A novel uncatalyzed and solvent-free method for the synthesis of 2-thioxothiazolidin-4-ones

S. Moghimi, M.M. Heravi*, H.A. Oskooie and Y.S. Beheshtiha

Department of Chemistry, School of Science, Alzahra University, Tehran, P.O. Box 199389176, Iran.

Received 17 February 2013; received in revised form 21 May 2013; accepted 30 June 2013

KEYWORDS
Rhodanine; Solvent-free; Multi-component reaction; Carbon disulfide; One-pot.

Abstract. An easy and highly efficient one-pot, three-component synthesis of rhodanines is reported. The reaction of primary amines, carbon disulfide and chloroacetyl chloride proceeded in the absence of solvent and catalyst, to afford 2-thioxothiazolidin-4-ones in good to excellent yields.

© 2014 Sharif University of Technology. All rights reserved.

1. Introduction

During the last few decades, Multi-Component Reactions (MCRs) have been studied as a facile route to assemble complex important structures in a small number of steps, while reducing production costs and environmental concerns. As a result, MCRs have attracted growing attention, leading to the development of new, highly selective methods for the synthesis of bioactive compounds such as natural products, drugs and agrochemicals [1].

Rhodanines, an important 5-membered class of heterocyclic compounds, represent a privileged scaffold in drug discovery. Rhodanine based compounds and their analogues have an inherent tendency towards pharmacological and therapeutic activities, such as antibacterial, antifungal, antiviral, antimalarial, antitumor, anti-inflammatory and cardiotoxic activities [2].

2-Thioxothiazolidin-4-ones are classically prepared [3] by the reaction of N-alkylthiocarbamate (formed in situ from an amine and carbon disulfide) with an α-halocarbonyl compound [4,5], using acid [6], ammonium hydroxide [7] and triethylamine [8] as a catalyst. Recently, Chanhan reported a four-component, potassium carbonate catalyzed reaction, for the synthesis of ketene dithioacetal rhodanines, by the addition of alkyl halide to the mixture of amine, CS₂ and ethyl chloroacetate [9].

Refluxing substituted anilines with bis (carboxymethyl)trithiocarbonate in water [10], the reactions of isothiocyanates with methyl thio glycolate in the presence of triethylamine [11], electrogenerated-base promoted electro-synthesis of carbamothioic or cyclic rhodanines [12], are alternative methods to obtain the desired products. Alkylation of the rhodanine core also proceeds with Et₃N [13] and K₂CO₃ [14]. These described methods have significant drawbacks, such as harsh reaction conditions, low yields, prolonged reaction times and the use of toxic solvents and catalysts. Therefore, the development of more facile and practical routes for the synthesis of rhodanines is still a highly desirable aim. As a part of our continuing research into the synthesis of heterocyclic compounds [15], in this paper, we wish to report a novel, efficient, solvent and catalyst free reaction for the synthesis of rhodanine derivatives.
1. The synthesis of thiazolidin-4-ones via a three-component reaction.

2. Results and discussion

The reaction of primary amines 1, carbon disulfide and chloroacetyl chloride (Scheme 1) leads to the formation of 2-thioxothiazolidin-4-one derivatives 2 in excellent yields (Table 1). Without heating, the 1:1:1 adduct has been formed, but no cyclization occurred.

Elemental analysis, mass spectrometry, IR, 1H and 13C NMR spectroscopy, indicated beyond doubt the formation of N-substituted rhodanine derivatives. The mass spectrum of 2a apparently displayed the expected molecular ion peak at m/z = 223, which confirmed that this derivative is a 1:1:1 adduct. The 1H NMR spectrum of 2a in CDCl3, contains two singlets at δ = 3.9 and δ = 5.1 ppm, along with multiplets for the aromatic protons. The 1H decoupled 13C NMR showed 8 distinct signals, with the resonance, due to C=S, appearing at δ=201.6 ppm. A possible pathway is outlined in Scheme 2. The initial addition of amine to the carbon disulfide generates zwitterion 3 [16], which is attacked by chloroacetyl chloride to produce 4, loss of the HCl molecule and cyclization, which generates N-alkyl rhodanines 2 in 85-92% yield.

3. Conclusion

In summary, the uncatalyzed, solvent-free and one-pot method, for the synthesis of 2-thioxo-1,3-thiazolidin-4-ones is described. Mild reaction conditions, simplicity of procedure and short reaction time, make this route more convenient in comparison to previously reported protocols.

4. Experimental

All solvents and chemicals were used without further purification. Melting points were measured, using Bumstead Electrothermal 9200 apparatus. 1H and 13C NMR: Bruker DRX-500-Avance instrument; IR Spectra: FT-IR Bruker Tensor 27; EL-MS: Agilent Technologies-(HP)-5937 mass spectrometer; Elemental analyses (C, H, N): Heraeus CHN-O-Rapid analyzer.

4.1. General procedure

Chloroacetyl chloride (1 mmol) was added to a mixture of amine (1 mmol) and CS2 (5 mmol) at 2°C. The reaction mixture was allowed to warm up to room temperature and then was heated at 100°C for 35 minutes. After this time, the reaction mixture was washed with water, dried and subjected to short silica gel column chromatography (SiO2; n-hexane/AcOEt 4/1) to afford the pure title products as brown solids.

3-Benzyl-2-thioxothiazolidin-4-one (2a): Brown solid, yield: 0.19 g, (85%); M.p.: 81°C (Ref. [12] 80-81°C); 1H NMR (500 MHz, CDCl3); δ = 3.96 (2H, s, CH2), 5.18 (2H, s, CH2), 7.25-7.32 (3H, m, H-Ar), 7.41-7.44 (2H, dd, J = 7.7, 1.5, H-Ar) ppm; 13C NMR (125 MHz, CDCl3); δ = 35.9 (CH2), 47.9 (CH2), 129.6, 129.7, 132.2, 134.5 (4 CH-Ar), 174.4 (C=O), 201.6 (C=S) ppm; IR (KBr): 1733, 1675, 1451, 1335, 1268,

Table 1. Reaction of primary amines, carbon disulfide and chloroacetyl chloride.

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Product</th>
<th>Yield* (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bu</td>
<td>2a</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>4-Me-Bn</td>
<td>2b</td>
<td>88</td>
</tr>
<tr>
<td>3</td>
<td>4-OMe-Bn</td>
<td>2c</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>4-Cl-Bn</td>
<td>sc</td>
<td>87</td>
</tr>
<tr>
<td>5</td>
<td>Ph</td>
<td>2e</td>
<td>86</td>
</tr>
<tr>
<td>6</td>
<td>Me</td>
<td>2f</td>
<td>92</td>
</tr>
<tr>
<td>7</td>
<td>c-Hex</td>
<td>2g</td>
<td>90</td>
</tr>
</tbody>
</table>

*: isolated yield

Scheme 2. The proposed mechanism for the formation of 2-thioxo-4-thiazolidin-4-ones.
1206, 1113, 757, 692 cm⁻¹; EI-MS: m/z (%) = 223 (M⁺, 69), 148 (91), 104(15), 91 (100), 65 (46), 51 (17); Anal. Calcd (%) for C₁₀H₁₈NOS₂: C, 53.78; H, 4.06; N, 6.27. Found: C, 53.75; H, 4.11; N, 6.35.

2-(4-Methylbenzyl)-2-thiohexazolidin-4-one (2b): Brown solid, yield: 0.21 g (88%); M.p.: 69-71°C (Ref. [12] 71-72°C). ¹H NMR (500 MHz, CDCl₃): δ = 2.32 (3H, s, CH₃), 3.93 (2H, s, CH₂), 5.13 (2H, s, CH₂), 7.11 (2H-Ar, d, J = 7.87), 7.33 (2H-Ar, d, J = 7.9) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 21.62 (CH₃), 35.84 (CH₂), 47.82 (CH₂), 129.54, 129.66, 132.19, 138.47 (4 CH-Ar), 174.31 (C=O), 201.53 (C=S) ppm; IR (KBr): 1724, 1606, 1422, 1339, 1307, 1216, 1154, 808 cm⁻¹; EI-MS: m/z (%) = 237 (M⁺, 95), 162 (80), 146 (29), 105 (100), 99 (7), 77 (40), 65 (9), 51 (12); Anal. Calcd (%) for C₁₁H₁₈NOS₂: C, 55.67; H, 4.67; N, 5.90. Found: C, 55.70; H, 4.59; N, 5.96.

3-Phenyl-2-thiohexazolidin-4-one (2e): Brown solid, yield: 0.18 g (86%); M.p.: 183-185°C (Ref. [10e] 184-186°C). ¹H NMR (500 MHz, CDCl₃): δ = 4.24 (2H, s, CH₂), 7.22 (1H-Ar, t, J = 7.4), 7.41 (2H-Ar, t, J = 7.8), 7.59 (2H-Ar, d, J = 7.7) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 36.8 (CH₂), 118.9, 121.6, 132.2, 135.7 (4 CH-Ar), 174.5 (C=O), 200.5 (C=S) ppm; IR (KBr): 1730, 1643, 1494, 1343, 1218, 1186, 735, 700 cm⁻¹; EI-MS: m/z (%) = 209 (M⁺, 73), 134 (100), 91 (25), 77 (35), 65 (19), 51 (55); Anal. Calcd (%) for C₁₂H₁₄NOS₂: C, 51.65; H, 3.37; N, 6.69. Found: C, 52.0; H, 3.21; N, 6.69.

3-Methyl-2-thiohexazolidin-4-one (2f): Brown solid, yield: 0.130 g (92%); M.p.: 72°C (Ref. [7] 71°C). ¹H NMR (500 MHz, CDCl₃): δ = 3.36 (3H, s, CH₃), 4.12 (2H, s, CH₂), 3.81 (2H, s, CH₂), 4.28-4.88 (m, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 36.1 (CH₂), 41.0 (CH₃), 173.0 (C=O), 201.3 (C=S) ppm; IR (KBr): 1729, 1665, 1409, 1352, 1297, 1208, 1124, 791 cm⁻¹; EI-MS: m/z (%) = 147 (M⁺, 97), 131 (18), 105 (26), 94 (24), 77 (39), 54 (89), 52 (100); Anal. Calcd (%) for C₁₂H₁₄NOS₂: C, 36.63; H, 3.42; N, 9.51. Found: C, 36.65; H, 3.64; N, 9.42.

3-Cyclohexyl-2-thiohexazolidin-4-one (2g): Brown solid, yield: 0.194 g (90%); 1H NMR (500 MHz, CDCl₃): δ = 1.2-1.38 (3H, m), 1.62-1.68 (3H, m), 1.84-1.86 (2H, m), 2.26-2.33 (2H, m), 3.8 (2H, s, CH₂), 4.28-4.88 (m, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 24.64, 24.7, 25.6, 33.25, 33.49 (5 CH₂), 36.3 (CH₃), 57.13 (CH), 175.6 (C=O), 200.9 (C=S) ppm; IR (KBr): 1743, 1677, 1455, 1345, 1258, 1201, 1143, 875 cm⁻¹; EI-MS: m/z (%) = 215 (M⁺, 55), 134 (100), 81 (80), 67 (58), 55 (84), 51 (10); Anal. Calcd (%) for C₁₂H₁₆NOS₂: C, 50.2; H, 6.09; N, 6.50. Found: C, 49.81; H, 6.12; N, 6.41.

Acknowledgement
The authors are grateful for the partial financial support from Alzahra University.

References

Biographies

Setareh Moghimi was born in Tehran, Iran, in 1984. She graduated in Chemistry in 2006 and received her MS degree in Organic Chemistry, in 2008, from Tehran University, Iran. She is currently pursuing her PhD degree in Organic Chemistry at Alzahra University, Tehran, Iran. Her research focuses on the application of multi-component reactions in the synthesis of new heterocyclic compounds.

Majid Momahed Heravi was born in 1952 in Mashhad, Iran. He received his BSc degree from the National University of Iran in 1975 and his MSc and PhD degrees from Salford University England in 1977 and 1980. He completed his doctoral thesis under supervision of late Jim Clarek in Salford University, England. He started his career as a research fellow in Daroupaksh (a pharmaceutical company) in 1981 Tehran, Iran and joined an assistant professor to Ferdowsi University of Mashhad, Iran in 1983 and promoted to associate professor in 1993 and full professor in 1997 in the aforementioned university. In 1999 he moved to Alzahra University Tehran, Iran as professor of chemistry where he is still working in. He has previously been a visiting professor at UC Riverside, California, USA and Hamburg University, Hamurg, Germany. His research interests focus on heterocyclic chemistry, catalysis, organic methodology and green synthetic organic chemistry.

Hossein Abdi Oskooie was born in 1943 in Os- koo, Iran. He got his final degree in organic chemistry in 1971 from university of Strasbourg, France. He joined to department of chemistry in Tabriz University, Tabriz Iran as an assistant professor in 1972. He moved to department of chemistry in Alzahra University, Tehran Iran, in 1982. He promoted to associate professor and professor in Alzahra university. After 38 years working as a member of faculty he retired in 2011. He is still supervising MSc and PhD students at Alzahra University. His interest is heterocyclic chemistry and catalysis.

Seyed Yahya Shirazi Beheshtia was born in Qazvin, Iran in 1951. He got his PhD degree in organic chemistry from Bradford University, UK in 1982. He joined department of Chemistry in Alzahra University, Tehran Iran as an assistant professor in 1986. He was promoted to associate professor in 1984 and still teaching and supervising MSc and PhD students at Alzahra University. His interest is heterocyclic chemistry and catalysis.