
Scientia Iranica D (2014) 21(3), 861{869

Sharif University of Technology
Scientia Iranica

Transactions D: Computer Science & Engineering and Electrical Engineering
www.scientiairanica.com

Solition solutions of a few nonlinear wave equations in
engineering sciences

A.J. Mohamad Jawada, S. Kumarb and A. Biswasc;�

a. Department of Computer Engineering Techniques Al-Ra�dian College, 00964, Baghdad, Iraq.
b. Department of Applied Sciences, Bahra Faculty of Engineering, Patiala, 147 001, Punjab, India.
c. Department of Mathematical Sciences, Delaware State University Dover, DE, 19901-2277, USA.

Received 13 August 2012; received in revised form 4 December 2012; accepted 9 September 2013

KEYWORDS
Nonlinear PDEs;
Exact solutions;
Nonlinear waves;
Gardner equation;
Sine-cosine function
method;
The Schr�odinger-
Hirota equation;
Perturbed burgers
equation;
General Burgers-
Fisher equation.

Abstract. This paper obtains the soliton and other solutions to a few nonlinear wave
equations that arise on a daily basis in various engineering disciplines and other �elds.
The sine-cosine method is adopted to extract these solutions. The ansatz method is also
implemented to obtain a singular soliton solution to the Schr�odinger-Hirota equation that
is studied in electrical engineering in the context of nonlinear �ber optics. In this context,
both Kerr law and power law nonlinearity are going to be addressed. There are several
constraint conditions that will be listed in order for the solutions to exist.
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1. Introduction

Nonlinear wave equations play a very important role
in several engineering disciplines and dictate various
features in daily lives [1-27]. These equations form
the essential fabric in engineering disciplines. For
example, the dynamics of shallow water waves, deep
water waves, pulse propagation through �ber-optic
transmission cables and several other features are all
governed by nonlinear wave equations. Therefore, it is
imperative to take a further look into these equations
from a deeper perspective.

The integrability aspect of these equations is con-
sequently a major issue that reveals a lot of concealed
features that cannot be otherwise displayed. There
are several tools of integrability that become handy in
order for these wave equations to be integrable. This
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paper will apply two such tools that will lead to the
extraction of solitons and other solutions. They are
the sine-cosine method and the ansatz method.

In recent years, quite a few methods for obtaining
explicit traveling and solitary wave solutions of nonlin-
ear evolution equations have been proposed. A variety
of powerful methods, such as the tanhsech method [1-
3], the extended tanh method [4-6], the hyperbolic
function method [7,8], the Jacobi elliptic function
expansion method [9], the F-expansion method [10],
the �rst integral method [11,12], and the sine-cosine
method [13,14], has been used to solve di�erent types
of nonlinear systems of PDEs.

The aim of this paper is to �nd new exact solu-
tions of the (2 + 1)-dimensional nonlinear Schr�odinger
equation, Schr�odinger-Hirota equation, Gardner equa-
tion, modi�ed KdV equation, perturbed Burgers equa-
tion, general Burgers-Fisher equation, and the K(n +
1; n + 1) equation by the sine-cosine method. The
ansatz method is also implemented to obtain a sin-
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gular soliton solution to the Schr�odinger-Hirota equa-
tion.

2. The sine-cosine function method

Consider the nonlinear partial di�erential equation in
the form:

F (u; ut; ux; uy; utt; uxx; uyy; uxy; :::) = 0; (1)

where u(x; y; t) is a traveling wave solution of nonlinear
partial di�erential equation (Eq. (1)). We use the
transformations:

u(x; y; t) = f(�); (2)

where � = x + y � �t. This enables us to use the
following changes:

@
@t

(:) = �� d
d�

(:);
@
@x

(:) =
d
d�

(:);

@
@y

(:) =
d
d�

(:): (3)

We use Eq. (3) to transfer the nonlinear partial
di�erential equation (Eq. (1)) to nonlinear Ordinary
Di�erential Equation (ODE):

Q(f; f 0; f 00; f 000; :::) = 0; (4)

where (0) denotes the derivative, with respect to �.
The ordinary di�erential equation (Eq. (4)) is then
integrated as long as all terms contain derivatives,
where we neglect the integration constants. The
solutions of many nonlinear equations can be expressed
in the form [15,16]:

f(�) = � sin� (��); j�j � �
2�
; (5)

or:

f(�) = � cos� (��); j�j � �
2�
; (6)

where � and � are parameters to be determined,
and � and c are the wave number and wave speed,
respectively [14]. We substitute Eq. (5) or (6) and their
derivatives:

f 0(�) = ��� sin��1(��) cos(��)

f 00(�) = ��(� � 1)�2 sin��2(��)� ��2�2 sin�(��);
(7)

or:

f 0(�) = ���� cos��1(��) sin(��)

f 00(�) =��(� � 1)�2 cos��2(��)

� ��2�2 cos�(��); (8)

and so on into reduced Eq. (4). We balance the
terms of the sine functions when Eq. (5) and its
derivatives are used, or balance the terms of the cosine
functions when Eq. (6) and its derivatives are used, and
solve the resulting system of algebraic equations using
computerized symbolic packages. We next collect all
terms with the same power in sink(��) or cosk (��), set
to zero their coe�cients to get a system of algebraic
equations among the unknown's, �; � and � and solve
the subsequent system.

3. Applications

3.1. Schr�odinger equation
Let us �rst consider the (2 + 1)-dimensional nonlinear
Schr�odinger equation [17] that reads:

�qt + aqxx � bqyy + cjqj2q = 0; (9)

where a; b and c are nonzero constants. Firstly, we
introduce the transformations:

q(x; y; t) = e��u(�);

�(x; y; t) = �x+ !y + �t; (10)

�(x; y; t) = k(x+ ly � �t);
where �; !; �; k; l and � are arbitrary real constants.
Substituting Eq. (9) into Eq. (9), we obtain that � =
2(a�� b!l) and u(�) satisfy the ODE:

�(� + a�2 � b!2)u+ (a� bl2)k2u00 + cu3 = 0; (11)

where (0) denotes the derivative with respect to �. We
rewrite this second-order ODE as follows:

u00 + k1u3 � k2u = 0; (12)

where k1 = c
(a�bl2)k2 and k2 = �+a�2�b!2

(a�bl2)k2 .
Seeking solutions of Eq. (6), we have:

��(� � 1)�2 cos��2(��)� ��2�2 cos�(��)

+ k1�3 cos3� (��)� k2� cos� (��) = 0: (13)

Equating the exponents and the coe�cients of each pair
of the cosine functions, we �nd the following algebraic
system:

� � 2 = 3�; ��(� � 1)�2 + k1�3 = 0;

���2�2 � k2� = 0: (14)

By solving the algebraic system (Eqs. (14)), we get:

� = �1; � = ��pk2; � = �
r

2k2

k1
: (15)
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Then, by substituting Eq. (15) into Eq. (6), the exact
solution of Eq. [12] can be written in the form:

u(�) = �
r

2k2

k1
sec(��pk2�)

= �
r

2k2

k1
sech(

p
k2�): (16)

Therefore, the solution of Eq. (9) is given as:

q(x; y; t) =�
r

2
(� + a�2 � b!2)

c

� sech
�s

� + a�2 � b!2

(a� bl2)k2 k(x+ ly

� 2(a�� b!l)t)
�
e�(�x+!y+�t): (17)

For � = ! = � = l = a = c = 1; b = :5, Eq. (17)
reduces to:

q(x; y; t) = �p3sech
�p

3(x+ y � t)� e�(x+y+t): (18)

3.2. Schr�odinger-Hirota equation
Let us consider the nonlinear Schr�odinger-Hirota equa-
tion, which governs the propagation of optical solitons
in a dispersive optical �ber:

�qt +
1
2
qxx + jqj2q + ��qxxx = 0: (19)

Biswas [18] studied this equation using the ansatz
method for a bright and dark 1-soliton solution. The
power law nonlinearity was assumed. The equation was
solved also using the tanh method.

We introduce the transformation:

q = u(�)e��; � = �x+ !t+ �0;

� = k0(x� 2�t+ �); (20)

where �; !; �0; k0 and � are real constants. Substi-
tuting Eq.(20) into Eq. (19), we obtain that � = � 1

3�
and u(�) satisfy the ODE:

�
�

5
54�2 + !

�
u+

3
2
k2

0u
00 + u3 = 0; (21)

where (0) denotes the derivative with respect to �. We
rewrite Eq. (21) into the following form:

u00 + k1u3 � k2u = 0; (22)

where k1 = 2
3k2

0
and k2 = 2

3k2
0

� 5
54�2 + !

�
. Seeking

solutions of Eq. (5), we have:

��(� � 1)�2 sin��1(��)� ��2�2 sin�(��)

+ k1�3 sin3�(��)� k2� sin�(��) = 0 : (23)

Equating the exponents and coe�cients of each pair
of the sine functions, we �nd the following algebraic
system:

� � 2 = 3�; ��(� � 1)�2 + k1�3 = 0;

���2�2 � k2� = 0: (24)

By solving the algebraic system (Eqs. (24)), we get:

� = �1; � = ��pk2; � = �
r

2k2

k1
: (25)

Then, by substituting Eq. (25) into Eq. (5), the exact
soliton solution of Eq. (22) can be written in the form:

u(�) = �
r

5
27�2 + 2� csc(��pk2�)

= �
r

5
27�2 + 2� csch(

p
k2�): (26)

The corresponding solution of Eq. (19) is:

q =�
r

5
27�2 + 2� � csch

�s
2

3k2
0

�
5

54�2 + !
�

k0(x+
2

3�
t+ �)

�
e�(� 1

3�x+!t+�0): (27)

For � = ! = k0 = 1; �0 = � = 0 and � = � 1
3 , Eq. (27)

becomes:

q = �
r

11
3

csch

 p
11
3

(x� 2t)

!
e�(x+t): (28)

3.3. Gardner equation
Let us consider the Gardner equations [19,20]:

ut � 6(u+ �2u2)ux + uxxx = 0: (29)

This equation, known as the mixed KdV-mKdV equa-
tion, is very widely studied in various areas of physics
that include plasma physics, uid dynamics, quantum
�eld theory, solid state physics and others [20].

We introduce the transformation � = k(x � �t),
where k and � are real constants. Eq. (29) transforms
to the ODE:

�k�u0 � 3k(u2)0 � 2�2(u2)0 + k3u000 = 0: (30)

We integrate Eq. (30) and neglect the integration con-
stant to get the following ordinary di�erential equation:

�u+ 3u2 + 2�2u3 � k2u00 = 0: (31)
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Seeking the solution in Eq. (6), we have:

�� cos�(��) + 3�2 cos2�(��) + 2�2�3 cos3�(��)

� �(� � 1)k2�2� cos��2(��)

+ �2�2k2� cos�(��) = 0: (32)

Equating the exponents and coe�cients of each pair of
cosine functions, we �nd the following relations for �:

�(� � 1)(� � 2) 6= 0 � = �1: (33)

Substituting Eq. (33) into Eq. (32), we get:

�� cos�1(��) + 3�2 cos�2(��) + 2�2�3 cos�3(��)

� 2k2�2� cos�3(��)

+ �2k2� cos�1(��) = 0: (34)

Equating the exponents and coe�cients of each
pair of cosine functions, we obtain a system of algebraic
equations:

cos�3(��) : 2�2�3 � 2�k2�2 = 0;

cos�2(��) : 3�2 = 0;

cos�1(��) : ��+ ��2k2 = 0: (35)

By solving algebraic system (Eq. (34)), we get:

� = �1; � = ��2k2; � = �k�
�
: (36)

Then, by substituting Eq. (35) into Eq. (6), the exact
soliton solution of Eq. (29) is obtained as follows:

u(x; t) = �k�
�

sec(�k(x+ �2k2t));

0 < �k(x+ �2k2t) < �: (37)

For � = k = � = 1, Eq. (37) reduces to:

u(x; t) = � sec(x+ t): (38)

3.4. The (1 + 1)-dimensionalnonlinear
dispersive equation

Consider the (1 + 1)-dimensional nonlinear dispersive
equation:

ut � �u2ux + uxxx = 0; (39)

where � is a nonzero positive constant. This equation
is called the modi�ed KdV equation [21], which arises
in the process of understanding the role of nonlinear
dispersion and in the formation of structures like

liquid drops, and it exhibits compaction solitons with
compact support. To �nd the traveling wave solutions
of Eq. (39), He et al. [22] used the exp-function method,
and Elsayed and Shorog [21] used the (G

0
G )-expansion

method.
Let us now solve Eq. (39) by the proposed

method. We introduce the transformation � = k(x �
�t), where k and � are real constants. Eq. (39)
transforms to the ODE:

�k�u0 � �
3
k(u3)0 + k3u000 = 0: (40)

We integrate Eq. (40) once with zero constant to get
the following ODE:

�u+
�
3

(u3)� k2u00 = 0: (41)

Seeking the solution in Eq. (6), we have:

�� cos�(��) +
�
3
�3 cos3�(��)

� �(� � 1)k2�2� cos��2(��)

+ �2�2k2� cos�(��) = 0: (42)

Equating the exponents and coe�cients of each pair of
cosine functions, we �nd the following algebraic system:

� = �1;

�
3
�3 � 2�k2�2 = 0;

��+ ��2k2 = 0: (43)

By solving algebraic system Eq. (43), we get:

� = �1; � = ��2k2; � = �
r

6
�
k�: (44)

Then, by substituting Eq. (44) into Eq. (6), the exact
soliton solution of Eq. (39) can be written in the form:

u(x; t) = �
r

6
�
k� sec(�k(x+ �2k2t));

0 < �k(x+ �2k2t) < �: (45)

3.5. Perturbed Burgers equation
In this section, the study is going to be focused on the
perturbed Burgers equation. The solitary wave ansatz
method will be adopted to obtain the exact 1-soliton
solution of the Burgers equation in (1 + 1) dimensions.
the search is going to be for a topological 1-soliton
solution. The perturbed Burgers equation is given by
the following form [23]:
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ut + auux + buxx = cu2ux + duuxx

+ (ux)2 + �uxxx: (46)

Eq. (46) appears in the study of gas dynamics and
also in the free surface motion of waves in heated
uids. The perturbation terms are obtained from long-
wave perturbation theory. Eq. (46) shows up in the
long-wave small-amplitude limit of extended systems
dominated by dissipation, where dispersion is also
present at a higher order [23].

To solve Eq. (46) by the proposed method, we
introduce the transformation � = k(x � �t), where k
and � are real constants. Eq. (46) transforms to the
ODE:

��ku0 + akuu0 + bk2u00 = kcu2u0

+ dk2uu00 + k2(u0)2 + �k3u000: (47)

Seeking the solution in Eq. (6), we have:

��� cos��1(��) sin(��)

� a�2�� cos2��1(��) sin(��)

+ bk��(� � 1)�2 cos��2(��)

� bk��2�2 cos�(��)

+ c�3�� cos3��1(��) sin(��)

+ dk�2�(� � 1)�2 cos2��2(��)

+ dk�2�2�2 cos2�(��)

� k�2�2�2 cos2��2(��)

+ k�2�2�2 cos2�(��)

+ ��(� � 1)(� � 2)�3�k2 cos��3(��) sin(��)

� ��3�3�k2 cos��1(��) sin(��) = 0: (48)

From Eq. (46), we have:

2� � 2 = 3� � 1; (49)

so that:

� = �1: (50)

Setting the coe�cients of the di�erent powers of the
cosine function to zero yields:

�dk�2�(� � 1)�2 � k�2�2�2

+ ��(� � 1)(� � 2)�3�k2 = 0;

bk��(� � 1)�2 � a�2�� = 0;

(dk + k)���+ �� �2�2k2� = 0: (51)

By solving system (Eq. (51)), we get:

� =
(2d+ )b

3a
; � = �2bk

a
�;

� = (4d� 5)
bk2�2

3a
: (52)

Then, by substituting Eq. (52) into Eq. (6), the exact
soliton solution of Eq. (46) can be written in the form:

u(x; t) = �2bk
a
� sec(�k(x� (4d� 5)

bk2�2

3a
t)):

(53)

3.6. The general Burgers-Fisher equation
Let us consider the following general Burgers-Fisher
equation [24]:

ut � aunux + buxx + cu(1� un) = 0; (54)

where a; b and c are nonzero constants. We introduce
the transformation � = k(x � �t), where k and � are
real constants. The traveling wave variable � permits
us to convert Eq. (54) into the following ODE:

��ku0 � akunu0 + bk2u00 + cu(1� un) = 0: (55)

Seeking the solution in Eq. (6), we have:

�k��� cos��1(��) sin(��)

� ak�n+1�� cos(n+1)��1(��) sin(��)

+ bk2��(� � 1)�2 cose�
ta�2(��)

� (bk2��2�2 � c�) cos�(��)

� c�n+1 cosn+1(��) = 0: (56)

From Eq. (56), we have:

(n+ 1)� = � � 1; (57)

so that:

� = � 1
n
: (58)

When the exponent pair (n + 1)� � 1 = � � 2 is
equated, we have the same value of �. Thus, setting
their coe�cients to zero yields:

c�n+1 + �k��� = 0;

bk2��(� � 1)�2 � ak�n+1�� = 0: (59)
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By solving the system (59), we get:

� = �bc(n+ 1)
a

; � =
�
b(n+ 1)
an

k�
� 1
n

: (60)

Then, by substituting Eq. (60) into Eq. (6), the exact
soliton solution of Eq. (54) can be written in the form:

u(x; t) =
�
b(n+ 1)
an

k� sec(k�(x+
bc(n+ 1)

a
t)
� 1
n

:
(61)

3.7. The K(n+ 1; n+ 1) equation
Let us consider the following K(n + 1; n + 1) equa-
tion [25]:

ut + a(un+1)x + b(u(un)xx)x = 0; (62)

where a and b are nonzero constants. We introduce the
transformation � = k(x � �t), where k and � are real
constants. The traveling wave variable, �, permits us
to convert Eq. (62) into the following ODE:

��u0u2�n + a(n+ 1)u2u0 + bnk2u2u000

+ bk2n(3n� 2)uu0u00

+ bn(n� 1)2k2(u0)2 = 0: (63)

Seeking the solution in Eq. (6), we have:

����3�n cos(3�n)��1(��) sin(��)

� a(n+ 1)�3�� cos(3��1)(��) sin(��)

� bnk2�3�(� � 1)(� � 2)

� �3 cos3��3(��) sin(��)

+ bnk2�3�3�3 cos3��1(��) sin(��)

� bk2n(3n� 2)�3�2(� � 1)

� �3 cos3��3(��) sin(��)

+ bk2n(3n� 2)�3�3�3 cos3��1(��)

� sin(��)� bn(n� 1)2k2�3�3�3

� cos3��3(��) sin(��) = 0: (64)

From Eq. (64), equating exponents yield:

(3� n)� � 1 = 3� � 3; (65)

so that:

� =
2
n
: (66)

Thus, setting coe�cients of Eq. (64) to zero yields:

����3�n � bnk2�3�(� � 1)(� � 2)�3

� bk2n(3n� 2)�3�2(� � 1)�3

� bn(n� 1)2k2�3�3�3 = 0;

��(n+ 1)�3��+ bnk2�3�3�3

+ bk2n(3n� 2)�3�3�3 = 0: (67)

By solving the algebraic system (Eq. (67)), we get:

� =
�

2(3n� 1)
a(n+ 1)(2n+ 1)(n� 4)

�
� 1
n

;

� =
1
2k

s
an(n+ 1)
b(3n� 1)

: (68)

Then by substituting Eq. (68) into Eq. (7), the exact
soliton solution of Eq. (62) can be written in the form:

u(x; t) =
�

2(3n� 1)
a(n+ 1)(2n+ 1)(n� 4)

� cos2

�
�s

an(n+ 1)
4b(3n� 1)

(x� �t)
�� 1

n

; n 6= 4 (69)

For � = �1; n = 2; a = 1
3 ; b = 1

10 , we have:

u(x; t) = cos(x+ t): (70)

4. Ansatz method

This section will describe the ansatz method that will
be applied to SHE in order to obtain the singular
soliton solution. The parameter domains will be
identi�ed during the course of the derivation of the
solutions. The study will be split into two sections,
namely, Kerr law nonlinearity and power law nonlinear
media. The results of the power law nonlinearity will
collapse to the ones from the Kerr law, on setting the
power law nonlinearity parameter value to unity.

4.1. Kerr law nonlinearity
The Schr�odinger-Hirota Equation (SHE) with Kerr law
nonlinearity, to be studied in this subsection, is given
by Biswas [18,26,27]:

�qt + aqxx + bjqj2q = �c(qxxx + kjqj2qx) = 0: (71)

In this case, the �rst term is the evolution term, while
the second term is the group velocity dispersion term,
The coe�cient of b is the Kerr law nonlinearity term
that is also due to the self-phase modulation. The
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coe�cient of c is the third order dispersion term and,
�nally, the last term is due to nonlinear dispersion.
Eq. (71) represents the model for the propagation of
optical solitons through dispersive Kerr law optical
�bers. The details of the derivation of this equation
have been discussed earlier on several occasions [18].
This paper will focus on derivation of the singular
soliton solution to Eq. (71) by the ansatz method. In
order to proceed, the starting hypothesis is taken to
be:

q(x; t) = Acschp(B(x� vt))e�(��x+!t+�); (72)

where A and B are free parameters and v is the
velocity of the singular soliton. The unknown index or
parameter is p, whose value will be derived. From the
phase component, � represents the soliton frequency, !
is the soliton wave number and � is the phase constant.

Now by substituting Eq. (72) into Eq. (71) and
separating into real and imaginary components, we are
led to the following pair of equations:

(! + a�2 + c�3)cschp(�)

� (a+ 3c�)B2pfp textcschp(�)

+ (p+ 1)cschp+2(�)g
� (b+ c�k)A2csch3p(�) = 0; (73)

(v + 2a�+ 3c�2)cschp(�)� ckA2csch3p(�)

� c(p+ 1)(p+ 2)B2cschp+2(�) = 0; (74)

where � = B(x� vt). From Eq. (73), by the balancing
principle, equating the exponents gives:

p = 1: (75)

Then, from Eq. (73) setting the coe�cients of the
linearly independent functions for cschp+j(�); j = 0; 2
to zero yields the values of the soliton free parameters
as:

A =
r
�2(! + a�2 + c�3)

b+ c�k
; (76)

and:

B =
r
! + a�2 + c�3

a+ 3c�
; (77)

which introduces the respective constraints as:

(! + a�2 + c�3)(b+ c�k) < 0; (78)

and:

(! + a�2 + c�3)(a+ 3c�) < 0: (79)

Again, from the imaginary part, the balancing principle
yields the same value of the parameter, p. Similarly, the
linearly independent functions from Eq. (74), give:

B = A
r
�k

6
; (80)

and:

v =
c(! + a�2 + c�3)� �(a+ 3c�)(2a+ 2c�)

a+ 3c�
: (81)

Now, Eq. (80) reveals an immediate constraint condi-
tion, given by:

k < 0: (82)

Finally, by substituting the values of the free parame-
ters, A and B, from Eqs. (76) and (77) into Eq. (80),
we are given the additional constraint relation as:

3(b+ c�k)� k(a+ 3c�) = 0: (83)

Hence, �nally, the singular 1-soliton solution to the
SHE, with Kerr law nonlinearity, is given by:

q(x; t) = Acsch[B(x� vt)]e�(��x+!t+�); (84)

where the free parameters, A and B, are, respectively,
given by Eqs. (76) and (77), while the velocity, v, of
the soliton is given by Eq. (81). The singular solitons
will exist provided the constraint conditions given in
Eqs. (78), (79), (82), and (83) hold.

4.2. Power law nonlinearity
In this subsection, the SHE with power law nonlinearity
will be addressed. The SHE is given by:

�qt + aqxx + bjqj2nq + �c(qxxx + kjqj2nqx) = 0: (85)

Here, in addition to the regular parameters in the Kerr
law case, the additional parameter is the power law
index, n, that dictates the strength of nonlinearity. In
order to solve Eq. (85), the starting hypothesis is the
same as Eq. (72). Substituting this hypothesis into
Eq. (85) and then splitting into real and imaginary
parts yields:

(! + a�2 + c�3)cschp(�)

� (a+ 3c�)B2pfpcschp(�)

+ (p+ 1)cschp+2(�)g
� (b+ c�k)A2ncsch(2n+1)p(�) = 0; (86)

and:

(v + 2a�+ 3c�2)cschp(�)� ckA2ncsch(2n+1)p(�)

� c(p+ 1)(p+ 2)B2cschp+2(�) = 0; (87)
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respectively. As in the Kerr law case, the balancing
principle gives:

p =
1
n
; (88)

on equating the exponents (2n + 1)p and p + 2.
Again, from Eq. (86), the coe�cients of the linearly
independent functions, cschp+j(�) for j = 0; 2, when
set to zero, reveal:

A =
�
� (n+ 1)(! + a�2 + c�3)

a+ 3c�

� 1
2n

; (89)

and:

B = n
r
! + a�2 + c�3

a+ 3c�
; (90)

which means that the same constraint conditions as
given by Eqs. (78) and (79) must hold in order for the
singular soliton to exist.

Similarly, from the imaginary part equation, the
same value of the unknown parameter, p, is obtained,
by the aid of the balancing principle. Now, from the
coe�cients of the linearly independent functions in
Eq. (87), the value of the free parameter, B, is:

B = nAn
s
� k

(n+ 1)(2n+ 1)
; (91)

while the velocity, v, is still given by Eq. (81). Hence,
from Eqs. (89)-(91), the additional constraint condition
that falls out is:

(2n+ 1)(b+ c�k)� k(a+ 3c�) = 0: (92)

Therefore, the singular 1-soliton solution to the SHE,
with power law nonlinearity, is given by:

q(x; t) = Acsch
1
n [B(x� vt)]e�(��x+!t+�); (93)

where the free parameters, A and B, are, respectively
given by Eqs. (89) and (90), while the velocity, v, of
the soliton is given by Eq. (81). The singular solitons
will exist provided the constraint conditions given in
Eqs. (78), (79), (82), and (92) hold. Thus, under
these conditions, the SHE with power law nonlinearity
supports the singular 1-soliton solution to Eq. (85).
On a �nal note, all results of power law nonlinearity
collapse to those with Kerr law nonlinearity when the
power law parameter, n, is set to unity.

5. Conclusion

In this paper, the sine-cosine function method has been
successfully applied to �nd the solution to nonlinear
partial di�erential equations. The method is used to

�nd a new exact solution. The ansatz method is also
implemented to obtain a singular soliton solution to
the Schr�odinger-Hirota equation. Thus, we can say
that the sine-cosine function method can be extended
to solve the problems of nonlinear partial di�erential
equations, which arise in the theory of solitons and
other areas.
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