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1. Introduction

Abstract. According to dynamic core hypothesis, integration and differentiation are main
properties of consciousness. Hence, we expected that the consciousness neuronal correlate
covers these properties in structural level. These properties could be captured in small-
worldness properties, i.e. high clustering coefficient and low path-length. Thalamocortical
(TC) loop and cortex are two main candidates for Neural Correlates of Consciousness
(NCC). We studied small-worldness in these systems. For this purpose, we calculated
clustering coeflicients, characteristic path lengths and their robustness against lesions. We
simulated lesions in two ways: eliminating connections, and deleting nodes. We used
anatomical connections of TC and cortex of macaque from the CoCoMac neuroinformatic
database. Our results show that: 1) Lesions causes an increase in path length and decrease
in clustering coefficient which cause the destruction of the integration and segregation
capabilities of brain network; 2) Deleting the connections is more destructive than deleting
the nodes; 3) During high levels of lesions, the thalamo-cortical connections are more
important than cortico-cortical connections in the sense of clustering coefficient. In terms of
path-length, during high levels of nodes’ lesions, the thalamo-cortical connections are more
important than cortico-cortical connections, while during edges’ lesions cortico-cortical
connections are more important than thalamo-cortical connections
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networks is the simultaneous occurrence of high clus-
tering coefficient and low path length. This property

The brain contains a large number of connected neu-
rons with specific functions. As a result of sophisticated
interaction of these neurons, high level phenomena,
such as cognition, emerge. These characteristics are
enough to consider the brain a wonderful complex
network [1].

One of the key features in complex networks is
their connectional topology, which led to the introduc-
tion of the concept of small-worldness by Watts and
Strogatz [2]. After their pioneer work, others showed
that many complex social and biological networks are
small-world [3-5]. The main feature of small-world
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implies that small-world networks are segregated and
integrated. In the brain, segregation is the ability to
specialize processing in interconnected groups of brain
regions, and one good measure for segregation is the
clustering coefficient. Integration is the ability to unite
specialized information from different brain regions,
and one good measure for this concept is characteristic
path length. Shorter paths show a stronger potential
for integration.

According to the Dynamic Core Hypothesis
(DCH), since conscious experiences are segregated and,
at the same time, differentiated, their neural correlates
should also have these characteristics at a structural
level. These two properties could be captured based on
small-world properties, i.e. high clustering coefficient
and low path-length [6,7]. Therefore, the importance
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of evaluating small-worldness in the Neural Correlates
of Consciousness (NCC) is obvious [8].

There are two main candidates for NCC:
Thalamo-Cortical (TC) loop, and the cortex. Sporns
and Zwi studied the small-worldness of the cortex [9].
In the current study, we used a network theory
approach to study small-worldness in the thalamo-
cortical loop, including the robustness of small-world
characteristics in this system and its subset, cortex.
For this purpose, we calculated clustering coefficients,
characteristic path lengths and their robustness against
lesions. We simulated lesions in two ways: eliminating
connections in the network (which corresponds to
lesions of the white matter), and deleting nodes (which
corresponds to lesions of different brain regions) [10].
Studying robustness against lesions is helpful in under-
standing consciousness disorders in some diseases like
Alzheimers (which is probably analogous to brain nodal
lesions) and autism (which is claimed to be analogous
to connection lesions) [11-13].

2. Methods

2.1. Dataset

In this study, we used anatomical connections of the
TC and cortex of macaque, which is part of the
network constructed by Modha and Singh [14] from
the CoCoMac neuroinformatic database [15]. This
included 383 regions of the cortex, thalamus, and basal
ganglia. They used the connectivity information of
the whole brain, but we focused on TC and cortex
connections. For this purpose, we selected connections
between the thalamus and the neocortex [14]. It
means that those edges are selected whose source and
destination lie in the thalamus or neocortex. Hence, a
253%253 binary connection matrix (with 253 nodes and
3644 edges, including cortico cortical, thalamo-cortical,
cortico-thalamic and thalamo-thalamic connections) is
constructed. The nodes with indices 1 to 73 represent
thalamus regions (with 10 links as thalamo-thalamic
connections, and 1181 thalamo-cortical and cortico-
thalamic connections), and nodes with indices 74 to
253 represent cortex regions (with 2453 connection as
cortico-cortical connections). The details of regions
used in this study are presented in [16].

2.2. Leston simulation

In this study, we make two types of lesion in the
network: lesions to the nodes by eliminating nodes
randomly, and lesions to the edges by deleting edges
randomly. For the TC loop, we also consider two
different cases: inserting lesions into whole TC el-
ements (nodes or edges) or confining the lesions to
the cortex part of the TC and then assessing the TC
loop. We made different levels of lesions by deleting
a different number of edges or nodes. The range

of deletions includes 10% to 90% destruction of the
corresponding network. It is worth noting that each of
the experiments have been done 100 times for different
randomly destructed nodes or edges. Also, in order to
have a proper evaluation, all simulations are also done
for random networks with the same size as the original
network.

2.3. Network analysis

High “clustering coefficient” (similar to regular net-
works) and low “characteristic path length” (similar
to random networks) are two key features of small-
world networks. These two attributes give small-
world networks some advantages in the processing and
transmission of information [2].

A node’s cluster index, ~(v), is the ratio of
existing connections among the b, neighbors to the
maximal possible number of such connections, (b2 —b,).
The average of all node cluster indices is called the
clustering coeflicient, «, of the graph:

1= 1 Y0 = 1 Y (1)

where ¢, is the number of triangles around node v, and
n is the number of nodes.

A “path” is defined as an ordered succession of
distinct edges, which link source node j to target node
1, and the number of distinct directed edges in a path
is called the “path length”. The “characteristic path
length” (A) of a graph is the average length of the
shortest path [17]:
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where L; is the average shortest path length between
node ¢ and all other nodes, and d;; is the shortest path
length between nodes ¢ and j.

In this paper, we used Matlab 7.8 for network
analysis, and for calculating the clustering coefficient
and path length, Brain Connectivity Toolbox (BCT) is
used [18].

3. Results

In order to evaluate the small-worldness of networks,
clustering coefficient (T') and characteristic path length
(A) are used [2]. We computed these characteristics
for the TC loop (Table 1). The corresponding values
for random and lattice (regular) networks are also
presented in this table. These results show that since
the TC loop gamma and lambda are between the
corresponding values in random and lattice networks,
TC is a small-world network. In Figure 1, the effects of
node lesions on the clustering coeflicient in TC loop (a)
and cortex (b) are illustrated with their error bars. It
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Figure 1. The effect of node lesions on clustering
coefficient in T'C loop (a) and cortex (b). In (a), the dots
show the results of confining the lesions to the cortex, the
circles show the results for a general condition, in which
lesions are spread throughout the whole TC loop, and
stars show the results of a random network with the same
size as the original network.

Table 1. Characteristic path length and clustering
coefficient for TC loop and its corresponding random and
lattice networks.

Random network TC loop Lattice network
r 2.349 2.497 11.875
A 0.0578 0.319 0.708

is obvious that lesions cause a slight decay in gamma
pattern in the TC loop. In the cortex, however, the
decay is remarkable for higher levels of lesion.

Figure 2 shows the effect of node lesions on the
characteristic path-length (lambda) in TC loop (a) and
cortex (b). It is observed that lesions in TC cause a
little rise in the lambda. However, in the cortex, as
the lesion amount exceeds 140 nodes, lambda drops
suddenly. It seems that deleting nodes (which also
clears its connections) converts the network to a smaller
one, but, as the characteristics of the new network are
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Figure 2. The effect of node lesions on characteristic
path length in TC loop (a) and cortex (b). In (a), the dots
show the results of confining the lesions to the cortex, the
circles show the results for a general condition, in which
lesions are spread throughout the whole TC loop, and
stars show the results of a random network with the same
size as the original network.

improved, we can conclude that this new network has
some improved features also.

In Figure 3, the effect of edge lesions on gamma in
TC loop (a) and cortex (b) is illustrated. It is obvious
that the lesion causes a drop in gamma and, as the
lesion percentage increases, gamma decreases further,
in both the TC and cortex. As this figure shows, for
higher levels of lesions, narrowing the lesion of the TC
loop to the cortex has less effect on gamma than when
the lesions are applied randomly on the whole TC loop.

Figure 4 shows the effect of edge lesions on
lambda in TC loop (a) and cortex (b). The lesion
causes a rise in lambda and, as the lesion percentage
increases, lambda increases further, in both the TC and
cortex.

4. Discussion

In this work, we first studied the small-worldness of
the TC loop as one of the main suggested neural
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Figure 3. The effect of edge lesions on clustering
coefficient in TC loop (a) and cortex (b). In (a), the dots
show the results of confining the lesions to the cortex, the
circles show the results for a general condition, in which
lesions are spread throughout the whole TC loop, and
stars show the results of a random network with the same
size as the original network.

correlates of consciousness. In previous studies, the
small-worldness of the cortex, as the other strong
candidate neural correlate of consciousness, has been
shown [9,16]. The results of the current study show
that the TC is also small-world (see Table 1).

Then, the robustness of the TC loop and cortex
(as a subsystem of the TC loop) against lesions was
studied. For this purpose, we simulated lesions in two
ways: Deleting the edges randomly and deleting the
nodes randomly. Our results suggest that:

- Deleting nodes leads to a decrease in clustering coef-
ficient, both in the TC loop and cortex. However,
this decrement is smaller than when the lesion is
applied to the edges (see Figures 1 and 3).

- Deleting nodes increases path length slightly, both
in the TC loop and cortex; this is in accordance
with [19]. This increment is smaller than when the
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Figure 4. The effect of edge lesions on characteristic path

length in TC loop (a) and cortex (b). In (a), the dots
show the results of confining the lesions to the cortex, the
circles show the results for a general condition, in which
lesions are spread throughout the whole TC loop, and

stars show the results of a random network with the same
size as the original network.

lesion is applied to the edges. It means that there
are some nodes in the brain network which are not
involved in shortcuts and, hence, their deletion does
not affect path length remarkably (see Figures 2
and 4).

When the edge lesions in the TC are severe and
confined to the cortex, the decrease in clustering
coefficient is less than when the lesions are spread
through the whole network. This shows that the
connections between the cortex and thalamus are
more effective on the clustering coefficient than the
connections between different cortical regions (see
Figure 3(a)). It seems that the cortico-thalamic
connections play a major role in brain network
segregation. In other words, structural segregation is
not restricted to cortical regions and the important
role of the thalamus may not be ignored in this
regard.
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Table 2. The slope of variations in linear parts of the A
and T' in the TC and cortex, and their corresponding
random networks, while producing lesions in nodes and
edges. Standard deviations of slopes are shown in
parentheses.

Lesioning nodes Lesioning edges
Slope (SD) Slope (SD)

I're -0.06 (0.0028) -0.24 (0.005)

-0.0028(0.0028) -0.03 (0.0008)

Network

Frandolnized TC

Teortex -0.027 (0.006) -0.12 (0.005)
Tandomized cortex 0 (0.002) 0 (0.001)
At 0.23 (0.01) 0.7 (0.013)
Avandomized TC 0.63 (0.02) 1.2 (0.06)
Acortex 0.25 (0.01) 2.6 (0.03)
Arandomized cortex 0.58 (0.033) 3.9 (0.037)

In an overview, the main points of this study are:
1) Clustering coefficient and characteristic path length
are fairly robust against the destruction of network
nodes. In contrast, deleting the connections is more
destructive than removal of the nodes (Table 2). In
this table, in order to cancel the default slope because
of node or edge removal, we calculated the slopes for
the random network in each of the above cases. All
the slopes are calculated by normalizing a number of
compartments, which are removed by their maximum
values, because the numbers of nodes and edges are
not equal. This shows that lesions on connections in
the brain is more dangerous than lesions on the brain
local regions; 2) During severe lesions to the nodes,
the thalamo-cortical connections are more important
than cortico-cortical connections in the sense of small-
worldness (integration and segregation), because when
the TC lesions are restricted to the cortex, the defec-
tions to path length and clustering coefficient are larger
and, when the lesion is applied to edges, the opposite
effect is seen. It seems that, in terms of clustering
coefficient, thalamo-cortico-thalamic connections are
more important than cortico-cortical connections in
producing a robust small-world network in the brain,
which could be considered a strong candidate for
NCC. Surely, more studies from multiple neuroscience
methodologies are needed to infer precisely in this
regard [20].
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