
Scientia Iranica E (2014) 21(3), 963{979

Sharif University of Technology
Scientia Iranica

Transactions E: Industrial Engineering
www.scientiairanica.com

A hybrid meta-heuristic for balancing and scheduling
assembly lines with sequence-independent setup times
by considering deterioration tasks and learning e�ect

N. Hamtaa, S.M.T. Fatemi Ghomia;� R. Tavakkoli-Moghaddamb and F. Jolaib

a. Department of Industrial Engineering, Amirkabir University of Technology, 424 Hafez Avenue, 1591634311, Tehran, Iran.
b. Department of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran.

Received 18 April 2012; received in revised form 25 April 2013; accepted 13 August 2013

KEYWORDS
Assembly line
balancing;
Scheduling;
Deterioration tasks;
Learning e�ect;
Hybrid meta-heuristic;
Sequence-independent
setup times.

Abstract. This paper addresses the Simple Assembly Line Balancing Problem of type
II (SALBP-II), with simultaneous e�ects of deterioration and learning in which there
are sequence-independent setup times relating to each task. In many real industrial
environments, although the actual task processing times are de�ned as a function of their
starting times due to deterioration e�ects, workstations improve continuously as a result
of repeating the same activities by worker(s) or machine(s). In this paper, a mathematical
model is developed for this novel problem, attempting to minimize the cycle time for a given
number of workstations. In addition to the balancing of the assembly line, the developed
model presents the execution scheduling of tasks assigned to each workstation. Moreover,
a hybrid meta-heuristic method is proposed to solve such an NP-hard problem. This
robust and simply structured solution approach uses the tabu search within the Variable
Neighbourhood Search (VNS/TS). The computational experiments and comparison with a
Di�erential Evolution Algorithm (DEA) re
ect the high e�ciency of our proposed algorithm
for a number of well-known instances.
c
 2014 Sharif University of Technology. All rights reserved.

1. Introduction

The Assembly Line Balancing Problem (ALBP) was
�rst introduced by Bryton [1] and the �rst scienti�c
study was published by Salveson [2] in this �eld. An
assembly line consists of a set of tasks, each having a
certain processing time, in the presence of a precedence
relationship diagram, which designates the order of the
tasks. The purpose of the assembly line balancing
problem is to assign these tasks to workstations in such
a way that the precedence relations are not violated
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and some e�ectiveness measures (such as cycle time,
number of workstations, line e�ciency or idle time) are
optimized. The most well-known objective functions
are to minimize the number of workstations for a given
cycle time (SALBP-I) and to minimize the cycle time
for a pre-de�ned number of workstations (SALBP-
II) [3,4]. In addition to straight assembly lines, other
types in the literature are U-shaped and parallel lines,
which, depending on the �nal product, are divided into
single and multi-product lines.

ALBP has been studied by many researchers for
more than 50 years, and various types of line and
di�erent objective functions have been presented [5-
7]. In addition, there are di�erent surveys on ALBP
in the literature [8-13]. Versions of ALBP are not
only summarized in the types mentioned, and the
main problem has been widely enriched under various
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working conditions, such as dealing with uncertainty in
the parameters using the fuzzy set theory [7,13], prob-
ability theory [14], allowable task deterioration [15,16],
and negligible setup times [17-19].

The SALBP has been extended considering dif-
ferent types of setup time, namely, SUALBSP [20], se-
quence dependent setup times [21,22], allowable learn-
ing e�ects [15,23], and general resource-constrained
cases [24]. Recently, Haz�r and Dolgui [25] dealt
with line balancing under uncertainty. They assumed
interval uncertainty for operation times and presented
two robust optimization models.

The other version of SALBP is named ARALBP-
I. This problem is the extended form of SALBP-I
and considers the various assignment restrictions [19].
Moreover, several heuristic/meta-heuristic algorithms
have been developed to obtain optimal or near optimal
solutions in reasonable computational time. These
algorithms could be classi�ed as the genetic algo-
rithm [5,17,23,26], ant colony optimization [27-29],
tabu search [30], simulated annealing [14,31-34], par-
ticle swarm optimization [35], the di�erential evolution
algorithm [36-37] and the GRASP algorithm [21].
Recently, Michalos et al. [38] introduced an intelligent
search algorithm that uses three control factors to
guide the search to derive assembly line design alterna-
tives.

In the huge body of literature in the ALBP area,
most studies have assumed that the task times are
independent of realistic e�ects, such as the learning
of worker(s) for repetitious tasks and deterioration.
However, in many real industrial environments, the
actual task processing times are a function of their
starting times, due to the deterioration e�ect. On
the other hand, workstations improve continuously
because of repeating the same activities by worker(s) or
machine(s). In order to re
ect the real-world situation
adequately, this paper adds the simultaneous e�ects
of learning and linear deterioration to the classical
SALBP. The scheduling of the execution of tasks
assigned to every workstation following the balancing
of the assembly line is also considered. In addition,
we suppose there is a setup time relating to each
task, which corresponds only to the task to be per-
formed. This type of setup time is known as sequence-
independent in related literature [39]. Due to the
existence of learning and deterioration e�ects, setup
times cannot be included in processing times. This
issue is clari�ed in the relations that are presented
later.

To the best of the authors' knowledge, there is
no paper that addresses SALBP-II with the mentioned
considerations. The most similar study to our work
belongs to Toksar� et al. [15]. They proposed a model
for SALBP-I with the e�ects of learning and linear
deterioration without considering the scheduling of

tasks and setup times. They have also adapted the
COMSOAL approach for solving large-scale assembly
line balancing problems with deterioration tasks and
learning e�ects.

In this paper, we propose a hybrid meta-heuristic
method to solve our NP-hard problem. Our approach
utilizes the Tabu Search (TS) algorithm within the
Variable Neighborhood Search (VNS). VNS is a ro-
bust solution technique that has shown an excellent
performance for solving combinatorial and global op-
timization problems [40]. On the other hand, TS
is an extremely popular method among other meta-
heuristics in �nding good solutions to large-scale prob-
lems. Lapierre et al. [30] presented a tabu search
algorithm and evaluated its performance on the type
I assembly line balancing problem from a real in-
dustrial data set, with 162 tasks and 264 precedence
constraints. Liao and Cheng [41] used the combination
of VNS and TS for minimizing total weighted earliness
and tardiness in a single machine scheduling problem.
They showed that their proposed algorithm has accept-
able performance in solution quality and computation
time in comparison with results obtained from the
literature.

The performance of our proposed algorithm is
examined over benchmark instances that are avail-
able at http://www.assembly-line-balancing.de/. The
obtained results are also compared with a recently
published Di�erential Evolution Algorithm (DEA). It
is noted that DEA has shown superior performance
in comparison with other evolutionary algorithms for
solving SALBP-II [36-37].

The remainder of this paper has the following
structure. Section 2 provides the problem descrip-
tion and the formulation of the model under study.
Section 3 introduces the proposed hybrid algorithm
in detail. Section 4 presents an experimental design
in which the results obtained by the proposed hybrid
algorithm are compared with those obtained by the
di�erential evolution method. Finally, Section 5 is
devoted to conclusions and some directions for future
research.

2. Mathematical modelling of the problem

2.1. SALBP with sequence-independent setup
times and e�ects of deterioration and
learning

In a Simple Assembly Line Balancing Problem
(SALBP), a straight line is assumed, in which speci�c
operations are performed on products. Several tasks
allowed to process successively constitute a worksta-
tion. The maximum time of workstations is de�ned
as Cycle Time (CT). Most existing organizations de-
sire to maximize their production rate and optimize
their assembly lines without adding new workstations.
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Therefore, we prefer to use the assembly line bal-
ancing type II problem in our study, which aims
to minimize the cycle time for a given number of
workstations.

We assume that the processing time of a task is
related to its starting time via a linear function. This
concept, �rst presented by Browne and Yechiali [42], is
known as the deterioration e�ect. By the e�ect of task
deterioration, we mean that any delay in processing
is penalized by incurring extra time for carrying out
the task. For example, a drop in the temperature of
an ingot, while waiting to be processed by a rolling
machine, requires the ingot to be reheated before
rolling, or the time needed to control a �re will increase,
if there is a delay in �re-�ghting activities. The general
deterioration model is pi � p0 + � � STi, where p0
is the common basic processing time, �(� > 0) is
the deterioration rate, which is the growth rate in
the task time per unit delay in its starting time, and
STi is the starting time of task i. In addition, the
log linear curve form of the learning e�ect is utilized.
Therefore, by considering the e�ects of deterioration
and learning simultaneously, the actual processing
time, p̂r, is formulated as follows:

p̂r = [pr + (�� STr)]� r� : (1)

In a problem with n tasks, if task i(i = 1; 2; :::; n)
is assigned to the rth sequence, p̂r is its actual task
time. pr and STr are the basic processing time and
starting time of the task assigned to the rth sequence,
respectively. �(� � 0) is the learning index and is
equal to the (base 2) logarithm of learning rate (i.e.,
log2s) [43]. Since the deterioration e�ect is based on
the starting time of a task, and the learning e�ect is
based on its sequence position, Relation (1) is provided
by combining these two e�ects. De�ning Ĉr�1 as the
completion time of the task scheduled in the (r � 1)th
sequence, and sutr as the setup time of the task in the
rth sequence position, actual processing time, p̂r, can
be formulated as follows:

p̂r =
h
pr + �� (Ĉr�1 + sutr)

i� r� : (2)

Now, we can express Ĉr�1 with the actual times
and setup times of all assigning tasks. The actual
completion time of the task assigned to each position
is stated as:

p̂1 =
h
p1 + �� (Ĉ0 + sut1)

i� 1�

= [p1 + �� sut1]� 1� ;

Ĉ1 = sut1 + p̂1 = sut1 + [p1 + �� sut1]� 1� ;

p̂2 =
h
p2 + �� (Ĉ1 + sut2)

i� 2�

=
�
p2 + ��

�
[p1 + �� sut1]� 1�

+ sut1 + sut2

��
� 2� = (p2 � 2�)

+ (�� p1 � 1� � 2�) + (�2 � sut1 � 1� � 2�)

+ (�� sut1 � 2�) + (�� sut2 � 2�);

Ĉ2 =Ĉ1 + sut2 + p̂2 = [p1 + �� sut1]� 1� + sut1

+ sut2 + (p2 � 2�) + (�� p1 � 1� � 2�)

+ (�2 � sut1 � 1� � 2�) + (�� sut1 � 2�)

+ (�� sut2 � 2�) = (p1 � 1�) + (p2 � 2�)

+ (�� p1 � 1� � 2�) + (�� sut1 � 1�)

+ (�� sut1 � 2�) + (�� sut2 � 2�)

+ (�2 � sut1 � 1� � 2�) + sut1 + sut2;

p̂3 =
h
p3 + �� (Ĉ2 + sut3)

i� 3� =
�
p3 + �

�
��

(p1 � 1�) + (p2 � 2�) + (�� p1 � 1� � 2�)

+ (�� sut1 � 1�) + (�� sut1 � 2�)

+ (�� sut2 � 2�) + (�2 � sut1 � 1� � 2�)

+ sut1 + sut2

�
+ sut3

��
� 3� ;

then:
p̂3 =(p3 � 3�) + (�� p1 � 1� � 3�)

+ (�� p2 � 2� � 3�)

+ (�2 � p1 � 1� � 2� � 3�)

+
�
�+ (sut1 + sut2 + sut3)� 3�

�
+ (�2 � sut1 � 1� � 3�)

+
�
�2 � (sut1 + sut2)� 2� � 3�

�
+ (�3 � sut1 � 1� � 2� � 3�);
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Ĉ3 =Ĉ2 + sut3 + p̂3 = (p1 � 1�)

+ (p2 � 2�) + (p3 � 3�)

+ (�� p1 � 1� � 2�)

+ (�� p1 � 1� � 3�)

+ (�� p2 � 2� � 3�)

+ (�2 � p1 � 1� � 2� � 3�)

+ sut1 + sut2 + sut3

+ (�� sut1 � 1�) + (�� sut1 � 2�)

+ (�� sut2 � 2�) + (�� sut3 � 3�)

+ (�2 � sut1 � 1� � 2�)

+ (�2 � sut1 � 1� � 3�)

+ (�2 � sut2 � 2� � 3�)

+ (�3 � sut1 � 1� � 2� � 3�):

Therefore, continuing this procedure leads us to the
following relation:

p̂r =
��
pr + ��

rX
v=1

sutv
�

+
r�1X
h=1

�
�� (ph + �

�
hX

w=1

sutw)� h��r�1
q=h+1(1 + �� q�)

��
� r� :

(3)

2.2. Mathematical model
Mathematical modeling is a well-known process to
develop and describe a problem using mathematical
concepts and languages. In this subsection, a Mixed
Integer Non-Linear Programming (MINLP) model for
the addressed problem is developed. To support the
presentation of the proposed mathematical model, we
�rst provide a list of notations in Table 1.

In terms of de�ned notations, the SALBP with
sequence-independent setup times and deterioration
and learning e�ects can be formulated as follows:

Objective function:

MinZ = CT: (4)

Subject to:

mX
j=1

MnX
r=1

xijr = 1 (i = 1; :::; n); (5)

Table 1. List of notations.

Notation De�nition

i; k; s Task
j Workstation
m Number of workstations
r Sequence position inside a workstation
n Number of tasks
pi Basic processing time of task i(i = 1; :::; n)
p̂jr Actual 1processing time of task assigned to the rth sequence at workstation j
CT Cycle time
� Deterioration e�ect
� Learning e�ect
P Set of tasks that precedes a task, i.e. set of couples of tasks (i; k)

in which i is the immediate predecessor of k
APi Set of all predecessors of task i including non-immediate predecessors
Mn Maximum number of tasks that can be assigned to any workstation
suti Setup time required for task i
xijr 2 f0; 1g 1 if task i is assigned to rth sequence position at workstation j, 0 otherwise

(i = 1; :::; n; j = 1; :::;m; r = 1; :::;Mn)
yikj 2 f0; 1g 1 if task i is performed immediately before task k at workstation j in the

same or in the next cycle (8j;8(i; l)j(i 6= k))
zij 2 f0; 1g 1 if task i is in the last sequence position of tasks assigned to workstation j (8i; 8j)
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nX
i=1

MnX
r=1

xijr � 1 (j = 1; :::;m); (6)

nX
i=1

xijr � 1 (j = 1; :::;m; r = 1; :::;Mn); (7)

X
i=1

nxij;r+1 �
nX
i=1

xijr � 0

(j = 1; :::;m; r = 1; :::;Mn� 1); (8)

mX
j=1

MnX
r=1

(Mn� (j � 1) + r)� xijr

�
mX
j=1

MnX
r=1

(Mn� (j � 1) + r)� xkjr � 0

(8(i; k) 2 P ); (9)

p̂jr =
nX
i=1

��
(pi + ��

nX
i=1

rX
v=1

suti � xijv)

+
r�1X
h=1

(�� (
nX
�=1

(p� � x�jr) + �

�
nX
i=1

hX
w=1

(suti � xijw))

� h��r�1
q=h+1(1 + �� q�))

�
� r� � xijr

�
(j = 1; :::;m; r = 1; :::;Mn); (10)

MnX
r=1

p̂jr +
nX
i=1

MnX
r=1

(suti � xijr) � CT (j = 1; :::;m);
(11)

xijr + xkj;r+1 � 1 + yikj

(j = 1; :::;m; r = 1; :::;Mn� 1; 8(i; k)j
(i 6= k) ^ (k =2 APi)); (12)

xijr�Xn

k=1
(i6=k)^(k=2APi)

xkj;r+1 � zij

(i=1; :::; n; j = 1; :::;m; r = 1; :::;Mn�1); (13)

zij + xkj1 � 1 + yikj

(j = 1; :::;m;8(i; k)j(i 6= k) ^ (i =2 APk)): (14)

Relation (4) presents the objective function that mini-
mizes the cycle time. Constraint (5) shows that every
task must be assigned to only one sequence in only
one workstation. Constraint (6) ensures that existing
workstations must be occupied with at least one task.
With Constraint (7), in each sequence, inside every
workstation, there will be, at most, one task assigned.
Constraint (8) states that tasks should be assigned
in ascending order of position in the scheduling of
each workstation. Constraint (9) guarantees that the
precedence relations between the tasks are not violated,
regarding the assignment to di�erent workstations and
also the sequence positions inside the same worksta-
tion. Constraint (10) is the actual time of the task as-
signed to the rth sequence at workstation j. Constraint
(11) shows that the sum of actual task times and the
corresponding setup times in each workstation does not
exceed the cycle time, which is going to be minimized.
In other words, the total actual task times assigned
to every workstation, plus the total corresponding
setup times, will be equal to, or less than, cycle time.
Constraint (12) assures that the binary variable, yikj ,
is equal to 1, whenever task i is assigned to sequence
position r, and task k is placed in position r+ 1 in the
scheduling workstation, j. In other words, according
to Relation (12), when task i and task k are placed in
position r and r+ 1 of workstation j, respectively, yikj
must be equal to 1. Constraint (13) guarantees that
the binary variable, zij , is 1 when task i is assigned to
the last position in workstation j, because, in this case,
the summation available in the relation would be equal
to 0 and, consequently, zij must be set to 1. Lastly,
Constraint (14) implies that the variable, yikj , is 1,
whenever task i is placed in the last position (i.e. zij =
1) and task k is assigned to the �rst sequence position
(i.e. xkj1 = 1) in the scheduling workstation, j.

2.3. A numerical example
In this subsection, the proposed MINLP model is
tested using Mansoor 11, which is available in the
SALBP literature. Table 2 provides processing time,
predecessors and randomly generated setup times for
each task. Table 3 demonstrates that considering
3 workstations, no deterioration and learning e�ects
and using the same setup times presented in Table 2,
minimum cycle time for Mansoor 11 is equal to 81.

Then, the problem under study was solved us-
ing the simultaneous e�ects of learning and linear
deterioration. Table 4 shows that, in this case,
cycle time is 81.916 when three workstations exist,
learning takes place by a 70% learning curve, i.e.,
� = log20:7 = �0:515, and the deteriorating e�ect
(�) is 0.15. In Tables 3 and 4, workstation time is
the sum of operation and setup times. Note that we
used the optimization software, LINGO 11.0, to test
our proposed formulation.
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Table 2. Task times, predecessors and setup times for
Mansoor 11.

Task
no.

Task
time

Predecessors Setup
time

1 4 - 2
2 38 - 7
3 45 - 5
4 12 1, 2 2
5 10 2 3
6 8 4 8
7 12 5 8
8 10 6 7
9 2 7 4
10 10 8, 9 3
11 34 3, 11 1

Table 3. Balancing and scheduling Mansoor 11 without
learning and deteriorating e�ects (m = 3).

Workstation
no.

Task
Task time

+
setup time

Workstation
time

1

1 6

782 45
4 14
5 13

2
3 50

767 20
9 6

3

6 16

818 17
10 13
11 35

Table 4. Balancing and scheduling Mansoor 11 with
proposed model with learning and deterioration e�ects
(m = 3, learning e�ect = 70% and deterioration e�ect =
0.15).

Workstation
no.

Task Actual
task time

Workstation
time

1
2 39.050

81.9165 12.150
7 12.716

2

1 4.300

65.1513 32.687
9 5.226
4 9.938

3

6 9.200

66.6368 9.541
10 8.813
11 20.082

Figure 1. Precedence diagram for Mansoor 11 and
scheduling of tasks inside each workstation.

Figure 1 presents the precedence diagram and the
solution obtained for Mansoor 11, where the original
precedence relationships between tasks are represented
by solid arcs, and the work schedules inside three
workstations are shown with discontinuous lines. As is
obvious, the �rst workstation with the largest worksta-
tion time becomes the bottleneck in this assembly line
example, with the e�ects of learning and deterioration
and setup times.

3. The proposed hybrid algorithm

Gutjahr and Nemhauser [44] proved that SALBP is
an NP-hard problem. They showed that ALBP can
be formulated as a shortest path problem. In their
approach, a network of nodes and arcs is represented
in which each path corresponds to a feasible solution,
and each shortest path corresponds to an optimal
solution of SALBP. Since the number of nodes grows
exponentially by increasing the number of tasks, it
is commonly not possible to construct the complete
graph. Therefore, Easton et al. [45] incorporate lower
and upper bounds, as well as dominance rules, to
reduce the size of the graph.

Since ALBP, even as a simple version, falls into
the class of NP-hard optimization problems, more
complicated versions of this problem are also known
to be NP-hard, and a solution methodology should
be used to solve the larger instances in reasonable
computation time. In related literature, e�ective exact
and heuristic/meta-heuristic procedures are available
that solve medium-sized instances in a quality su�cient
for use in real-world situations. In this regard, Scholl
and Becker [11] provide a comprehensive survey of
solution procedures in the SALBP �eld. However,
further algorithmic improvement is necessary for solv-
ing the new problem raised, especially in large-scale
instances. In this section, a hybrid meta-heuristic
algorithm is proposed that employs the tabu search
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within the Variable Neighborhood Search (VNS/TS).
The components of the hybrid VNS/TS algorithm are
stated below.

3.1. Encoding scheme
There are two di�erent representation mechanisms for
the ALBPs in related literature: Task-oriented and
station-oriented representations. In both of them, a
string of integers is assumed with a length equal to the
number of tasks to be proceeded in the assembly line.
Task i in position j of the string, using the task-oriented
representation, will be assigned to a workstation before
the task in position (j + 1) of the string. While, in
the station-oriented scheme, task i will be assigned to
workstation j if the ith location of the string has the
amount of j. Nearchou [37] found the task-oriented
scheme superior after experimentation for the SALBP-
2. Because of some similarities between Nearchou's
problem and our case, we decided to employ a task-
oriented representation within the hybrid VNS/TS
algorithm.

Our proposed solution scheme is represented by
a permutation of tasks, which shows the sequence of
tasks. After determining the number of tasks in each
workstation, the tasks are assigned to the correspond-
ing workstations from the left of the permutation to the
right in order. Figure 2 clearly exhibits an example for
this representation.

3.2. Initial solution
Generating a suitable solution has a signi�cant e�ect
on the quality of solutions and computation time. Due
to the existence of precedence constraints among the
tasks in ALB problems, providing an initial solution in
a random manner may lead us to an infeasible solution.
Checking and eliminating an infeasible permutation of
tasks and substituting them for a new one will be
time-consuming. So, in this paper, a simple method
is used to generate a feasible initial solution that
satis�es the precedence relations. The procedure is as
follows:

Step 1. Sort the tasks based on the number of their
Immediate Predecessors (IPs) in ascending order.

Step 2. Select a task with maximum task time plus
setup time from the ones that have no predecessors
(free tasks whose associated IPs are zero) and assign
it to the �rst empty position of a string with size n.
In case of a tie, choose a task from candidate tasks
randomly.

Figure 2. A solution representation.

Step 3. Delete the selected task in Step 2 from the
set of tasks and update the corresponding IPs for the
remaining tasks.

Step 4. If the set of tasks is not empty, go to Step 2.

Step 5. Return a permutation of n tasks as a feasible
initial solution.

3.3. Variable neighborhood search
The variable neighborhood search, �rst suggested by
Mladenovic and Hansen [46], is a recent meta-heuristic
algorithm based on the principle of systematic change
of neighborhood during the search process. In other
words, it employs two or more neighborhoods in its
structure, instead of one. VNS is a robust, e�ective and
simply structured method for solving combinatorial
optimization problems, such as the traveling salesman
problem [46], the p-median problem [47], the minimum
spanning tree problem [48], and a large number of other
successful applications, which have been reported by
Hansen and Mladenovic [49].

In our algorithm, to prevent costing too much
computational time, three Neighborhood Structures
(NS) are considered to produce new various solutions.
Index l is de�ned to show an NS type. Whenever a
neighborhood is chosen, a random procedure is em-
ployed to generate a solution (which may be infeasible)
from the selected neighborhood structure. Thus, the
neighborhoods, N1(S), N2(S) and N3(S), for each l
are created as follows:

1. N1(S) or swap operator: Swap the positions of two
randomly selected di�erent tasks. Figure 3 shows
the performance of this operator graphically.

2. N2(S) or Multi Swap Operator (MSO): Repeat the
swap operator more than two times, that is, after
exchanging the positions of two di�erent tasks, i1
and i2, choose randomly two other tasks, ii1 and
ii2, and swap them. In this paper, we perform the
swap operator twice in N2(S).

3. N3(S) or Multi Single Point Operator (MSPO):
Regenerate the position of more than two randomly
picked tasks. In this paper, we select two tasks,
i1 and i2 (i1 6= i2), and two sequence positions,
r1 and r2, randomly. Then, task i1 is transferred
at sequence position r1 and task i2 at sequence
position r2. Figure 4 demonstrates the performance
of this operator graphically.

Figure 3. Swap operator in the proposed solution
representation.
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Figure 4. Multi single point operator in the proposed
solution representation.

Algorithm 1. Building precedence matrix M .

3.4. Repairing infeasible solutions
Applying each of the NS types may provide an in-
feasible solution. Therefore, we need a procedure to
repair generated infeasible solutions. For this purpose,
a procedure similar to Nearchou [37] with a few mod-
i�cations is employed. First, precedence relationships
are presented in matrix M in which Mij = 1, if task i
must be �nished immediately before task j, otherwise,
Mij = 0. The complete procedure for constructing the
precedence matrix, M , is shown in Algorithm 1.

Note that indirect predecessors of each task are
also represented in Algorithm 1. In other words, when
task k is an indirect predecessor of task j, the procedure
sets Mkj = 1. Furthermore, the total number of the
predecessors of every task is counted, and is saved in
the corresponding column of the (n+1)th row of matrix
M .

The most important di�erence between our al-
gorithm and Nearchou's method is that in precedence
matrix M , obtained by Algorithm 1, both direct and
indirect predecessors are considered. In order to clarify
the main idea behind Algorithm 1, an illustrative
example is presented. In this regard, a precedence

Figure 5. An example of a precedence network with 5
tasks.

network with �ve tasks is given, as follows, which
represents the relations between tasks. In this regard,
Figure 5 shows a precedence network with 5 tasks.

According to Figure 5, the corresponding 0-1
connection matrix for the directed predecessor is as
follows:

m =

0BBBB@
0 1 0 0 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0

1CCCCA :

Nevertheless, the precedence matrix M obtained by
Algorithm 1 is as follows:

M =

0BBBBBB@
0 1 1 1 1
0 0 1 1 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0
0 1 2 2 4

1CCCCCCA :

where the last row, i.e. 6th row, presents the total
number of the predecessors of each task. This informa-
tion is then used in the repairing procedure illustrated
by Algorithm 2.

Algorithm 2 corrects an infeasible solution, S, and
returns the feasible version of it by string PS. Initially,
PS is empty and, iteratively, each feasible task, a,
is inserted in the next existing position to create a
string of tasks, so that precedence relations are not
violated.

3.5. Solution evaluation mechanism
This mechanism corresponds to the calculation of the
cycle time for each solution. Therefore, tasks have
to be appropriately assigned to the workstations �rst.
After experimenting with some well-known decoding
schemes from the literature, we �nally decided to
adopt the scheme proposed by Kim et al. [51], since
it was found to be superior and more adaptive, in
our case. In this scheme, a feasible solution is put
into an iterative process that solves the corresponding
SALBP-I, with a theoretical cycle time being lessened
until a near-optimum value is achieved. Due to the
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Algorithm 2. Repairing infeasible solution (S).

existence of setup times, deteriorating tasks and the
learning e�ect in our problem, we need to apply some
modi�cations to this procedure while assigning tasks
to workstations. This decoding scheme is expressed as
follows:

Step 1. Set CT �rstly equal to the theoretical
minimum cycle time, i.e., CT= dPn

i=1(pi + suti=m)e,
where dAe denotes the smallest integer value greater
than, or equal to, A [34].

Step 2. Assign as many tasks as possible to the
�rst m � 1 workstations, when the sum of actual
processing times is calculated using Relation (3), and
their respective setup times are not more than CT for
each workstation. Then, assign all the remaining tasks
to the last workstation (m).

Step 3. Calculate workstation time, WTj , for each
workstation, j(j = 1; 2; :::;m), and the potential
workstation time, PWTj (j = 1; 2; :::;m � 1), where
PWTj = WTj+ sum of the actual processing time of
the �rst task in workstation (j+1) and its correspond-
ing setup time.

Step 4. Set CTw = MaxfWT1;WT2; :::;WTmg and
CT = Min fPWT1;PWT2; ::::;PWTm�1g.
Step 5. If (CTw > CT), then go to Step 2.

Step 6. Return CTw as the minimum value of the
cycle time and stop.

It is noteworthy that the initial CT is obtained in
Step 1. Then, the value of CT is updated in Step 4.

Therefore, after Step 5, if we return to Step 2, the
assignment of tasks to the workstations is undertaken
based on the new CT.

3.6. Tabu search
Tabu Search (TS) is a decent meta-heuristic algorithm
originally introduced by Glover [52], which avoids the
trap of local optimum by allowing a non-improving
move. TS has frequently been used to �nd good so-
lutions to large-sized combinatorial problems in many
industrial applications. TS starts from an initial solu-
tion and moves to a better solution in its neighborhood
through the search space, until a speci�c number of
iterations has been completed with no improvement
in the best solution found so far. To avoid cycling
back to previously visited solutions and trapping them
a local optimum, a Tabu List (TL) is used to record
the recent moves. The length of the tabu list is one of
the most signi�cant parameters in a TS algorithm, and
is required to be determined accurately. In this paper,
we apply TS in combination with VNS for solving our
problem. In other words, TS is employed in each
type of NS of VNS algorithm to improve the search
process.

The proposed hybrid algorithm structure, with all
its aforementioned features, is designed as illustrated in
Algorithm 3.

4. Experimental design and discussion

In this section, we are going to examine the perfor-
mance of the VNS/TS hybrid algorithm over standard
sets of benchmark instances taken from the literature.
The e�ciency of the proposed algorithm is compared
with the Di�erential Evolution Algorithm (DEA) of
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Algorithm 3. Main body of hybrid algorithm.

Nearchou [37], which was originally used for solving
SALBP-II.

All tests are implemented in MATLAB 7.9 and
run on a personal computer with 2.10 GHz Intel Core
2 Due CPU and 3 GB of RAM memory, under a
Microsoft Windows XP environment.

4.1. Data settings
The required data for our problem includes: the num-
ber of tasks, the number of workstations, precedence
network, processing times, deterioration e�ect, learning
e�ect and setup times. The basic processing times and
the precedence constraints for all instances are available
in the assembly line optimization research homepage
(http://www.assembly-line-balancing.de). We solve
the problems for two given numbers of workstations
from a set of f3; 4; 6g. The deterioration e�ect is set
at 0.10 and 0.15 and learning rates are chosen from
the set of f60%; 70%; 80%g. The setup times are also
uniformly distributed from 1 to the mean of the basic
processing times.

4.2. Evaluation metrics
After computing the objective value (cycle time) for
each instance using the algorithms, the Relative Per-
centage Dviation (RPD), in percentages, is calculated

by the following relation [53]:

RPD(%) =
Algorithmsol �Minsol

Minsol
� 100; (15)

where AlgorithmSol is the objective value of each
algorithm for a given instance, and MinSol is the best
solution obtained for each instance by any of two
algorithms. An average RPD equal to 3%, generated
by a speci�c algorithm, means that this algorithm is
3% over the best obtained solution, on average. As is
obvious, lower RPD values are preferred.

4.3. Parameters tuning
It is clear that the various levels of the parameters
a�ect the quality of the solutions obtained by a hy-
brid algorithm. Selecting the best combination of
parameters can intensify the search process and prevent
the neighborhood search from being trapped in local
optimum. Thus, we have applied parameter tuning
for the maximum number of neighborhood searches
for each solution (Max NS) and the Length of the
Tabu List (LTL). In this study, trials are performed
considering three di�erent sizes of instance: small,
medium, and large. Table 5 shows the factor levels
for each type of instance. In order to avoid over-�tting
in the computational results, the various instances are



N. Hamta et al./Scientia Iranica, Transactions E: Industrial Engineering 21 (2014) 963{979 973

Table 5. Factor levels for di�erent types of instances.

Instances Number of tasks Max NS levels LTL levels

Small Lower than 20 20, 30, 40 and 50 5, 7 and 10

Medium Between 20 and 50 30, 50, 70 and 100 7, 10 and 12

Large Greater than 50 50, 100, 200 and 300 10, 15 and 20

Table 6. Two-way ANOVA results for RPD.

ANOVA table for medium size instances

Source DF Sum of squares Mean squares F P-value

Max NS 3 0. 9919 0.3306 0.99 0.459

LTL 2 0.4879 0.2439 0.73 0.520

Max NS * LTL 6 2.0053 0.3342 1.49 0.200

Error 48 10.7372 0.2237

Total 59 14.2222

ANOVA table for large size instances

Source DF Sum of squares Mean squares F P-value

Max NS 3 0.1246 0.0415 0.72 0.575

LTL 2 0.2199 0.1100 1.91 0.228

Max NS * LTL 6 0.3457 0.0576 0.52 0.789

Error 48 5.2954 0.1103

Total 59 5.9856

Figure 6. Average running times (in CPU seconds) for two factors and three sizes of instances.

employed for tuning the parameters and evaluating the
proposed algorithm.

Since there are two factors to be tuned, we use
the two-way analysis of variance (ANOVA) technique
to analyze the obtained results. It is noteworthy that
to employ ANOVA, three main hypotheses, namely,
normality, homogeneity of variance and independence
of residuals, must be checked. We performed that,
and found no bias for questioning the validity of the
experiment. All instances are solved by the VNS/TS
algorithm 5 times by 3 � 4 di�erent combinations.
For small size instances, the algorithm leads to near-

optimal solutions, with an RPD of 0.0%. So, it is not
necessary to perform an ANOVA test for this size of
instance, and the best levels of factors are selected on
the basis of the least average running time. Table 6
summarizes the ANOVA results for medium- and large-
sized instances.

As reported in Table 6, there is no signi�cant
di�erence between the levels of factors, because the
p-values are greater than �-level when the alpha is
set at 0.05 (or even 0.1). Therefore, it is just only
possible to select better levels of each factor based on
lower average running times. Figure 6 illustrates the
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Table 7. Average relative percentage deviation (RPD) for two algorithms with deterioration e�ect = 0:10.

Algorithm

Problem
name

Problem
size (n)

Number of
workstations

(m)

Learning rate
= 60%

Learning rate
= 70%

Learning rate
= 80%

VNS/TS DEA VNS/TS DEA VNS/TS DEA

MITCHELL 21
3 0.000 0.000 0.000 0.000 0.000 2.998
4 0.328 0.437 0.000 0.000 0.000 0.000
5 0.257 0.318 0.026 0.069 0.040 0.112

ROSZIEG 25
4 1.997 4.980 0.173 0.777 0.601 1.234
5 0.577 4.362 0.069 4.158 0.070 4.006
6 0.695 1.089 0.518 1.619 0.118 2.784

HESKIA 28
4 0.034 5.699 0.213 1.335 0.553 1.940
5 0.041 2.231 1.160 3.008 1.587 2.894
6 0.125 3.279 1.492 3.442 1.403 3.882

LUTZ1 32
4 0.781 1.017 0.000 0.281 0.830 2.208
5 0.000 1.703 1.278 3.467 0.924 1.917
6 0.020 1.221 1.732 2.762 0.871 1.721

GUNTHER 35
4 0.817 2.570 0.467 1.281 0.790 2.381
5 0.450 1.854 0.021 1.059 0.851 1.262
6 0.372 1.592 0.201 2.206 0.692 2.452

KILBRIDGE 45
4 0.899 3.292 0.674 1.452 1.278 3.058
5 0.473 4.561 0.577 1.593 1.120 4.042
6 0.312 1.883 0.662 3.789 0.717 3.852

WARNECKE 58
4 1.269 6.926 0.222 1.023 0.000 0.043
5 1.293 3.458 0.469 1.587 0.019 0.693
6 1.002 3.674 0.451 3.313 0.022 0.283

TONG 70
4 1.114 2.903 1.002 3.902 1.583 3.639
5 1.231 3.308 1.023 3.409 0.941 2.695
6 1.209 3.225 0.937 3.741 0.924 3.343

WEE-MAG 75
4 0.533 2.262 0.339 1.002 0.060 0.926
5 0.398 2.192 0.609 1.424 0.248 1.409
6 0.314 1.809 1.394 7.673 0.809 3.595

LUTZ2 89
4 0.611 2.043 0.328 1.329 0.692 1.655
5 0.548 2.094 0.481 1.835 0.237 1.995
6 0.211 1.516 0.574 1.793 0.060 1.444

ARCUS 111
4 0.783 2.011 0.323 2.437 0.077 1.629
5 0.678 2.092 0.442 1.935 0.651 2.516
6 1.001 2.990 0.554 2.965 0.412 2.120

Average 0.617 2.563 0.558 2.172 0.581 2.143

mean running times (in CPU seconds) spent for three
prede�ned sizes of instance. The results display that
there is a signi�cant di�erence in computational time
between various levels of the Max NS factor for each
size of instance and this factor has a great e�ect on the
running time. Thus, in order to decrease the running
time, it is helpful to choose the lowest value for Max NS
in each group of instances. On the other hand, selecting
the better level of the LTL factor in each category
of instances pertains to the decision maker, because
results indicate that this factor has no major in
uence
on the RPD values and running times.

4.4. Experimental results
In this subsection, the e�ciency and e�ectiveness of our
proposed algorithm are evaluated by setting various
rates of deterioration and learning. The obtained
results are in terms of cycle time as the objective
function. As stated before, we compare the proposed
VNS/TS with the di�erential evolution algorithm. For
evaluating the performance of these two methods, the
RPD measure is used. Tables 7 and 8 show the results
of experiments for two deterioration rates (0.10 and
0.15), each one grouped by n, m and learning rate.
Note that each instance is solved using �ve di�erent
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Table 8. Average relative percentage deviation (RPD) for two algorithms with deterioration e�ect = 0.15.

Algorithm

Problem
name

Problem
size (n)

Number of
workstations

(m)

Learning rate
= 60%

Learning rate
= 70%

Learning rate
= 80%

VNS/TS DEA VNS/TS DEA VNS/TS DEA

MITCHELL 21
3 0.000 0.000 0.450 2.439 0.209 0.651
4 0.532 0.532 0.000 0.000 0.855 1.139
5 0.239 0.381 0.001 0.210 0.682 0.921

ROSZIEG 25
4 1.257 6.267 1.187 2.895 0.932 1.985
5 1.230 3.118 0.038 8.554 0.050 5.235
6 1.012 2.691 0.192 1.833 0.219 1.128

HESKIA 28
4 0.154 5.808 0.636 3.103 1.134 1.954
5 0.807 3.675 0.239 1.570 1.525 4.321
6 0.932 2.741 0.478 1.846 1.461 4.232

LUTZ1 32
4 1.867 3.197 0.928 1.436 0.126 1.889
5 0.737 3.131 0.691 1.345 0.000 0.602
6 0.561 2.451 0.403 2.019 0.390 0.815

GUNTHER 35
4 1.914 6.128 1.353 2.775 0.679 2.636
5 0.435 2.755 0.000 1.609 0.365 1.374
6 0.598 1.862 0.327 1.968 0.421 1.681

KILBRIDGE 45
4 1.790 4.335 0.244 1.443 1.605 3.980
5 0.519 3.761 0.291 1.763 0.451 2.091
6 0.478 3.469 1.163 3.547 0.020 1.839

WARNECKE 58
4 1.122 3.097 0.000 0.070 0.000 0.114
5 0.581 2.341 0.345 1.391 0.230 1.094
6 0.386 1.629 0.311 2.166 0.547 4.418

multirow3*TONG
70

4 0.109 1.691 0.491 1.091 0.901 2.813
5 0.611 2.918 0.386 1.901 0.178 1.912
6 0.617 1.561 0.471 1.871 0.382 1.832

WEE-MAG 75
4 1.539 6.397 0.650 1.387 0.697 2.028
5 1.297 3.910 0.494 2.103 0.450 2.901
6 1.749 4.609 0.417 2.635 0.635 6.040

LUTZ2 89
4 0.349 1.173 0.366 2.682 0.340 4.097
5 0.591 1.091 0.671 2.190 0.492 1.671
6 0.467 1.962 0. 841 4.364 1.752 6.574

ARCUS 111
4 0.316 3.261 0.617 2.125 0.603 3.729
5 0.410 2.915 0.312 2.461 0.495 2.853
6 0.084 2.294 0.301 3.409 0.193 2.055

Average 0.766 2.944 0.452 2.188 0.576 2.503

seeds and the average solution is considered. As can
be seen, our hybrid VNS/TS algorithm provides better
results than DEA. In order to analyze the results
more precisely and to verify which algorithm is better,
statistically, we carried out an ANOVA test, where
two algorithms and RPD values were considered as the
factor and response variables, respectively. The means

plot and LSD intervals (at 95% con�dence level) are
shown in Figures 7 and 8 for two algorithms. As can
be seen, there is a clear signi�cant di�erence between
the results of the two algorithms, and our proposed
VNS/TS shows statistically better performance than
DEA for learning rate 2 f60%; 70%; 80%g and dete-
rioration e�ect 2 f0:10; 0:15g. We also evaluated the
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Figure 7. Plots of RPD versus learning rates for the type of algorithm factor grouped by deterioration e�ect.

Figure 8. Plots of RPD versus number of tasks for the type of algorithm grouped by learning and deterioration e�ects.

e�ect of a di�erent number of tasks on the performance
of the algorithms (Figure 8). As shown, VNS/TS works
better than DEA in all cases.

5. Conclusions and future study

In the literature of the assembly line balancing prob-
lem, most studies have assumed that the task times are

independent of realistic e�ects, such as the learning
of worker(s) for repetition tasks, and deterioration.
However in many real-world environments, the task
processing times are a function of their starting times
due to the deterioration e�ect. On the other hand,
workstation e�ciency improves continuously because
of repeating the same activities by worker(s) or ma-
chine(s). Hence, in order to re
ect the industrial
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situation adequately, this paper investigates the si-
multaneous e�ects of learning and linear deterioration
on the simple assembly line balancing and scheduling
problem. Furthermore, we suppose there is a sequence-
independent setup time relating to each task, which
corresponds only to the task to be performed. A Mixed
Integer Non-Linear Programming (MINLP) model was
developed to minimize the cycle time for a pre-de�ned
number of workstations. We also proposed a hybrid
meta-heuristic algorithm, called VNS/TS, comprising
two components: the Variable Neighborhood Search
(VNS) and the Tabu Search (TS) in which TS was
employed within de�ned neighborhood structures. Fi-
nally, the performance of the VNS/TS algorithm was
evaluated over a standard set of benchmark instances
taken from the literature. The obtained results were
compared with a Di�erential Evolution Algorithm
(DEA). The experimental results demonstrate that our
algorithm performs superior to DEA and obtains better
results in terms of solution quality.

In order to enrich the current work, other as-
sumptions, such as U -shaped, two-sided lines, parallel
stations and equipment selection, can be considered
in the assembly line balancing and scheduling prob-
lem. Addressing the sequence-dependent setup time
between tasks, and developing a Mixed Integer Linear
Programming (MILP) model would be interesting fu-
ture research lines. On the other hand, application of
an exact solution technique (e.g., branch and bound
method) or other e�cient meta-heuristic algorithms to
solve relatively large-scale instances is a challenging
area for future study.
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