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Abstract. The feasible di�erential problem is solved using a tension recti�cation
algorithm. In this paper, we present a scaling implementation of a tension recti�cation
algorithm. Let n;m;U denote the number of nodes, number of arcs, and maximum arc
capacity value of an arc, respectively. Our implementation runs in O(mn logU), which
is O(mn log n) under the similarity assumption. The tension recti�cation algorithm runs
in O(m2) time, so, our implementation is an improvement if n log n < m. Another merit
of our algorithm is that, in cases where the feasible di�erential problem does not have
a solution, it presents some information that is useful to the modeler in estimating the
maximum cost of adjusting the network.
c 2014 Sharif University of Technology. All rights reserved.

1. Introduction

The �rst theoretical studies on tension were discussed
by Berge and Ghouila-Houri [1,2] at the beginning
of the 1960s. In 1971, Pla [3] presented an out of
kilter algorithm to solve the minimum cost tension
problem. Hajiat [4] showed that Pla's algorithm is
not polynomial using a graph family fTn; n � 2g on
which it runs necessarily in an exponential number of
iterations, namely, 2n+2n�1 +2n�2�2 calls to a linear
labeling process. Hamacher [5] developed two pseudo-
polynomial time algorithms in 1985: negative cut
and shortest augmenting cut algorithms. Other non-
polynomial algorithms were given by Rockafellar [6].
Polynomial time algorithms to solve the minimum cost
tension problem have been presented by Hadjiat and
Maurras [7] and Ghiyasvand [8,9]. Piecewise linear
and convex costs of the problem and inverse tension
problems have been discussed in [10-14].

Let D = (N;A) be a connected digraph with
vertex set, N , containing n vertices, and arc set, A,
containing m arcs. We denote an arc from node i to
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node j by (i; j). Let RA (resp. RN ) be a collection of
all orderedm-tuples (resp. n-tuples) of real numbers on
set A (resp. N). A vector � 2 RA is a tension on graph
G with a potential � 2 RN , such that �ij = �j��i, for
each (i; j) 2 A. Each arc, (i; j) 2 A, has a capacity, uij ,
that denotes the maximum amount of �ij on the arc and
a lower bound lij that denotes the minimum amount
of �ij on the arc. Tension � is called a feasible tension
if lij � �ij � uij , for each (i; j) 2 A. The feasible
di�erential problem determines a feasible tension (if it
exists).

A cycle, C, in a directed graph is a sequence
i1; i2; : : : ; ik of distinct nodes of N , such that either
(ir ! ir+1) 2 A (a forward arc in C) or (ir+1 !
ir) 2 A (a backward arc in C) for r = 1; 2; : : : ; k (where
we interpret ik+1 as i1). It is obvious that tension is
arc-weighting, having a zero sum on every cycle of the
graph, so, for each cycle, C, we have:X

(i;j)2C+

�ij � X
(i;j)2C�

�ij = 0; (1)

where C+ and C� are the forward and backward arcs
of the cycle, respectively. For a given cycle, C, de�ne:
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d+(C) =
X

(i;j)2C+

uij � X
(i;j)2C�

lij : (2)

The next theorem presents a necessary and su�cient
condition to conclude that the feasible di�erential
problem has a feasible tension.

Theorem 1 (Feasible di�erential theorem [6,
page 193]). The feasible di�erential problem has a
feasible tension if and only if d+(C) � 0 for each cycle,
C. �

The feasible di�erential problem can be solved
using a tension recti�cation algorithm [6, page 203-5,
and 15, page 70]. The tension recti�cation algorithm
runs in O(m2) time ([6], page 205, line 20). When the
feasible di�erential problem does not have a feasible
tension, this algorithm only computes cycle C with
d+(C) < 0.

In this paper, we �rst present a scaling idea to
solve the feasible di�erential problem, then a scaling
implementation of the tension recti�cation algorithm
is presented, which is a new method for solving the
problem. Our algorithm runs in O (mn logU) time,
where U is the maximum arc capacity value of an arc.

To avoid systematic underestimation of running
time, in comparing two running times, sometimes, it
will be assumed that the bound, U , is polynomial
bounded in n, namely, U = O(nk), for some constant
k [16]. This assumption is called as the similarity
assumption [17, page 60]. Thus, under the similarity
assumption [16], our algorithm runs in O(mn log n),
which is an improvement if n logn < m (in comparison
with the tension recti�cation algorithm [6,15]).

In cases where the feasible di�erential problem
does not have a feasible tension, our algorithm not only
presents a cycle, C, with d+(C) < 0, but also gives
some information so that the modeler can estimate the
maximum cost of repairing the network in order to have
a network with a feasible tension.

This paper consists of three sections in addition
to the introduction. Section 2 presents a brief outline
of the tension recti�cation algorithm. A scaling im-
plementation of the tension recti�cation algorithm is
shown in Section 3. Finally, Section 4 presents a faster
implementation of the algorithm described in Section 3.

2. The tension recti�cation algorithm

In this section, a brief outline of the tension recti�ca-
tion algorithm [6,15] is presented. Given an arbitrary
potential, �, and its tension �, let:

A+ = f(i; j) 2 Aj�ij < lijg;
A� = f(i; j) 2 Aj�ij > uijg:

If A+ = � = A�, tension � is feasible. Otherwise

any arc (r; s) 2 A+ [ A� is selected. Then, Minty's
Lemma [18] is applied using the following painting of
the arcs (i; j) 2 A: red (if lij < �ij < uij), black
(if �ij � lij and �ij < uij), white (if �ij � uij and
�ij > lij), and green (if lij = �ij = uij). It is obvious
that (r; s) will be black or white.

If the outcome of Minty's lemma is a cycle, C,
containing (r; s) terminate; this cycle has d+(C) < 0.
Otherwise, the outcome is a set, W , of nodes, such
that (r; s) 2 (W;W ) = f(i; j) j i 2 W , j 62 Wg or
(r; s) 2 (W;W ) = f(i; j) j i 62 W , j 2 Wg, where
W = N �W . In this case, the value, �, is computed
as follows:

� =

8><>:uij � �ij ; if (i; j) 2 (W;W );
�ij � lij ; if (i; j) 2 (W;W );
�; otherwise;

where:

� =

(
lrs � �rs; if (r; s) 2 A+;
�rs � urs; if (r; s) 2 A�:

Then, the updated potentials are:

�0i =

(
�i; if i 2W;
�i + �; if i 2W:

The tension recti�cation algorithm repeats with �0 in
which, after a �nite number of iterations, arc (r; s) is
�nally removed from A+[A�. These operations repeat
for each arc in A+ [A� and the algorithm can be run
in O(jAj(jA+j+ jA�j)) � O(jAj2) = O(m2) time.

2.1. Application of the feasible di�erential
problem

The minimum cost tension problem appears in many
applications (Rockafellar [6, Chapter 7F]) concerning
networks, such as timing of events, location of facilities,
shared cost problems, and so on. Let cij denote the
cost on arc (i; j). the minimum cost tension problem
determines a feasible tension with minimum cost. The
minimum cost tension problem is de�ned as follows:

min
X

(i;j)2A
cij�ij

s.t. � is a feasible tension.

All minimum cost tension algorithms [2-5,7-9,19,20]
start with a feasible tension. Thus, before solving the
minimum cost tension problem, the feasible di�erential
problem should be solved in order to �nd a feasible
tension, or to diagnose that the problem does not have
a feasible tension.
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3. A scaling implementation of the tension
recti�cation algorithm

In this section, a scaling implementation of the tension
recti�cation algorithm is presented. Given a � > 0,
we de�ne tension � as a �-feasible tension if, for each
(i; j) 2 A:

lij � � < �ij < uij + �: (3)

Our algorithm starts out with � large and drive �
toward zero. In each phase, the algorithm tries to �nd
a �-feasible tension using the input 2�-feasible tension.
The following lemma says that � need not start out too
big and end up too small.

Theorem 2. � = 0 is a (U + 1)-feasible tension.
Moreover, if l and u are integer and there exists a �-
feasible tension �, such that � � 1=m, then, the feasible
di�erential problem has a solution.

Proof. By U = maxfjlij j; juij j j for each(i; j) 2 Ag,
we get lij � U � 0 � uij + U (for each arc i ! j),
which means:
lij � (U + 1) < 0 < uij + (U + 1): (4)

Let � = 0, which concludes � = 0 is a tension and, by
Inequality (4), is a (U + 1)-feasible tension.

Now, considering cycle C, by Eqs. (1) and (2), we
get:

�d+(C) =
X

(i;j)2C+

(�ij � uij) +
X

(i;j)2C�
(lij � �ij):

Tension � is �-feasible, so, by Inequality (3), we have:

�d+(C) <
X

(i;j)2C+)

� +
X

(i;j)2C�
� � m�:

Thus, if we have a �-feasible tension with � � 1=m,
then, d+(C) > �m� � �1. Since l and u are integer,
d+(C) is integer too, which means d+(C) � 0: Cycle C
is arbitrary, so, Theorem 1 concludes that the feasible
di�erential problem has a solution. �

Thus, our algorithm starts with � = U and x = 0.
In each phase, the input is a 2�-feasible tension and
the output is a �-feasible tension. By Theorem 2, the
algorithm runs in O(log(nU)) phases. To explain a
phase, we need the following de�nition.

De�nition 1. Given a tension, �, for each node, i 2
N , value �(i) is de�ned by the following:

�(i) = max

8>>><>>>:
lij � �ij ; for each outgoing arc

(i; j) of node i;
�ri � uri; for each incoming arc

(r; i) of node i:

(5)

The next conclusion is a result of de�nitions, which

Figure 1. If �ij � lij , then (i; j) is in the set �. If
lij < �ij < uij , then (i; j) is in the set �. Also, if �ij � uij ,
then (i; j) is in the set r.

Figure 2. If �ji > uji or �ij < uij , then �(i) = �(i) [ fjg.

presents a relationship among �(i)'s and �-feasible
tension.

Conclusion 1. Given a tension, �. For each i 2 N ,
�(i) < � if and only if lij � � < �ij < uij + �, for each
(i; j) 2 A.

Using Conclusion 1, we can work on �(i)'s in order
to have a �-feasible tension. For this purpose, we need
the following de�nitions. Sets r, � and � are de�ned
in the following way (Figure 1):

� = f(i; j) 2 A j lij � 2� < xij � lijg;
r = f(i; j) 2 A j uij � xij < uij + 2�g;
� = f(i; j) 2 A j lij < xij < uijg:

Let F (�) = fi 2 N j � � �(i) < 2�g, so, there is
a relationship among sets F (�);� and r, which is as
follows.

Conclusion 2. If i 2 F (�), then, at least one of the
following occurs:

a) There is at least one outgoing arc (i; j) of node i
with �ij < lij .

b) There is at least one incoming arc (r; i) of node i
with �ri > uri.

Considering a node i 2 F (�), using Conclusion 2, we
de�ne node �(i) as follows.

De�nition 2. For each outgoing arc (i; j) of node
i with �ij < lij (resp. incoming arc (r; i) of node i
with �ri > uri), let �(i) = �(i) [ fjg (resp. �(i) =
�(i) [ frg), see Figure 2(a) and (b).

In each phase of our algorithm, a 2�-feasible
tension, �, should be changed to a �-feasible tension, �0.
If F (�) = �, then � is �-feasible tension, and the current
phase is �nished. Otherwise, it selects a node, i 2 F (�),
and labels the nodes using the labeling procedure (i)
presented in Algorithm 1. The set of labeled nodes at
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Algorithm 1. The labeling procedure.

Algorithm 2. The scaling tension recti�cation algorithm.

the end of the labeling procedure (i) is de�ned by W .
The following theorem shows how it can be diagnosed
when the feasible di�erential problem does not have a
solution.

Theorem 3. Let W be the set of labeled nodes at the
end of the labeling procedure (i). If �(i) \ W 6= �,
then, the feasible di�erential problem does not have a
solution.

Proof. By the labeling procedure (i), when �(i)\W 6=
�, there is a cycle, C, such that:

(i; j) 2 r; for each (i; j) 2 C+;

(i; j) 2 �; for each (i; j) 2 C�:
Thus, we get:X

(i;j)2C+

uij � X
(i;j)2C+

�ij ; (6)

and:

X
(i;j)2C�

�ij � X
(i;j)2C�

lij : (7)

The arc (i; j) or (j; i) with j 2 �(i) is in cycle C, so, by
Figure 2, one of Inequalities (5) or (6) is strict. Thus,
by Eq. (1), we have:X

(i;j)2C+

uij � X
(i;j)2C�

lij < 0;

which means, using Theorem 1, the feasible di�erential
problem does not have a solution. �

Using Theorem 2 and Conclusion 2, we get the
following conclusion, which shows how the feasibility
of the feasible di�erential problem can be diagnosed.

Conclusion 3. If l and u are integer and F (�) =
�, such that � � 1=m, then, the feasible di�erential
problem has a solution.

Algorithm 2 presents our method, which selects a
node, i 2 F (�), then removes node i from set F (�) by
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adjusting �i' s and �ij 's, as follows.

�0i =

(
�i � �; if i 2W;
�i; if i 2W:

(8)

By Eq. (7), �ij 's are changed according to:

�0ij =

8><>:�ij + �; if (i; j) 2 (W;W );
�ij � �; if (i; j) 2 (W;W );
�ij ; otherwise:

(9)

The next lemma proves that node i leaves set F (�)
using Eqs. (7) and (8).

Lemma 1. Suppose that �(i)\W 6= at the end of the
labeling procedure (i). After adjusting �i' s and �ij 's,
according to Eqs. (7) and (8), we have �(i) < �.

Proof. Let W = N �W . At the end of the labeling
procedure (i), we have (Figure 3):
(i; j) 2 r; for each outgoing arc (i; j) of node i

with j 2W ,
(r; i) 2 �; for each incoming arc (r; i) of node i

with r 2W ,
(i; q) 2 � or �; for each outgoing arc (i; q) of node i

with q 2W ,
(p; i) 2 r or �; for each incoming arc (p; i) of node i

with p 2W .
We consider the following cases in order to com-

pute �(i), with regard to �
0
, computed by Eq. (8):

(i) The outgoing arcs of node i.
(i-1) If (i; j) is an outgoing arc of node i with j 2W ,

then, by Figure 3, (i; j) 2 r, so, we get uij � �ij .
By Eq. (8), �0ij = �ij , which means by lij � uij ,
lij � �0ij � 0 < �.

(i-2) If (i; q) is an outgoing arc of node i with q 2
W , then, by Figure 3, (i; q) 2 � or �, so, by
Figure 1, we have liq � 2� < �iq < uiq. By
Eq. (8), �0iq = �iq + �, so, by Figure 1, liq � � <
�0iq < uiq + �, which means liq � �0iq < �.

Figure 3. After labeling procedure, for each
(i; q) 2 (W;W ), we have (i; q) 2 � [ �. Also, for each
(p; i) 2 (W;W ), we have (p; i) 2 r [ �.

(ii) The incoming arcs of node i.
(ii-1) If (r; i) is an incoming arc of node i with r 2W ,

then, by Figure 3, (r; i) 2 �, so, we get �ri � lri.
By Eq. (8), �0ri = �ri, which means, by lri � uri,
�
0
ri � uri � 0 < �.

(ii-2) If (p; i) is an incoming arc of node i with p 2
W , then, by Figure 3, (p; i) 2 r or �, so, by
Figure 1, we have lpi < �pi < upi + 2�. By
Eq. (8), �0pi = �pi � �, so, by Figure 1, lpi � � <
�pi < upi + �, which means �pi � upi < �.

By De�nition 1 and cases (i-1),(i-2), (ii-1), and
(ii-2), we get �(i) < �. �

Hence, by Lemma 1, node i leaves F (�). In order
to show that a phase �nishes after �nite iterations, we
prove that the method does not enter a new node to
set F (�).

Lemma 2. After adjusting �i' s and �ij 's, according
to Eqs. (7) and (8), a new node does not add to set
F (�).

Proof. By Eq. (8), �ij is changed if (i; j) 2 (W;W ) or
(i; j) 2 (W;W ). Thus, we consider the following two
cases:

Case-1. j 2W with at least oneincoming arc of node
j (Figure 4).

Case (1-1). If (i; j) is an incoming arc of node j with
i 2 W , then, by Figure 4, (i; j) 2 � or �, so, we get
�ij < uij . By Eq. (8), �0ij = �ij + �, so �0ij < uij + �,
which means �0ij � uij < �. Thus, by De�nition 1, if
node j is not in F (�), then, by adjusting �ij , according
to Eq. (8), node j will not be added to set F (�).

Case (1-2). If (j; r) is an outgoing arc of node j with
r 2 W , then, by Figure 4, (j; r) 2 r or �, so, we get
�jr > ljr. By Eq. (8), �0jr = �jr � �, so, �0jr > ljr � �,
which means ljr � �0jr < �. Thus, by De�nition 1, if
node j is not in F (�), then, by adjusting �jr according
to Eq. (8), node j will not be added to set F (�).

Case-2. i 2W with at least one outgoing arc of node
i (Figure 5).

Figure 4. The position of node j 2W with at least one
incoming arc of node j.
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Figure 5. The position of node i 2W with at least one
outgoing arc of node i.

Using Figures 3 and 5 and cases (i-2) and (ii-2) in
the proof of Lemma 1, if node i is not in F (�), then,
by adjusting �ij 's, according to Eq. (8), node i will not
be added to set F (�). �

The next theorem computes the running time of
the algorithm.

Theorem 4. The scaling tension recti�cation algo-
rithm runs in O(mn log(nU)) time.

Proof. Using Theorem 2, the number of phases is
O(log(mU)) = O(log(nU)). Each phase, for a given
� > 0, �nishes, if F (�) = �. The algorithm selects
a node, i 2 F (�), and changes it to �(i) < � using
Eqs. (7) and (8), which takes O(m). By Lemma 2,
during a phase, no new node will be added to F (�),
so, each phase needs jF (�)j � n iterations. Thus, each
phase runs in O(mn). �

Now, we show how the information of our algo-
rithm is used to estimate maximum cost for repairing
the network in order to have a feasible tension.

Theorem 5. For a given � and i 2 F (�), if �(i)[W 6=
�, then, the network can be repaired by, at most, 2m�
changes in bounds in order to have a feasible tension.

Proof. �(i) [ W 6= � says the feasible di�erential
problem does not have a feasible tension. Using
the method of the algorithm, a 2�-feasible tension is
computed in the last phase. Thus, we have a tension, �,
with lij�2� < �ij < uij+2� (for each (i; j) 2 A), which
means that m(2�) is an upper bound on the number of
changes in bounds (increasing uij 's or decreasing lij 's
by 2�), so that � be a feasible tension. �

4. Reducing the number of phases to O(log U)
and �nding a feasible tension

At the end of Algorithm 2, we only can diagnose if the
feasible di�erential problem has a solution, but do not
�nd a feasible solution. In this section, we reduce the
number of phases to O(log U) and compute a feasible
solution (if it exists). Let U = 2blogUc+1, so, U >
U + 1, which means, by Theorem 2, � = 0 is a U -
feasible tension.

Lemma 3. Let l and u be integer. Supposing that
the starting � is � = U , then:

a) If there is a 1-feasible tension, then the feasible
di�erential problem has a solution.

b) Each 1-feasible tension is a feasible tension.

Proof. The starting values are � = 2blogUc+1, �ij = 0
(for each (i; j) 2 A), and �i = 0 (for each i 2 N).
Thus, initially, � is integer and a multiplier of 2. In each
iteration, � is reduced to �=2, which means the values
of all �'s are integer if � � 1. During each iteration,
the values of �i's and �ij 's are updated by Eqs. (7) and
(8), so, they are integer if � � 1.

Supposing that we have a 1-feasible tension, �, so,
lij � 1 < �ij < uij + 1, for each (i; j) 2 A. Thus, for
each (i; j) 2 A, we get:

uij��ij > �1) uij � �ij � 0

(because uij � �ij is integer);

�ij�lij > �1) �ij � lij � 0

(because �ij � lij is integer):

Therefore, lij � �ij � uij , for each (i; j) 2 A, which
means each 1-feasible tension is a feasible tension. �

The next theorem shows that the algorithm can
be run in O(mn logU) time using Lemma 3.

Theorem 6. If the scaling tension recti�cation algo-
rithm starts with � = U , then, it runs in O(mn logU)
time.

Proof. By Lemma 3, each 1-feasible tension is a
feasible tension, so, the number of phases is O(logU) =
O(logU). By the proof of Theorem 4, each phase runs
in O(mn). �

Example 1. In this example, we present the imple-
mentation of our algorithm for the network in Figure 6.
We have U = 5, so, the starting values are � =

Figure 6. The network corresponding to Example 1 for
applying Algorithm 2.
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Figure 7. The initial values for �(i)'s and �ij 's in
Example 1.

2blog5c + 1 = 8, and �i = 0 for each i 2 N (i.e.
�ij = 0, for each (i; j) 2 A). The starting �(i)'s are
shown in Figure 7: �(1) = 0, �(2) = 2, �(3) = 0,
�(4) = 1, and �(5) = �(6) = �1. Hence, we have
F (8) = fi 2 N j 8 � �(i) < 16g = � and F (4) =
fi 2 N j 4 � �(i) < 8g = �, so, we let � = 2 and
get F (2) = fi 2 N j 2 � �(i) < 4g = f2g. For
the outgoing arc (2; 6), we have �26 = 0 < l26 = 2,
so �(2) = 6 and a labeling procedure (2) should be
done, so, we �rst label node 2. For the outgoing arc
(2; 3), we have �23 = 0 = u23, which means (2; 3) 2 r,
so, we label node 3. For the incoming arc (4; 2), we
have �42 = 0 < l42 = 1, which means (4; 2) 2 �,
so, we label node 4. Other nodes can not be labeled.
We have W = f2; 3; 4g, and W = f1; 5; 6g, so, �(2)
is not in W . Hence, by Eqs. (7) and (8), we get
�2 = �3 = �4 = 0� 2 = �2, �i = 0 (for other i 2 N),
�26 = 0 + 2 = 2, �45 = 0 + 2 = 2, �12 = 0 � 2 = �2,
�64 = 0� 2 = �2 and �ij = 0 for other (i; j) 2 A. The
updated values of �(i)'s are �(1) = �(2) = �(3) = 0,
�(4) = 1 and �(5) = �(6) = �1.

Now, we have F (2) = fi 2 N j 2 � �(i) < 4g = �,
so we let � = 1, and get F (1) = fi 2 N j 1 � �(i) <
2g = f4; 5g. By selecting node 4, updated values of �i's
are �2 = �3 = �2, �4 = �3, �5 = �1 and �i = 0 (for
other i 2 N). Updated values �ij 's are �42 = �56 = 1,
�34 = �1, �64 = �3; �26 = 2; �45 = 2, �12 = �2 and
�ij = 0, for other (i; j) 2 A. The updated values of
�(i)'s are �(1) = �(2) = �(3) = �(4) = �(6) = 0 and
�(5) = 1.

Thus, F (1) = fi 2 N j 1 � �(i) < 2g = f5g.
For the incoming arc (4; 5) of node 5, we have �45 =
2 > u45 = 1, so, 4 2 �(5) and the labeling procedure
(5) should be done, which gives W = f5; 6; 2; 4; 3g, and
�(5)\W 6= �. Therefore, the problem does not have a
solution. Note, in Cycle C : 5� 6� 2� 4� 5, we have
d+(C) = (1 + 1)� (2 + 1) = �1 < 0.

Now, the maximum cost is estimated for repairing
this network in order to have a feasible tension. We
have F (2) = ;, but F (1) 6= ;. Thus, by Theorem 5,
an estimation of the maximum cost of repair is 2�m =
2(1)(9) = 18. Of course, we have a lower estimation as
follows:

�42 = 1 = l42; �56 = 1 = u56;

l34 = �3 < �34 = �1 < u34 = 3;

l64 = �4 < �64 = �3 < u64 = 3; �26 = 2 = l26;

�45 = 2 > u45 = 1;

l12 = �3 < �12 = �2 < u12 = 5;

�61 = 0 = u61; and �23 = 0 = u23:

Thus we only need to change the upper bound arc (4; 5)
by 1 unit (i.e. u45 should be increased to 2) in order to
repair the network.

Acknowledgements

I would like to thank two anonymous referees for their
valuable suggestions.

References

1. Berge, C. and Ghouila-Houri, A., Programming,
Games and Transportation Networks, Wiley, New York
(1962).

2. Ghouila-Houri, A. \Flows and tension in a graph"
[Flots et tension dans un graph], Ph.D Thesis,
Gauthier-Villars, Paris (1964).

3. Pla, J.M. \An out-of-kilter algorithm for solving mini-
mum cost potential problems", Mathematical Program-
ming, 1, pp. 275-290 (1971)

4. Hadjiat, M. \Penelope's graph: a hard minimum cost
tension instanc", Theoretical Computer Science, 194,
pp. 207-218 (1998).

5. Hamacher, H.W. \Min cost tension", Journal of In-
formation & Optimization Sciences, 6(3). pp. 285-304
(1985).

6. Rockafeller, R.T., Network Flows and Monotropic
Optimization, John Wiley and Sons (1984).

7. Hadjiat, M. and Maurras, J.F. \A strongly polynomial
algorithm for the minimum cost tension problem",
Discrete Mathematics, 165/166, pp. 377-394 (1997).

8. Ghiyasvand, M. \An O(m(m+nlogn)log(nC))-time al-
gorithm to solve the minimum cost tension problem",
Theoretical Computer Science, 448, pp. 47-55 (2012).

9. Ghiyasvand, M. \A polynomial-time implementation
of Pla's method to solve the MCT problem", Advances
in Computational Mathematics and Its Applications,
1(2), pp. 104-109 (2012).

10. Ahuja, R.K., Hochbaum, D.S. and Orlin, J.B. \Solving
the convex cost integer dual network ow problem",
Management Science, 49, pp. 950-964 (2003).

11. Bachelet, B. and Duhamel, C. \Aggregation approach
for the minimum binary cost tension problem", Euro-
pean Journal of Operations Research, 197, pp. 837-841
(2009).



M. Ghiyasvand/Scientia Iranica, Transactions E: Industrial Engineering 21 (2014) 980{987 987

12. Bachele, B. and Mahey, P. \Minimum convex-cost
tension problems on series-parallel graphs", RAIRO
Operation Research, 37(4), pp. 221-234 (2003).

13. Bachele, B. and Mahey, P. \Minimum convex pircewise
linear cost tension problem on quasi-k series-parallel
graphs", 4OR: Quarterly Journal of European Opera-
tions Research Societies, 2(4), pp. 275-291 (2004).

14. Guler, C. \Inverse tension problems and monotropic
optimization", WIMA Report (2008).

15. Goh, C.J. and Yang, X.Q., Duality in Optimization
and Variational Inequalities, Taylor and Francis, Lon-
don (2002).

16. Gabow, H.N. \Scaling algorithms for network prob-
lems", Journal of Computer and System Science, 31,
pp. 148-168 (1985).

17. Ahuja, R.K. Magnanti, T.L. and Orlin, J.B., Net-
work Flows: Theory, Algorithms, and Applications,
Prentice-Hall, Englewood Cli�s, NJ (1993).

18. Minty, G.J. \On the axiomatic foundations of the theo-
ries of directed linear graphs", Electrical Networks and
Programming, Journal of Mathematics and Mechanics,
15, pp. 485-520 (1966).

19. Hadjiat, M. and Maurras, J.F. \Duality between
ow and tension", Actes des Troisiemes Journees du
Groupe MODE, Berst, France (1995).

20. Maurras, J.F. \The maximum cost tension problem",
Proc. Conf., European chapter on combinatorial opti-
mization (ECCO VII), Italy (1994).

Biography

Mehdi Ghiyasvand was born in Hamedan, Iran,
in 1975. He obtained his MS and PhD degrees in
Operations Research from Tehran University, Iran and
spent a post-doctoral term at MIT University, USA. He
is now Associate Professor at Bu-Ali Sina University,
Hamedan, Iran.




