
Scientia Iranica D (2014) 21(3), 815{825

Sharif University of Technology
Scientia Iranica

Transactions D: Computer Science & Engineering and Electrical Engineering
www.scientiairanica.com

A strategy for forecasting option prices using fuzzy
time series and least square support vector regression
with a bootstrap model

C.-P. Leea;�, W.-C. Linb and C.-C. Yangc

a. Department of Information Management, Da-Yeh University, No.168, University Rd., Dacun, Changhua 515, Taiwan.
b. Department of Business Administration, National Taipei College of Business, No. 321, Jinan Road, Section 1, Taipei 100,

Taiwan.
c. Department of Information Management, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung

Road, Taipei 106, Taiwan.

Received 27 June 2012; received in revised form 6 November 2012; accepted 23 November 2013

KEYWORDS
Option price;
Fuzzy time series;
Least square support
vector regression;
Bootstrap;
Hybrid model.

Abstract. Recently, the strategy for forecasting option price has become a popular
�nancial topic because options are important tools on risk management in �nancial
investments. The well-known Black-Scholes model (B-S model) is widely used for option
pricing. In B-S model, the normal distribution assumption is important. However, the
�nancial data in real life may not follow the normal distribution assumption. For this
reason, this paper proposes a novel hybrid model, which is a nonlinear prediction model
without normal distribution assumptions to forecast the option prices. The proposed model
is composed of a Fuzzy Time Series (FTS) model, a Least Square Support Vector Regression
(LSSVR), and a bootstrap method. In the proposed model, FTS model is �rstly used to
fuzzify dataset and to build historical database. Subsequently, the proposed method uses
the remainder contractual time to search similar historical trends as training samples.
Finally, we use the bootstrap method on LSSVR to enhance the prediction accuracy. The
experiment results show that the proposed model outperforms traditional time series models
and several hybrid models in terms of the Root Mean Square Error (RMSE), the Mean
Absolute Error (MAE) and the correlation coe�cient (r) of actual and forecasted option
price.
c 2014 Sharif University of Technology. All rights reserved.

1. Introduction

Many investors enhance their net worth by investing.
There are many investment targets in the �nancial mar-
ket, such as stocks, bonds, options, futures, funds, and
etc., and due to the fact that an option is an important
tool in risk management in �nancial investments [1-3],
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it has become a popular tool in reducing investment
risk [4]. For example, a producer can buy a put option
to prevent the loss of pro�t from a possible decrease
in product prices. Similarly, a customer can buy a
call option at an expected future price [2,3] of the
desired product. Hence, an option is like an insurance
policy, where people pay a premium for the option.
The premium of option transactions is also known as
the price of an option that a�ects investors regarding
whether to purchase the option or not.

As described above, the strategy to forecast op-
tion price has become an important �nancial topic.
Traditional strategies in forecasting option price use
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statistical or linear models, and the Black-Scholes
model (B-S model) [5], �rst introduced in 1973, is
the most well-known model in this regard. In the
B-S model, the normal distribution assumption is
important. However, the �nancial data in real life
may not follow the normal distribution assumption.
Moreover, the price of an option is determined by
many factors, such as current stock price, option strike
price, expiration time, volatility of stock price and
risk-free interest rates [5,6]. Option price forecasting
is, therefore, di�cult, and in recent years, many
researchers have proposed novel prediction models for
option price forecasting [7].

The main factors in option pricing are current
option price and current stock price. Hence, this
paper uses a 2-factor, 3-order Fuzzy Time Series (FTS)
model to forecast the option price, as it can search
the trends of option by using the two main factors of
option pricing. It is, however, still not easy to �nd
a matching trend to forecast option price with the
2-factor 3-order FTS model. Moreover, according to
the literature, the expiration time of options would
also a�ect the volition of investors on option price [8-
10]. Hence, we use the remaining contractual time to
search similar trends, and then, use the Least Square
Support Vector Regression (LSSVR) to assist the 2-
factor 3-order FTS model on option price forecasting.
It is possible that the sample size of the training
samples might be small, so we use a bootstrap method
on the LSSVR model to enhance prediction accuracy.
Accordingly, the proposed model is composed of a 2-
factor 3-order FTS model, the LSSVR and a bootstrap
method. In this paper, the proposed model is termed;
FLSSVR with a bootstrap model.

The remainder of this paper is organized as
follows. Section 2 reviews related work, including
the de�nition of time series data and option price
forecasting reviews. Section 3 introduces the FTS
model, LSSVR, bootstrap method, and the procedure
of the FLSSVR with a bootstrap model. Section 4
gives an example of forecasting option price using the
proposed model. Section 5 compares the performance
of the proposed model with other existing models.
Section 6 gives the conclusions of this paper.

2. The related works

2.1. Time series data
A time series data is a sequence of data points such as
stock index or stock price. Forecasting time series data
is to predict future values based on previously observed
time series values. The previous observed time series
values are termed a \situation", in this paper. To
simplify, this paper de�nes a situation caused by 3
previously observed time series values, termed a 3-day
in this paper. The situation of 3-day time series data

Figure 1. 9 types of the situations of time series data
with a 3-day.

can be classi�ed into 9 types of situation, which are
shown in Figure 1. Consequently, the 3-day situation is
represented as (day1;day2;day3). Furthermore, when
forecasting future values on day t, it is represented
as (dayt�3;dayt�2; dayt�1) ! dayt, which is termed a
\trend" in this paper. According to the literature [11-
14], the main idea of the time series data analysis is
to search trends with similar situations from historical
data and then to forecast future values.

2.2. Option prices forecasting reviews
Normally, statistical time series models are widely used
in resolving �nancial problems. However, statistical
time series models are often limited by their assump-
tions, such as the normal distribution assumption.
Hence, many researchers proposed novel hybrid models
or modify the statistical time series models for option
price forecasting. Most existing models are hybrid,
based on the Arti�cial Neural Network (ANN). For
example, Tseng et al. [15] proposed a hybrid model
to forecast the option price. In Tseng et al.'s model, a
grey-exponential generalized autoregressive conditional
heteroscedasticity (Grey-EGARCH) is developed to
decrease the stochastic and nonlinearity of error term
sequence, and then, further, to elevate the predictabil-
ity of the option-pricing model. Subsequently, the
Grey-EGARCH is integrated into ANN to provide
functional exibility in order to capture nonlinearities
in �nancial data. Wang [16] proposed another hybrid
model composed of an ANN and a grey Glosten-
Jagannathan-Runkle GARCH (Grey-GJR-GARCH).
In Wang's model, Grey-GJR-GARCH is developed to
reduce the stochastic and nonlinearity of the error term
sequence, and then to improve the prediction ability
of option-pricing. Subsequently, Grey-GJR-GARCH
is integrated into ANN to capture the nonlinearities
in �nancial data. Liang et al. [17] proposed a simple
method, which was based on ANN. they �rst use
four di�erent linear models to predict option price.
Subsequently, the four predicted option prices are fed
into ANN to get the �nal predicted option price.
Compared to traditional time series models, such as
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GARCH and GJR-GARCH models, the ANN hybrid
models presented a signi�cantly better performance
under several performance measures.

3. Methods

In Section 3.1, we briey introduce the de�nition of the
FTS model. Then, due to the fact that LSSVR and
a bootstrap method play important roles in FLSSVR
with a bootstrap model, we also briey review the
de�nition of LSSVR and the bootstrap method in
Sections 3.2 and 3.3, respectively. Finally, we introduce
the procedure of the FLSSVR with a bootstrap model
in Section 3.4.

3.1. Fuzzy time series
The fuzzy time series is based on fuzzy logic. It is a
model to forecast problems [18]. The fuzzy time series
model was �rst applied by Song and Chissom [19-21]
to forecast enrollment at the University of Alabama.
Recently, the fuzzy time series model has been widely
used in many �nancial areas [13]. According to the
literature [2,3,12,20-22], the following de�nitions are
given to a fuzzy time series model.

Defenition 1. A fuzzy set, A, de�ned in the universe
of discourse, u, can be represented as follows:

A =
fA(u1)
u1

+
fA(u2)
u2

+ � � �+ fA(un)
un

; (1)

where fA is the membership function of fuzzy set
A; fA(ui) denotes the degree of membership of ui
belonging to the fuzzy set A.

Let Y (t) (t = � � � ; 0; 1; 2; � � � ), a subset of R1,
be the universe of discourse in which fuzzy sets fi(t)
(i = 1; 2 � � � ) are de�ned. If F (t) is a collection of
fi(t) (i = 1; 2 � � � ), F (t) is called a fuzzy time series of
Y (t). Namely, fi(t) (i = 1; 2 � � � ) denotes the degree
of membership of day t belonging to fuzzy set i, and
F (t) denotes the fuzzy time series of day t in this
paper.

Defenition 2. If, for any fj(t) 2 F (t), there exists
an fi(t � 1) 2 F (t � 1), such that there exists a fuzzy
relation Rij(t; t� 1) and fj(t) = fi(t� 1) �Rij(t; t� l),
where `�' is the max-min composition, F (t) is said to
be caused by F (t � 1) only, and it can be represented
by F (t � 1) ! F (t). Namely, the corresponding fuzzy
set of day t is caused by the corresponding fuzzy set of
day t� 1.

Defenition 3. If F (t) is caused by F (t�1), F (t�2),
and F (t�3), F (t) is called a 1-factor 3-order fuzzy time
series, and it can be represented by F (t� 3), F (t� 2),
F (t� 1)! F (t).

Defenition 4. If F (t) is caused by (F1(t� 1); F2(t�
1)), (F1(t � 2); F2(t � 2)), (F1(t � 3); F2(t � 3)), then
F (t) is called a 2-factor 3-order fuzzy time series, where
F1(t) and F2(t) are the 1st and the 2nd factor fuzzy
time series, respectively. F (t) can be represented by
(F1(t � 3); F2(t � 3)), (F1(t � 2); F2(t � 2)), (F1(t �
1); F2(t� 1)) ! F (t). Let F1(t) = Xt and F2(t) = Yt,
where Xt and Yt are fuzzy variables whose values are
possible fuzzy sets of the �rst factor and the second
factor on day t, respectively. Then, a 2-factor 3-order
Fuzzy Logic Relationship (FLR) [12] can be repre-
sented by (Xt�3; Yt�3), (Xt�2; Yt�2), (Xt�1; Yt�1) !
Xt, where (Xt�3; Yt�3), (Xt�2; Yt�2) and (Xt�1; Yt�1),
are referred to as the Left-Hand Side (LHS) of the fuzzy
logic relationship, and Xt is referred to as the Right
Hand Side (RHS) of the fuzzy logic relationship.

3.2. Least square support vector regression
The Support Vector Machine (SVM) was introduced
by Vapnik and his coworkers [23]. It is a popular
and powerful technique for data classi�cation [24].
SVM was extended to solve a nonlinear regression
estimation problem in 1996. The extended SVM,
which was proposed by Drucker et al. [25], is called
SVR. To reduce the computational complexity of SVR,
Least Squares Support Vector Regression (LSSVR) was
proposed by Suykens et al. [26]. In LSSVR, function
f(x) can be solved by the following equations [27]:

Minimize:
1
2
kwk2 +

1
2

lX
i=1

e2
i :

Subject to: f(x) = wT'(xi) + b+ ei;

i = 1; 2; � � � ; l; (2)

where l denotes the number of data.
After resolving the above optimization problem,

we can obtain the solution from the following equa-
tions [27,28]:

f(x) =
lX
i=1

�iK(x; xi) + b; (3)

where K(x; xi) is the radial basis function shown in the
following:

K(x; xi) = exp
�
� (x� xi)T (x� xi)

2�2

�
;

i = 1; 2; � � � ; l; (4)

where �2 denotes the width of the radial basis function.

3.3. Bootstrap method
In 1979, the bootstrap method was �rst proposed
by Efron [29]. Bootstrap is a method to assign
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the accuracy of measures to estimate samples [30].
Generally, a bootstrap method is classi�ed into the
broader class of resampling methods. It can be
implemented by generating a large number of resamples
of the original dataset, each of which is obtained by
random sampling with a replacement from the original
dataset. Then, a particular statistic can be calculated
from the collected values of the sampling distribution.
Through simulations, it is found that the bootstrap
method provides less biased statistics [31]. Hence, the
bootstrap method can be used to enhance the measures
of statistical accuracy.

3.4. FLSSVR with a bootstrap model
FLSSVR with a bootstrap model includes seven steps.
The 1st to 5th steps use a 2-factor 3-order FTS model
to search similar instances (similar FLRs) and to
generate training samples from the historical database.
The 6th step uses LSSVR to build a prediction model
using the selected training samples. Finally, the
bootstrap method is used to enhance the prediction
accuracy in Step 7. However, when there are many
orders at the LHS of a FLR, it is di�cult to �nd
matching FLR for prediction. For this reason, we
use two conditions to search similar FLRs in Step 5.
The owchart of FLSSVR with a bootstrap model is
shown in Figure 2. The detail procedures of FLSSVR
with a bootstrap model are described in the following
steps.

Figure 2. The owchart of FLSSVR with a bootstrap
model.

Step 1: Divide the universe of discourse. The
universe of discourse of the �rst factor is de�ned as
U = [Dmin � D1; Dmax + D2], where Dmin and Dmax
are the minimum and maximum of the �rst factor,
respectively; D1 and D2 are two positive real numbers
to divide the universe of discourse into n equal length
intervals. The universe of discourse of the second
factor is de�ned as V = [Vmin � V1; Vmax + V2], where
Vmin and Vmax are the minimum and maximum of the
second factor, respectively. Similarly, V1 and V2 are
two positive real numbers used to divide the universe
of discourse of the second factor into m equal length
intervals. Note that the length of the interval of each
factor is determined by its largest value of the factor in
the historical data.

Step 2: De�ne fuzzy sets. Linguistic terms, Ai,
1 � i � n, are de�ned as the fuzzy sets on the intervals
of the �rst factor. They are de�ned as follows:

A1 =1=u1 + 0:5=u2 + 0=u3 + � � �+ 0=un�2

+ 0=un�1 + 0=un;

A2 =0:5=u1 + 1=u2 + 0:5=u3 + � � �+ 0=un�2

+ 0=un�1 + 0=un;

...

An�1 =0=u1 + 0=u2 + 0=u3 + � � �+ 0:5=un�2

+ 1=un�1 + 0:5=un;

An =0=u1 + 0=u2 + 0=u3 + � � �+ 0=un�2

+ 0:5=un�1 + 1=un;

where ui denotes the ith interval of the �rst factor.
Similarly, linguistic term Bj , 1 � j � m, is

de�ned as a fuzzy set on the intervals of the second
factor. They are de�ned as follows:

B1 =1=v1 + 0:5=v2 + 0=v3 + � � �+ 0=vm�2

+ 0=vm�1 + 0=vm;

B2 =0:5=v1 + 1=v2 + 0:5=v3 + � � �+ 0=vm�2

+ 0=vm�1 + 0=vm;

...

Bm�1 =0=v1 + 0=v2 + 0=v3 + � � �+ 0:5=vm�2

+ 1=vm�1 + 0:5=vm;
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Bm =0=v1 + 0=v2 + 0=v3 + � � �+ 0=vm�2

+ 0:5=vm�1 + 1=vm;

where vi is the ith interval of the second factor.

Step 3: Construct the FLRs database. For
historical data on day i, let Xi�n and Yi�n denote the
fuzzy set of F1(i � n) and F2(i � n) of the fuzzy time
series, respectively. The FLRs with 2-factor 3-order on
day i can be represented by (Xi�3; Yi�3), (Xi�2; Yi�2),
(Xi�1; Yi�1) ! Xi. Then, the 2-factor 3-order FLRs
database can be constructed as shown in Table 1. In
Table 1, the symbols, J and J � T , denote expiration
times, namely, the remaining J day and J � T day to
the expiration date, respectively.

Step 4: Construct the LHS of FLR on the pre-
dicting day (assume that day t is the prediction
day). If the expiration time is J � T � 1 day, the
LHS of the FLR with 2-factor 3-order on day t can be
represented as follows:

(Xt�3; Yt�3); (Xt�2; Yt�2); (Xt�1; Yt�1):

Note that the LHS of the FLR with 2-factor 3-order on
day t is called the LHS of the prediction day below.

Step 5: Search the similar FLRs to generate
a training data. Due to the fact that there are 2
factors and 3 orders at the LHS of a FLR, it is di�cult
to �nd a matching FLR for prediction. To solve this
problem, we use two conditions to search similar FLRs
in this paper:

(a) According to the literature, the expiration time
of options would a�ect the volition of investors on
option price [8-10]. Accordingly, FLRs are selected
from the FLR database when their expiration time
and the prediction day's expiration time are the
same.

(b) When there are no FLRs selected from the FLRs
database, we refer to the literature [13] to search
for similar FLRs. Note that in the literature [13],
the authors used a Euclidean distance to mea-
sure the di�erence between the LHS of the FLR
database and the LHS of the prediction day.

Subsequently, they selected k FLRs with the smallest
di�erence from the FLR database. However, the 2
factors of the fuzzy time series model play di�erent
roles in predicting option price. To search similar
FLRs, we use a Mahalanobis distance to measure the
similarities between the LHS of the FLR database and
the LHS of the prediction day to balance the weight of
the 2 factors in this paper. The Mahalanobis distance
between the LHS of the prediction day and the ith
LHS of the FLR database can be calculated according
to Eq. (5):

Di =
q

(IXi � TX)TS�1(IXi � TX); (5)

where IXi denotes the ith LHS of the FLR database;
TX denotes the LHS of the prediction day; S is the
covariance matrix for IXi and TX. In this paper, we
select 10 FLRs with the smallest Mahalanobis distance
as training data for building LSSVR with a bootstrap
model.

Step 6: Build the least square support vector
regression. With the similar FLR selected, we can
train a LSSVR model to forecast option price. The
input of LSSVR contains six variables, which are the
LHS of the FLRs. The output of LSSVR only contains
one variable, which is the RHS of the FLRs. Simply,
the 1st to the 3rd input variables are the subscripts of
fuzzy sets of LHS's 1st factor of the FLRs, and the 4th
to the 6th input variables are the subscripts of fuzzy
sets of LHS's 2nd factor of the FLRs.

Step 7: Forecasting option price on day t with
bootstrap model. When the LSSVR model is built,
we perform the forecasting of option price on day t by
feeding the LHS of the predicting day into the built
LSSVR model to get the forecasted subscript of the
RHS on the prediction day. The input of the built
LSSVR model also contains six variables, which are
the LHS of the prediction day. Simply, the 1st to the
3rd input variables are the subscripts of fuzzy sets of
LHS's 1st factor of the prediction day, and the 4th to
the 6th input variables are the subscripts of fuzzy sets
of LHS's 2nd factor of the prediction day. However, due
to the fact that the size of the training data might be
small, this paper uses a bootstrap method to enhance
prediction accuracy. Hence, Steps 6 and 7 are repeated

Table 1. An example of the 2-factor 3-order FLRs database.

FLR LHS RHS Expiration time

FLR1 (X1, Y1), (X2, Y2), (X3, Y3) ! X4 J
FLR2 (X2, Y2), (X3, Y3), (X4, Y4) ! X5 J � 1
� � � � � � � � � � � �

RLRm (Xm�3, Ym�3), (Xm�2, Ym�2), (Xm�1, Ym�1) ! Xm J � T
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100 times to build 100 di�erent LSSVR models using
the bootstrap method, and then 100 subscripts of the
RHS are generated on the prediction day. We then
calculate the mean of the 100 subscripts of the RHS
on the prediction day as the forecasted subscript of the
RHS on the prediction day.

Finally, as the forecasted value is a subscript of a
fuzzy set, we have to defuzzify it into the option price
forecasting value. We use the weighted average method
as the defuzzi�cation method, shown by Eq. (6):

forecast value

=

8>>>>>><>>>>>>:
M1+0:5�M2

1+0:5 k = 1;

0:5�Mk�1+Mk+0:5�Mk+1
0:5+1+0:5 1 < k � n� 1;

0:5�Mn�1+Mn
0:5+1 k = n;

(6)

where Mk denotes the midpoint value of the fuzzy set,
k. Note that an iteration of the above procedure (Step
1 through Step 7) predicts only one forecasting value.

4. Option price forecasting

To forecast the price of the \Taiwan Stock Exchange
Stock Price Index Option (TXO)", we select the closing
price of TXO as the �rst factor and the ratio of the spot
price divided by the strike price, which is termed S=K
(S is the spot price; K is the strike price), as the second
factor in FLSSVR with a bootstrap model. Next, we
give a simple example to explain the procedures of our
proposed model to forecast an option on 4-Mar-2005,
with a strike price equal to 6,000 and an expiration
date on April, 2005. Part of the historical data is
shown in Table 2. In this historical data, U is set
at [0; 1500] and is divided into 150 intervals. That is,
u1 = [0; 10], u2 = (10; 20]; � � � , and u150 = (1490; 1500].
For the second factor, V is set at [0:6; 1:300] and
divided into 141 intervals, that is v1 = [0:6; 0:605],
v2 = (0:605; 0:610]; � � � , and v141 = (1:295; 1:300].
Having de�ned the intervals, we fuzzify the historical
data into fuzzy sets and construct the 2-factor 3-order
FLRs database from the fuzzi�ed historical data. A
2-factor 3-order FLRs database for this historical data
is shown in Table 3.

Having constructed the FLRs database, the op-
tion price can be forecast by our proposed model.
For example, if we want to forecast the option price
on 4-Mar-2005 for a strike price equal to 6,000 and
expiration date in April, 2005, we �rst construct the
LHS of FLR on 4-Mar-2005, as follows:

(A28; B87); (A28; B88); (A30; B89):

Then, we use the 1st condition to search the similar
FLRs from FLRs database. Due to the fact that the

Table 2. Parts of historical data.

Date Option
prices

S=K Expiration
time

2005/01/03 585 1.0970 12

2005/01/04 481 1.0822 11

2005/01/05 418 1.0694 10

2005/01/06 420 1.0682 9

2005/01/07 368 1.0600 8

� � � � � � � � � � � �
2005/01/04 630 1.1019 35

2005/01/05 555 1.0888 34

2005/01/06 565 1.0877 33

2005/01/07 510 1.0793 32

2005/01/11 530 1.0865 31

� � � � � � � � � � � �
2005/01/06 470 1.0682 36

2005/01/07 444 1.0600 35

2005/01/11 437 1.0671 34

2005/01/12 336 1.0498 33

2005/01/13 330 1.0453 32

expiration time on 4-Mar-2005 is 33, the expiration
times of FLRs that equal 33 are selected from the FLR
database. Finally, we use these selected FLRs as the
training data to build the LSSVR with a bootstrap
approach for the prediction, and feed the LHS of the
predicting day into the built LSSVR model, as shown
in Table 4. After the performing bootstrap method
100 times, the mean of the forecasted option price is
265.1231 and the variance is 43.9782 on 4-Mar-2005.
Note that the actual option price on 4-Mar-2005 is 255
in this example.

5. Results and performance

5.1. Dataset
The dataset of this paper are the daily transaction data
of TXO and TAIEX from January 3, 2005 to December
29, 2006. This paper investigates a sample of 23,819
call option price data. Call options can be divided into
three categories, according to their S=K ratio. The
distribution of the dataset, according to categories of
moneyness, which is a term describing the relationship
between the strike price and the current spot price
of an option, is shown in Table 5. We refer to the
literature [15,16] for the de�nition of the categories. In
Table 5, in-the-money denotes that the strike price is
above the spot price; at-the-money denotes that the
current spot price and strike price are the same; and
out-of-the-money denotes that the strike price is below
the spot price. In this paper, 70% of the dataset are
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Table 3. The FLRs database.

LHS RHS Expiration time

(A59, B101), (A49, B98), (A42, B95) ! A42 10
(A49, B98), (A42, B95), (A42, B95) ! A37 9

� � � � � � � � � � � �
(A63, B102), (A56, B99), (A57, B99) ! A51 33
(A56, B99), (A57, B99), (A51, B97) ! A53 32

� � � � � � � � � � � �
(A47, B95), (A45, B93), (A44, B95) ! A34 34
(A45, B93), (A44, B95), (A34, B91) ! A33 33

Table 4. An example of FLSSVR with a bootstrap model.

X1 X2 X3 X4 X5 X6 Y Expiration time

Training samples

57 56 63 98 98 101 ! 51 33
34 44 45 90 94 92 ! 33 33
28 26 31 87 87 86 ! 26 33

� � � � � � � � � � � �
28 28 30 87 88 89 ! 26 33
23 20 14 86 84 81 ! 21 33

Testing sample 28 28 30 87 88 89 ! ? 33

Table 5. Data distribution according to categories of
moneyness.

Categories Moneyness Number

In-the-money S=K > 1:02 8938
At-the-money 0:95 < S=K � 1:02 7508
Out-of-the-money S=K � 0:95 7373

Notes: S is the spot price; K is the strike price.

selected as the training dataset. The remaining 30%
are adopted as the testing dataset.

5.2. Performance measures
There are two di�erent performance measures, the
Mean Absolute Error (MAE) and the Root Mean
Square Error (RMSE), which are used to measure the
prediction accuracy of our proposed model and that
of existing models. The formulae are shown in the
following:

RMSE =

vuut nP
t=1

(At � Pt)2

n
; (7)

MAE =

nP
t=1
jAt � Ptj
n

; (8)

where At and Pt denote the actual option price and the
forecasting option price on day t, respectively.

5.3. Performance
This section �rst compares the performance of
FLSSVR with a bootstrap model and that of FLSSVR
without a bootstrap model to verify that the bootstrap
method is necessary for the proposed model. The
performances of these are shown in Table 6. Accord-
ing to Table 6, the bootstrap method is necessary
for the proposed model because the performance of
FLSSVR with a bootstrap model is better than that of
FLSSVR without a bootstrap model in all categories.
Subsequently, the FLSSVR with a bootstrap model
is compared with support vector Fuzzy Regression
Machines (FSVR) [32], as shown in Table 6. Ac-
cording to Table 6, FLSSVR with a bootstrap model
outperforms the FSVR in terms of RMSE and MAE
in all categories. Finally, the B-S model and the
existing models, which were Weighted Fuzzy Time
Series Neural Network (WFTSNN), Fuzzy Time Series
Neural Network (FTSNN), GJR-GARCH model, Grey-
GJR-GARCH model, EGARCH, and Gery-EGARCH,
are used to compare the FLSSVR with a bootstrap
model. The performances are also shown in Table 6.
Table 6 shows that the performances of FLSSVR with
a bootstrap model are better than the existing models,
except in the in-the-money category. The performance
of the B-S model is the best in the in-the-money
category, but, that of the B-S model is the worst in
the at-the-money category and the out-of-the-money
category. Moreover, Table 6 also shows that the
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Table 6. The performance in RMSE and MAE.

Methods
RMSE MAE

Category Category
Ina Atb Outc In At Out

FLSSVR1d 53.96 20.59� 6.81� 40.12 14.55� 4.06�

FLSSVR2e 65.06 21.04 11.31 41.13 15.13 6.48
B-S model 39.52� 55.69 31.61 31.11� 49.52 25.84
WFTSNN [3] 67.94 29.72 8.96 52.13 19.99 6.05
FTSNN [2] 72.79 36.99 16.19 52.11 23.98 9.78
SVFRf [32] 89.65 31.76 24.04 48.89 22.70 22.65
GARCH [16] 85.49 44.02 25.73 69.54 34.73 18.78
GJRg [16] 76.19 41.06 25.53 59.28 31.67 17.41
Gery-GJRh [16] 73.76 40.11 25.89 56.13 30.21 17.26
EGARCH [15] 73.90 41.35 26.34 57.02 32.17 18.30
Gery-EGARCH [15] 72.11 40.26 26.13 57.26 32.51 18.26

`�' denotes the smallest value;
a `In' denotes In-the-money category;
b `At' denotes At-the-money category;
c `Out' denotes Out-of-the-money category.
d `FLSSVR1' denotes FLSSVR with a bootstrap model;
e `FLSSVR2' denotes FLSSVR without a bootstrap model;
f `SVFR' denotes support vector fuzzy regression machines;
g `GJR' denotes GJR-GARCH model;
h `Grey-GJR' denotes Grey-GJR-GARCH model.

Table 7. The test results of RMSE for FLSSVR with a bootstrap model, WFTSNN and B-S model.

Category

Ina Atb Outc

Fd We W Bf W B
B < 0:001�� < 0:001�� F < 0:001�� < 0:001�� F < 0:001�� < 0:001��

F < 0:001�� W 0.1086 W < 0:001��

Note that \**" denotes signi�cance at � = 0:01;
a `In' denotes In-the-money category;
b `At' denotes At-the-money category;
c `Out' denotes Out-of-the-money category;
d `F' denotes FLSSVR with a bootstrap model;
e `W' denotes WFTSNN;
f `B' denotes B-S model.

performance of a traditional model, such as GARCH, is
always worse than the other hybrid models. Although
the performance of FLSSVR with a bootstrap model
is better than that of the B-S model and that of
WFTSNN, their performances are close. To compare
the performances of FLSSVR with a bootstrap model
of the B-S model, and that of the WFTSNN, we use
a t-test to evaluate the RMSE and MAE, as shown
in Tables 7 and 8, respectively. Table 7 shows that
the RMSE of FLSSVR with a bootstrap model is
signi�cantly better than that of the other methods in
the at-the-money and the out-the-money categories. In
addition, the RMSE of the B-S model is signi�cantly
better than the other models in the in-the money cate-

gory. Furthermore, although the RMSE of WFTSNN is
better than that of the B-S model in the at-the-money
category, they are insigni�cantly di�erent. Similarly,
Table 8 shows that the MAE of FLSSVR with a
bootstrap model is also signi�cantly better than that
of the other methods in the at-the-money and the out-
the-money categories. Furthermore, Figure 3 shows
the forecasting results of an option with a strike price
equal to 5,600 and an expiration date in Mar, 2005. In
Figure 3, the forecasting option price of FLSSVR with
a bootstrap model and that of the B-S model are closer
to the actual option price, except on the dates where
the option prices changed abruptly. Furthermore,
Figure 4 shows the scatterplots of actual and forecasted
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Table 8. The test results of MAE for FLSSVR with a bootstrap model, WFTSNN and B-S model.

Category

Ina Atb Outc

Fd We W Bf W B
B < 0:001�� < 0:001�� F < 0:001�� < 0:001�� F < 0:001�� < 0:001��

F < 0:001�� W < 0:001�� W < 0:001��

Note that \**" denotes signi�cance at � = 0:01;
a `In' denotes In-the-money category;
b `At' denotes At-the-money category;
c `Out' denotes Out-of-the-money category;
d `F' denotes FLSSVR with a bootstrap model;
e `W' denotes WFTSNN;
f `B' denotes B-S model.

Figure 3. Time series of actual and forecasted price of an
option with strike price equal to 5,600 and expiration date
of Mar, 2005.

option prices for FLSSVR with a bootstrap model, B-S
model, and WFTSNN. Figure 4 also shows RMSE and
the correlation coe�cient (r) of actual and predicted
option prices for FLSSVR with a bootstrap model,
B-S model, and WFTSNN. According to Figure 4,
FLSSVR with a bootstrap model and the B-S model
outperform WFTSNN in the RMSE and the correlation
coe�cient. Although the correlation coe�cient of
FLSSVR with a bootstrap model and that of the B-
S model are close, they are insigni�cantly di�erent
(p-value=0.96), according to the correlation coe�cient
test. To summarize, FLSSVR with a bootstrap model
outperforms existing methods in terms of RMSE, MAE
and the correlation coe�cient of actual and forecasted
option prices.

6. Conclusion

In this paper, we propose a novel hybrid model to
forecast option price. The proposed model is composed
of a 2-factor 3-order FTS model, LSSVR, and a
bootstrap method. The experiment results showed that
FLSSVR with a bootstrap model is more accurate than
other existing methods, in terms of RMSE and MAE,

Figure 4. The scatterplot of actual and predicted option
price: (a) FLSSVR with a bootstrap model; (b) B-S
model; and (c) WFTSNN.

for options belonging to the out-the-money and at-the-
money categories. The RMSE and MAE of FLSSVR
with a bootstrap model belonging to the in-the-money
category are worse than those of the B-S model. In
addition, the performance of FLSSVR with a bootstrap
model is also better than that of WFTSNN, in terms
of the correlation coe�cient of actual and forecasted
option prices. Hence, FLSSVR with a bootstrap model
o�ers a useful alternative for option price forecasting.
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