k](wi[k]; bi[k]; zoi[k])
�
�

E
�

�Mi[k](w�i[k]; z
�
i[k])

�
: (A.9)

Substituting Eq. (A.7) into Inequalities (A.8) and (A.9)
(see Eqs. (22) and (23)), and then solving outcome
inequalities for bi[k], we obtain Limitations (26) and
(27) after some mathematic manipulation.

Proof of Corollary 4.

(i) The denominator of the fraction in Eq. (28) is
positive, due to the fact that:

qoi[k]Gi[k](zoi[k])� �i[k](zoi[k]) = Gi[k](zoi[k])

� X
j2Ni[k]

yj(pij) +
Z zi[k]

Bi[k]

�i[k]gi[k](x)dx > 0:
(A.10)

Thus, bi[k] � bi[k] has the same sign as the
numerator of the fraction, i.e. bi[k] > bi[k], if we
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have:

E
�

�̂i[k](zoi[k])
�
> E

�
�Mi[k](w�i[k]; z

�
i[k])

�
+E
�

�Ri[k](w�i[k]; z
�
i[k])

�
;

which is also equal to Condition (24).
(ii) Di�erentiating Relation (22) w.r.t. bi[k], and by

employing the chain rule (regarding Eq. (25)), we
have:

@E
�

�Ri[k](wi[k](bi[k]); bi[k]; zoi[k])
�
=

@bi[k] = �
�
qoi[k]Gi[k](zoi[k])� �i[k](zoi[k])

�
:

According to Eq. (A.10), we conclude that
�Ri[k](wi[k](bi[k]); bi[k]; zoi[k]) is a decreasing func-
tion of bi[k]. Since:

E
�

�̂i[k](zoi[k])
�

=

E
�

�Mi[k](wi[k](bi[k]); bi[k]; zoi[k])
�

+ E
�

�Ri[k](wi[k](bi[k]); bi[k]; zoi[k])
�

is independent of bi[k], it is straightforward that:

@E
�

�Mi[k](wi[k](bi[k]); bi[k]; zoi[k])
�
=

@bi[k] = qoi[k]Gi[k](zi[k])� �i[k](zoi[k])

Considering Eq. (A.10), it follows that

E
�

�Mi[k](wi[k](bi[k]); bi[k]; zoi[k])
�

is a increasing

function of bi[k].
Consequently, if bi[k] is too high (bi[k] >

bi[k]), the expected pro�t of retailer i will be

less than E
�

�Ri[k](w�i[k]; z
�
i[k])

�
. On the other

hand, when bi[k] is too low (bi[k] < bi[k]), the
expected pro�t of the manufacturer will be less
than E

�
�Mi[k](w�i[k]; z

�
i[k])

�
.

(iii) Di�erentiating Eq. (28) w.r.t. TCi, we have:

@(bi[k] � bi[k])=@TCi = �1=�
qoi[k]Gi[k](zoi[k])� �i[k](zoi[k])

�
:

From Eq. (A.10), it is straightforward that bi[k]�
bi[k] is a decreasing function of TCi. Similarly,
it is unequivocal to show that bi[k] � bi[k] is an
increasing function of (v � vi).
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