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Abstract. In fractured reservoirs, a large variation of permeability due to the presence
of fractures leads to changes in the production mechanism compared to conventional
reservoirs. Hence, an appropriate model with the ability to describe the reservoir properly
can provide a more con�dent prediction of its future performance. One of the features of a
representative model is the number and height of the matrix blocks. The determination of
these two parameters is one of the decisive steps in the calculation of an accurate amount
of oil production from these reservoirs. In fact, matrix height shows its e�ect as a gravity
force, which is one of the driving mechanisms. If the matrix height is less than the threshold
height, it will have a signi�cant in
uence on production. The aim of this study is, therefore,
to obtain mathematical relations that are able to estimate the matrix height from material
balance analysis. In this study: (a) The Havlena and Odeh straight line form of the
material balance equation has been extended to analyze the behavior of naturally fractured
reservoirs, and (b) Equations that can be used to estimate the matrix height are obtained
for the Warren-Root and Kazemi models.

c
 2014 Sharif University of Technology. All rights reserved.

1. Introduction

Fractured reservoirs constitute a considerable percent-
age of hydrocarbon reservoirs in the world; it is
estimated that about half of the world's oil reserves
are in fractured reservoirs. A well-known oil fractured
area of the world is located in the Southwest of Iran,
and a substantial percentage of Iran's oil reserves
are related to the �elds located in this region [1].
In naturally fractured reservoirs, unlike conventional
reservoirs, large variations of permeability due to the
presence of fractures lead to changes in the production
mechanism. The dimensions of the matrix blocks in
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fractured reservoirs are one of the most important
factors. Yet, in most cases, it is the least known
parameter and its value is frequently estimated by
trial-and-error, using history matching. The aim of
this study is to propose a method to �nd the value of
these parameters from a more reliable method. Since
the fractured reservoirs have more complexities [2-
4], researchers use simpli�ed models to describe these
types of reservoir. The most popular of these models
are Warren-Root [5] and Kazemi [6], which are both
employed in this study for the description of fractured
reservoirs. These two models are used to describe the
reservoir structure, and the Material Balance Equation
(MBE) is used to calculate the initial oil in place [7-10].
Many researchers [11-16] have conducted studies and
developed various models which combine the sugar-
cube model and the MBE for fractured reservoirs, as
well.
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2. Material balance equation

The material balance equation is a basic method for
predicting reservoir performance. This method can be
used to perform the following calculations:

1) Estimation of volume in place of the initial hydro-
carbons in the reservoir.

2) Prediction of future reservoir performance.
3) Estimation of ultimate recovery of hydrocarbons.

The concept of the material balance equation was
�rst introduced by Schilthuis in 1936 [17]. In its
simplest form, the general material balance equation
for conventional and homogeneous reservoirs can be
expressed as follows [18]:

N(Bt �Bti) +
mBti
Bgi

(Bg �Bgi)

+ (1 +m)BtiCe�P +We

= Np [Bt + (Rp �Rsi)Bg]
+BwWp �GinjBg;inj �WinjBw;inj ; (1)

where:

Bt = Bo + (Rsi �Rs)Bg; (2)

Ce =
CwSwi + Cr

1� Swi ; (3)

and N is the initial oil in place, Np is the cumulative
produced oil, Rp is the cumulative produced gas-oil
ratio, Cr is the average rock compressibility, Cw is wa-
ter compressibility and Ce is e�ective compressibility.
De�nitions of the remaining variables are given in the
nomenclature.

The basic assumptions in the Material Balance
Equation (MBE) are:

1) The temperature is constant and porosity is also
uniform.

2) At each time of reservoir production, it is as-
sumed that the pressure is constant everywhere
in the reservoir. Another assumption, which is
derived from the pressure balance assumption, is
the uniformity of reservoir 
uid properties all over
the reservoir. Thus, any di�erence in pressure in
di�erent situations of the reservoir is assumed to
be negligible.

3) Assumption of constant reservoir volume: in the
material balance calculations, except under condi-
tions of reservoir rock and water expansion and the
conditions of the inlet water of the reservoir that
are considered in the material balance equation, it
is assumed that the volume is constant at di�erent
times.

4) Accurate production data.
5) Water is only in a liquid phase.

Eq. (1) is only applicable for conventional oil
reservoirs (those without fractures) and is unable to
describe fractured reservoirs [18].

Over the past few years, some research has been
conducted to obtain the material balance equation
for Naturally Fractured Reservoirs (NFR) and several
models have been presented. One of the most practical
forms of the MBE for NFR, which was proposed by
Penuela et al. [11-12], can be written as follows:

Np [Bo + (Rp �Rs)Bg] +BwWp

= Nm
�
Bo �Boi + (Rsi �Rs)Bg

+
�
CwSwmi + Cpp;m

1� Swmi
�

�pBoi
�

+Nf
�
Bo �Boi + (Rsi �Rs)Bg

+
�
CwSwfi + Cpp;f

1� Swfi
�

�pBoi
�
; (4)

where Nm is the oil initially in place in the matrix and
Nf is the oil initially in place in the fracture, Cpp;m
is matrix isothermal pore compressibility, and Cpp;f is
fracture isothermal pore compressibility.

This equation, in addition to the aforementioned
assumptions for the material balance equation in con-
ventional reservoirs, includes the following additional
assumptions:

1) The reservoir includes four components: oil, gas,
water and naturally fractured rock.

2) The reservoir includes four phases: oil, gas, water
and naturally fractured rock.

3) The oil component only exists in the oil phase and
does not exist in the water, gas or rock phases.

4) The gas component exists free in the gas-phase and
dissolved in the oil-phase.

5) The water component only exists in the water-
phase.

6) The rock component exists only in the rock-phase.
7) The rock-phase is composed of two porous media

which are in hydraulic communication: the sec-
ondary porosity (fractured system) and the primary
porosity (matrix system).

8) The fracture and porous matrix are compressible.
9) There is no water in
ux, and water production is

negligible.
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Figure 1. Material balance diagnostic curve for NFR [11].

10) There is no 
uid injection (water and/or gas) into
the reservoir.

Using the suggested equation of Penuela et al.,
we can obtain the oil initially in place for fractured
reservoirs This equation is solved using the graphical
method and the concept of a straight line, as expressed
by Odeh and Havlena [19,20]:

F = Np [Bo + (Rp �Rs)Bg] +BwWp; (5)

Eo;m =Bo �Boi + (Rsi �Rs)Bg

+
�
CwSwmi + Cpp;m

1� Swmi
�

�pBoi; (6)

Eo;f =Bo �Boi + (Rsi �Rs)Bg

+
�
CwSwfi + Cpp;f

1� Swfi
�

�pBoi; (7)

F = NmEo;m +NfEo;f ; (8)

F
Eo;m

= Nm +Nf
Eo;f
Eo;m

; (9)

where F is the net 
uid withdrawal, Eo;m is the net
expansion of the original oil-phase in the matrix, and
Eo;f is the net expansion of the original oil-phase in
the fracture.

According to Eq. (9), a plot of F
Eo;m versus Eo;f

Eo;m ,
on a Cartesian graph, should yield a straight line of
slope Nf and intercept Nm, as shown in Figure 1.

2.1. The material balance equation for
undersaturated reservoirs as a function of
the storage capacity ratio

Recalling the general de�nition of the storage capacity
ratio (Warren and Root), under initial reservoir condi-
tions for an undersaturated reservoir:

! =
('ct)f

('ct)f + ('ct)m
=

('ct)f
('ct)f+m

: (10)

By substituting this equation into Eq. (8) and rear-

Figure 2. Material balance as a function of storage
capacity ratio for a volumetric undersaturated NFR [13].

ranging, the following equation will be obtained:

F = N ((1� !)Eo;m + !Eo;f ) : (11)

Therefore, a plot of F versus (1�!)Eo;m+!Eo;f would
yield a straight line passing through the origin with
slope, as represented in Figure 2 [13].

The graphical method proposed in Eq. (11) has
some advantages over the one proposed by Penuela et
al. (Eq. (9)): (a) it requires less production data and
(b) only one regression parameter is needed to obtain
good estimates of the total original hydrocarbon in
place [13].

The initial oil in place in the fractures can be
estimated from:

Nf = !N: (12)

Taking into account that:

N = Nf +Nm; (13)

Nm = (1� !)N; (14)

it is noteworthy that the value of ! can be found by
two methods: (a) with well logging and core analysis
data [1] and (b) well testing methods [21]. In this
study, the value of ! is calculated using a well testing
approach.

3. Acquiring other properties of fractured
reservoirs from the material balance
equation

The material balance equation is actually a volumetric
balance, since the volume of the reservoir (which is
de�ned by its original limits) is assumed constant.
Therefore, the sum of volume changes of oil, gas, water
and rock in the reservoir should be equal to zero [18,
22-24]. Hence, using this principle, this method can
also predict the future performance of the reservoir.
Because the size of the matrix blocks in the simulation
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of the fractured reservoirs (Warren-Root model and
Kazemi model) is of great importance, the focus of this
study is to develop a new method to �nd this parameter
from a reservoir material balance analysis.

3.1. The signi�cance of the size of the matrix
blocks (matrix height)

In the study of fractured reservoirs and simulation by
engineering software, Warren-Root and Kazemi models
are more applicable than others. Thus, in this part,
we state the importance of matrix height based on the
Warren-Root model. A matrix is a volumetric unit
that is completely surrounded by the fractured network
around itself without any communication with other
matrix blocks. Hence, the displacement depends only
on interactions between the matrix and fracture 
uids.
The process of displacement in a fractured reservoir
occurs when the matrix saturated by oil is partially or
completely surrounded by a 
uid such as water or gas.
Figure 3 shows the time at which the matrix is partially
or totally in the water.

Figure 3. a) Matrix is partially immersed in water. b)
Matrix is fully immersed in water.

A reservoir that is made up of uniform geometric
matrix blocks is invaded by the expansion of a gas
cap from the top and water from the bottom. One of
the factors that a�ect the displacement is the matrix
height, so that if the matrix height is lower than
some threshold height (hTh), it exerts a signi�cant
e�ect on production (displacement). This e�ect is
so severe that production does not occur during the
gravity drainage process, and is signi�cantly reduced
during the imbibition process. In fact, the matrix
height shows its e�ects as a gravity force, which is
one of two production forces in the process of gravity
drainage and imbibitions; capillary force being the
other one. In gravity drainage, the gravity force is the
only production force, and in the imbibition process, it
is one of the two production forces. This gravity force
contributes to production during gravity drainage only
if the matrix height is larger than hTh (hTh � hb).
During the imbibition process, it has a di�erent role
in production. For instance, if the matrix is fully
saturated with water, the force will always increase
production. Therefore, if the matrix height is greater
than hTh, the force of gravity is greater and production
increases proportionally. However, for a matrix that is
partially saturated with water, the force of gravity may
have a positive or negative e�ect on production [1,25].

Therefore, the calculation of the matrix height is
of signi�cant importance. Figure 4 presents the e�ect
of matrix height on imbibition and the gravity drainage
process.

3.1.1. The e�ect of gravity force on oil recovery
during the imbibition process

Figure 5 shows the e�ect of gravity on oil recovery for
the matrix which is fully immersed in the water. As
can be observed, the force of gravity has a signi�cant

Figure 4. E�ect of matrix height on imbibition and drainage processes: Case 1) matrix is partially immersed in water;
and Case 2) matrix is fully immersed in water [1].
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impact on the amount of oil that is recovered, which
further highlights the importance of calculating the
matrix height.

3.2. The proposed method
In recent years, numerous studies have been conducted
on fractured reservoir simulations (see, for example [26-
31]). In this study, using the original oil in place,
N , calculated from the material balance equation, and
other concepts of reservoir engineering, we obtain the
relations that estimate matrix height for the models of
Warren-Root and Kazemi [5,6].

3.2.1. Warren-Root model
This model is one of the most comprehensive models
for fractured reservoirs and its application has been
largely developed. In this model, the reservoir rock is
divided into blocks of rock (matrix) by two series of
parallel plates perpendicular to each other (fractures)
surrounding the matrix blocks like a network. This
model assumes that the reservoir consists of n matrix
blocks with equal length, width and height a and
fractures with width equal to b, according to Figure 6.
Using the following de�nitions:

�f =
Pore volume in the fractures
Total volume of the fractures

;

'f =
Total volume of the fractures

Reservoir volume
;

�m =
Total volume of the matrix blocks

Reservoir volume
;

Figure 5. a) Oil recovery, counting only capillary force.
b) Oil recovery, including both capillary and gravity
forces [1].

Figure 6. Warren-Root schematic model [5].

'm =
Pore volume in the matrix blocks
Total volume of the matrix blocks

;

we can write:

't = 'f � �f + 'm � �m: (15)

According to assumptions �m ' 1, �f ' 1, Eq. (15) is
modi�ed as follows [32]:

't = 'f + 'm: (16)

Hence, the total amount of oil initially in place N can
be demonstrated as follows:

N =
�
('t � Vb)� �1� Swi(f;m)

��
5:615

; (17)

where Vb is the bulk volume of the reservoir, 't is the
average porosity, and Swi(f;m) is the average initial
water saturation in the NFR system. In the Warren
and Root model Vb is de�ned as follows:

Vb = n(a+ b)3; (18)

where a is the cube's length, b is the fracture height
and n is the number of matrix blocks in the reservoir.
So, by combining Eqs. (17) and (18):

N =
n(a+ b)3 � 't � �1� Swi(f;m)

�
5:615

: (19)

The original oil in place in the fractures in the whole
reservoir, Nf , can be found from:

Nf =
(Vb � Vm)� (1� Swfi)

5:615
; (20)

where VM is the total volume of matrix blocks and Swfi
is the initial water saturation in the fractured system.
In the Warren and Root model, Vm is de�ned as follows:

Vm = na3: (21)

By combining Eqs. (18), (20) and (21) the following is
obtained:

Nf =
n
�
(a+ b)3 � a3�� (1� Swfi)

5:615

=
n
�
3a2b+ 3ab2 + b3

�� (1� Swfi)
5:615

; (22)

and by combining Eqs. (19) and (22), it can be shown
that:

N
Nf

=
n(a+ b)3 � 't � �1� Swi(f;m)

�
n (3a2b+ 3ab2 + b3)� (1� Swfi) ; (23)

which results in the following equation:

a3 +

 
3b� 3Nb (1� Swfi)

'tNf
�
1� Swi(f;m)

�! a2
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Figure 7. Schematic of Kazemi model [6].

+

 
3b2 � 3Nb2 (1� Swfi)

'tNf
�
1� Swi(f;m)

�! a
+

 
b3 � Nb3 (1� Swfi)

'tNf
�
1� Swi(f;m)

�! = 0: (24)

The real positive root of this equation shows the matrix
dimension. In most cases, there is one real root (see
Appendix A), where a is the matrix dimension in the
Warren-Root model obtained by using the material
balance parameters, N and Nf .

3.2.2. Kazemi model
This model assumes that the reservoir is made up of
n matrix blocks (or slabs) and horizontal fractures,
according to Figure 7. The volume of each matrix is
aL2 and the volume for each fracture is bL2 in which a
is the height of the matrix blocks, L is the length and
width of the matrix blocks and fractures, and b is the
height of the fracture [6]. (The reservoir is assumed to
have n fracture layers.)

Here, Eq. (17) can be used again for the Kazemi
model:
Vb = n(a+ b)L2; (25)

where a is the slab height, L is the slab's length and
width, and n is the number of matrix slabs in the
reservoir. So, by combining Eqs. (17) and (25) the
following is obtained:

N =
n(a+ b)L2 � 't � �1� Swi(f;m)

�
5:615

: (26)

Again if Nf shows the original oil in place in the
fractures in the whole reservoir, Nf can be found from:

Nf =
(Vb � Vm)� (1� Swfi)

5:615
; (27)

where Vm is the total volume of the matrix in slabs
and Swfi is the initial water saturation in the fractured
system. In the Kazemi model, Vm is de�ned as follows:

Vm = naL2: (28)

By combining equations 25, 27 and 28 we obtain:

Nf =
n
�
(a+ b)L2 � aL2�� (1� Swfi)

5:615

=
nbL2 � (1� Swfi)

5:615
; (29)

and, by combining Equations 26 and 29, it can be
shown that:

N
Nf

=
n(a+ b)L2 � 't � �1� Swi(f;m)

�
nbL2 � (1� Swfi) ; (30)

which results in the following equation:

a =
bN � (1� Swfi)

'tNf
�
1� Swi(f;m)

� � b; (31)

where is the matrix height in the Kazemi model
obtained by using the material balance parameters, N
and Nf .

4. Results and discussions

In order to ensure the accuracy of the results of the
obtained relations, two undersaturated synthetic reser-
voir models are considered. The �rst reservoir, called
reservoir 1, is simulated using the Kazemi method,
and the second one, called reservoir 2, is simulated
using the Warren-Root method. In the �rst reservoir,
the fractures are horizontal (slab model), while in the
second one, the fractures are horizontal and vertical.
The schematic plots of these reservoirs are depicted in
Figures 8 and 9. The �rst reservoir is composed of 15

Figure 8. Schematic plot of reservoir 1.

Figure 9. Schematic plot of reservoir 2.
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Table 1. Reservoir information.

Reservoir and 
uid parameter Value

Initial pressure (pi) 4039 psia

Initial water saturation in the matrix

system (Swmi)
20%

Initial water Saturation in the

fractured system (Swfi)
20%

Average initial water saturation in the

NFR system (Swi(f;m))
20%

Water compressibility (cw) 3� 10�6psi�1

Isothermal pore compressibility (cpp) 1� 10�5psi�1

Matrix porosity ('m) 25%

Fracture porosity of reservoir 1 ('f ) 0:015%

Fracture porosity of reservoir 2 ('f ) 0:045%

Storativity ratio of reservoir 1 (!) 6:3� 10�4

Storativity ratio of reservoir 2 (!) 1:85� 10�3

Matrix permeability (Km) 1 md

Fracture permeability (Kf ) 300 md

Length and width of reservoir (L) 1000 ft

Height of oil containing reservoir (h) 240 ft

Fracture height (b) 0:003 ft

Table 2. Production data of reservoir 1 (Kazemi model).

Pressure
(psi)

Cumulative
oil

produced
(STB)

Cumulative
water

produced
(STB)

Oil formation
volume
factor

(bbl/STB)
4035.921 320.0 45.9 1.250784
4004.893 3200.0 847.2 1.250971
3970.729 6416.8 1653.9 1.251176
3903.84 12841.3 3062.3 1.251577
3768.604 25906.3 5786.0 1.252388
3504.781 51235.5 11217.3 1.253971
3196.79 80546.6 17698.6 1.255819
3033.553 96000.0 21179.3 1.256799
2862.398 112128.0 24855.9 1.257826
2692.108 128115.8 28539.8 1.258847

layers and the second is formed of 50 matrix blocks
in the x direction, 50 matrix blocks in the y direction
and 30 matrix blocks in the z direction. The primary
information of the reservoirs is presented in Table 1 and
the production data of reservoirs 1 and 2 are shown in
Tables 2 and 3, respectively.

Using Eqs. (5)-(7) and the data from Tables 1
to 3, the parameters F , Eo;m and Eo;f are calculated
for each step, respectively (in undersaturated reser-
voirs: Rp = Rs). Since the fracture pore volume
compressibility is supposed to be equal to the matrix

Table 3. Production data of reservoir 2 (Warren-Root
model).

Pressure
(psi)

Cumulative
oil

produced
(STB)

Cumulative
water

produced
(STB)

Oil formation
volume
factor

(bbl/STB)
4036.131 320.0 16.3 1.250783
4000.079 4055.4 455.8 1.251000
3972.541 6891.7 824.1 1.251165
3945.522 9660.5 1194.8 1.251327
3877.572 16583.2 2150.3 1.251735
3721.529 32349.6 4475.8 1.252671
3562.719 48260.4 6966.7 1.253624
3400.637 64319.8 9671.7 1.254596
3240.037 80083.2 12485.7 1.255560
3076.708 96000.0 15450.2 1.256540

Table 4. Results of the calculations for reservoir 1
(Kazemi model).

�P = Pi � P
(psi)

(1� !)Eo;m + !Eo;f
(bbl/STB)

F
(bbl)

3.2 6.93E-05 447.7
34.2 0.00075 4877.8
68.4 0.0015 9736.3
135.2 0.002968 19233.7
270.5 0.005936 38418.8
534.3 0.011726 75829.6
842.3 0.018486 119425.8
1005.5 0.022069 142520.3
1176.7 0.025825 166701.2

pore volume compressibility, Eo;m will be equal to
Eo;f . The results for reservoir 1 (Kazemi model) and
reservoir 2 (Warren-Root model) are summarized in
Tables 4 and 5, respectively.

Now, as discussed earlier, in the plot of F versus
(1 � !)Eo;m + !Eo;f , the slope of the straight line is
equal to the oil initially in place (N). The plot of (1�
!)Eo;m+!Eo;f versus for reservoirs 1 and 2 are shown
in Figures 10 and 11. The slopes of these straight lines
give the values of oil originally in place for reservoirs 1
and 2, as 6439566 STB and 6463268 STB, respectively.

4.1. Matrix height in the Kazemi model
(reservoir 1)

According to the data from Table 1 and using
Eqs. (12), (14) and (31), the value of parameters Nf ,
Nm and a are calculated as 4057 STB, 6435509 STB
and 19.03 ft, respectively. While using volumetric
calculations, the original oil in place of this reservoir is
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Table 5. Results of the calculations for reservoir 2
(Warren-Root model).

�P = Pi � P
(psi)

(1� !)Eo;m + !Eo;f
(bbl/STB)

F
(bbl)

2.9 6.42E-05 417.1

39.0 0.000855 5543.9

66.5 0.00146 9473.6

93.6 0.002053 13322.1

161.5 0.003544 22977.9

317.6 0.006969 45144.7

476.4 0.010454 67693.4

638.4 0.014012 90681.3

799.0 0.017536 113440.7

Figure 10. F versus (1� !)Eo;m + !Eo;f curve for
reservoir 1.

Figure 11. F versus (1� !)Eo;m + !Eo;f curve for
reservoir 2.

6648698 STB. The proposed material balance method
has predicted this value by an error of 3:1% and,
while the value of the height of slabs (in the Kazemi
model) for the reservoir is 20 ft, the obtained value
by the proposed equation (19.03 ft) shows 4:85%
error.

4.2. The matrix dimensions in the
Warren-Root model (reservoir 2)

According to the data from Table 1 and using
Eqs. (12), (14) and (24), parameters Nf , Nm and
a are calculated as 11957 STB, 6451311 STB and
19.4 ft, respectively. Using volumetric calculations, the
original oil in place of this reservoir is 6656902 STB.
The proposed material balance method has predicted
this value by an error of 2:9% and, while the value of the
matrix block size (in the Warren-Root model) for this
reservoir is 20 ft, the obtained value by the proposed
equation (19.4 ft) shows 3:0% error.

In general, calculation of matrix height in frac-
tured reservoirs can be explained in these steps:

1. Calculation of F , Eo;m and Eo;f using production
data and PVT data;

2. A plot of F versus (1� !)Eo;m + !Eo;f ;
3. Calculation of the amount of original oil in place

(N), which is equal to the slope of the straight line
resulting from the plot of F versus (1 � !)Eo;m +
!Eo;f ;

4. Calculation of matrix height in Kazemi and
Warren-Root models using the proposed equations.

The summary of the results for the two cases
(shown in Table 6) shows that the proposed method
can predict the parameters required to create an
appropriate model for fractured reservoirs. Despite
the importance of these parameters (the slab height
in the Kazemi model and matrix block size in the
Warren-Root model) in simulation of fractured reser-
voirs, they are always considered as uncertain values,
whose values, in most cases, are found by history
matching methods. The proposed method can solve
this problem by suggestion of a realistic value for
these parameters, which will lead to a better reservoir
model for simulation of the behavior of fractured
reservoirs [33].

Also, other properties of the fractured reservoir,
such as number of matrix blocks and Linear Frac-
ture Density (LFD) [1,34] for both reservoirs, can be
estimated, using these parameters, by the following
equations:

nf =
h
a
; (32)

Table 6. Comparison of the calculated results.

Reservoir Parameter Simulator Material balance
equation

Error

Reservoir 1
(Kazemi Model)

N , STB 6648698 6439566 3:1%

a, ft 20 19.03 4:85%

Reservoir 2
(Warren-Root Model)

N , STB 6656902 6463268 2:9%

a, ft 20 19.4 3:0%
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LFD =
nf
h
: (33)

5. Conclusions

1. A new method for calculation of the average matrix
block size of fractured reservoirs was proposed.

2. The results obtained from simulation reveal the
accuracy of the new relations for calculating the
matrix height in the models of Warren-Root and
Kazemi.

3. The height of the matrix in gravity drainage and
imbibition, when treated as a gravity force, plays an
important role, especially in the imbibition process.

4. When the matrix blocks possess large sizes or
capillary forces are negligible, we can estimate the
height of the matrix using the proposed relations.

5. If the percentage of error in the calculation of the oil
initially in place (N) is low, the proposed relations
have more accuracy and, by using these relations,
a reservoir engineer can predict the amount of oil
recovery in naturally fractured reservoirs.

Nomenclature

Bo Oil formation volume factor, bbl/STB
Boi Initial oil formation volume factor,

bbl/STB
Bw Water formation volume factor,

bbl/STB
Bwinj Injected water formation volume

factor, bbl/STB
Bg Gas formation volume factor, bbl/Scf
Bgi Initial gas formation volume factor,

bbl/Scf
Bginj Injected gas formation volume factor,

bbl/Scf
Bt Two phase formation volume factor,

bbl/STB
Bti Initial two phase formation volume

factor, bbl/STB
b Fracture height, ft
Ce E�ective compressibility, psi�1

Cr Average rock compressibility, psi�1

Cw Water compressibility, psi�1

Cpp;f Fracture isothermal pore
compressibility, psi�1

Cpp;m Matrix isothermal pore compressibility,
psi�1

�p Change in average reservoir pressure �
Change in e�ective stress, psi

Eo;m Net expansion of the original oil-phase
in the matrix system, bbl/STB

Eo;f Net expansion of the original oil-phase
in the fracture system, bbl/STB

F Net 
uid withdrawal, bbl
Ging Cumulative gas injected, Scf
m Ratio of the initial gas cap volume to

the initial oil volume
h Height of oil containing reservoir, ft
hTh Threshold height, ft
hB Matrix height, ft
km Matrix permeability, md
kf Fracture permeability, md
LFD Linear Fracture Density
L Length and width, ft
Np Cumulative produced oil, STB
N Initial oil in place, STB
Nm Original oil in place in the matrix,

STB
Nf Original oil in place in the fractures,

STB
n Number of matrix blocks in the

reservoir
nf Number of fractures
p Pressure, psi
pi Initial pressure, psi
Rsoi Initial solution gas-oil ratio, Scf/STB
Rs Solution oil-gas ratio, Scf/STB
Rp Cumulative produced gas-oil ratio,

Scf/STB
Swi Initial water saturation, dimensionless
Swfi Initial water saturation in the fractured

system, dimensionless
Swmi Initial water saturation in the matrix

system, dimensionless
Swi(f;m) Average initial water saturation in the

NFR system, dimensionless
Vb Bulk volume of reservoir, ft3

Vm Total volume of matrix blocks, ft3

vf Ratio of pore volume in the fractures
to the total volume of the fractures

vm Ratio of the total of the matrix blocks
to the reservoir volume

Wp Cumulative water production, STB
We Cumulative water in
ux, bbl
Winj Cumulative water injected, STB
'f Fracture porosity, fraction
'm Matrix porosity, fraction
't Average porosity, fraction
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! Storage capacity ratio, dimensionless
Subscripts
f Fracture
f +m Total NFR system (fracture + matrix)
f;m NFR system (fracture, matrix)
g Gas phase
i Initial value
inj Injected
m Matrix
o Oil phase
w Water phase
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Appendix A

Solution of cubic equations:

Z3 + a1Z2 + a2Z + a3 = 0:

Let:

Q =
3a2 � a2

1
9

;

J =
9a1a2 � 27a3 � 2a3

1
54

;

D = Q3 + J2:

If D � 0, the equation has only one real root:

Z1 = 3
q

(J +
p
D) + 3

q
(J �pD)� a1

3
:

If D � 0, the equation has three real roots:

Z1 = 2
p�Q cos

�
�
3

�
� a1

3
;

Z2 = 2
p�Q cos

�
�
3

+ 120�
�
� a1

3
;

Z3 = 2
p�Q cos

�
�
3

+ 140�
�
� a1

3
;

where:

� = cos�1

 
Jp�Q3

!
:

If D = 0, the equation has three real roots, at least two
of which are equal:

Z1 = 2 3
p
J � a1

3
; Z2 = Z3 = � 3

p
J � a1

3
:
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