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Abstract. This paper is concerned with the problem of delay-dependent passive analysis
and control for interval stochastic time-delay systems. The system matrices are assumed
to be uncertain within given intervals, the time delay is a time-varying continuous function
belonging to a given range, and the stochastic perturbation is in the form of a Brownian
motion. By using ItÔ's di�erential formula and the Lyapunov stability theory, delay-
dependent stochastic passive control criteria are proposed without ignoring any useful
terms by considering the information of the lower bound and upper bound for the time
delay. Based on the criteria obtained, a delay-dependent passive controller that ensures
the stochastic passivity of the closed-loop system is presented. Then, the controller gain
is characterized in terms of LMIs, which can be easily checked by resorting to available
software packages. Numerical examples are given to demonstrate the e�ectiveness of the
method.
© 2014 Sharif University of Technology. All rights reserved.

1. Introduction

Time-delay occurs in many systems, such as manu-
facturing systems, telecommunications and economic
systems, etc., and its existence is frequently a source
of oscillation and instability. Therefore, the problem
of stability analysis of time-delay systems has received
considerable attention over the past decades [1-10]. It
is noted that stability criteria for time-delay systems
can be classi�ed into two categories, according to
their dependence on the information about the size of
time delays, i.e. delay-independent criteria and delay-
dependent criteria. Recently, many researchers have
concentrated on the delay-dependent stability analysis
of delay systems [11-14], because delay-dependent sta-
bility criteria, which make use of information on the
length of delays, are generally less conservative than
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delay-independent ones. Especially, when the time de-
lays are small, many researchers have concentrated on
the delay-dependent stability analysis of delay systems.
For example, the delay-dependent stability criterion
of time-varying delay systems was discussed in [11],
delay-dependent stability criterion for dynamic systems
with time-varying delay and nonlinear perturbations
was obtained in [12], and delay-dependent robust
stabilization of uncertain stochastic systems with time-
varying delays was studied in [14].

However, the range of time-varying delay consid-
ered in these papers is from 0 to an upper bound. In
practice, the range of delay may vary in a range for
which the lower bound is not restricted to 0. Thus, a
special type of time delay in practical systems such as
an interval time-varying delay, which is a time delay
varying in an interval, was investigated [15-21]. In
this case, it is of great signi�cance to consider the
stability of systems with interval time-varying delay,
since the criteria in the previous work, not taking into
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account the information of the lower bound of delay,
are conservative. The problem of robust H1 control
for systems with interval time-varying delay in a range
by employing the free weighting matrix method was
studied in [16]. But, the results were obtained by
neglecting some useful terms in the derivative of the
Lyapunov functional. To derive a less conservative
stability criterion, [18] concerned itself with the delay-
dependent stability for systems with interval delay.
The stability criteria turned out to be less conserva-
tive with fewer matrix variables than some recently
reported ones [16,19].

On the other hand, interval systems have been
well known for their importance in practical appli-
cations. The systems matrices are estimated only
within certain closed intervals. In recent years, the
stability analysis and stabilization problems of various
interval systems have received considerable research
attention [22-24]. Also, it is noticed that the delay-
dependent technique has been applied to the analysis
and synthesis of stochastic interval systems [25-26].
The exponential stability analysis problem of a class of
stochastic delay interval systems was discussed using
the Razumikhin method in [25]. The robust stability
and stabilization problems for a class of stochastic
time-delay interval systems with nonlinear disturbance,
by developing delay-dependent analysis techniques,
were considered in [26].

It is well known that the notion of positive real-
ness is related to the passiveness of systems. Therefore,
many results have been developed for the introduction
of the notion of positive realness in system and control
theory [27-31]. The objective of passive control is to
design controllers such that the closed-loop system is
stable and passive. By using linear matrix inequalities,
the problem of passive control and the design of the
observer-based passive controller for a class of nonlinear
uncertain time-delay systems were dealt with in [32].
The problem of observer-based passive control of a
class of uncertain linear systems with delayed state and
parameter uncertainties was studied in [33]. To the
best of the authors' knowledge, the delay-dependent
passive control problem for stochastic interval systems
with interval time-varying delay has not been ade-
quately addressed to date, and few results have been
available in the literature so far, which still remains an
interesting research topic.

In this paper, we deal with the problem of delay-
dependent passive control for interval stochastic time-
delay systems. The main aim is to design a state-
feedback controller such that the resulted closed-loop
system is stochastically stable and passive. The su�-
cient conditions are derived by using Itô's di�erential
formula and the Lyapunov stability theory, without
ignoring any useful terms, by taking into account the
information of the lower bound and upper bound of

delay. Based on the criteria, the proposed method
of controller design is formulated in terms of LMIs,
which can be easily checked by resorting to available
software packages. Numerical examples are exploited
to demonstrate the e�ectiveness of the method.

Notation. Through this paper, Rn denotes the n-
dimensional Euclidean space; Rn�m is the set of all
n�m real matrices; the notation X � Y (respectively,
X > Y ) means that the matrix X � Y is positive
semi-de�nite (respectively, positive de�nite); jj � jj
stands for the Euclidean norm; the superscript \T"
stands for matrix transposition; diagf: : :grepresents a
block-diagonal matrix and I is the identity matrix
with appropriate dimension; (
; F; fFtgt�0 ; P ) is a
complete probability space with a �ltration fFtgt�0,
satisfying the condition that it is right continuous, and
F0 contains all P -null sets; L2

F0
([�h; 0];Rn) denotes

the family of all F0 -measurable C([�h; 0]; Rn)-
valued random variables � = f�(�) : �h � � � 0g,
such that sup�h���0Ej�(�)j2 < 1; Ef�g denotes the
expectation operator; L2[0;1) is the space of square-
integrable vector functions over [0;1); and symbol
� is used to denote the transposed elements in the
symmetric positions of a matrix. Matrices, if the
dimensions are not explicitly stated, are assumed to
have compatible dimensions for algebraic operations.

2. Problem formulation

For a pair of matrices, Am = [amij ]n1�n2 and AM =
[aMij ]n1�n2 , satisfying amij � aMij , 81 � i � n1; 1 �
j � n2, the interval matrix, [Am; AM ], is de�ned by
[Am; AM ] = fA = [aij ]n1�n2 : amij � aij � aMij ; 1 � i �
n1; 1 � j � n2g. For A0;�A 2 Rn1�n2 , any interval
matrix, [Am; AM ], has a unique representation of the
form [A0��A;A0 + �A], where A0 = ( 1

2 )(Am +AM ),
�A = ( 1

2 )(AM �Am).
Consider the following stochastic interval system

(�) with interval time-varying delay described by Itô's
di�erential equation:8>>><>>>:

dx(t) = [Ax(t) +A1x(t� h(t))+Bu(t)+B1v(t)]dt
+ [Ex(t) + E1x(t� h(t))]d!(t)

Z(t) = Cx(t) +Dv(t)
x(t) = '(t); 8t 2 [�h2; 0]

(1)

where x(t) 2 Rn is the state vector, u(t) 2 Rp is the
control input, v(t) 2 Rq is the disturbance input which
belongs to L2[0;1), z(t) 2 Rq is the controlled output,
and '(t) is a real-valued initial vector function that
is continuous on the interval [�h2; 0]. !(t) is a one-
dimensional Brownian motion de�ned on a complete
probability space, (
; F; fFtgt�0; P ), which satis�es:

Efdw(t)g = 0; E
�
dw2(t)

	
= dt:
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Furthermore, h(t) is a continuous time-varying function
satisfying 0 � h1 � h(t) � h2 and h(t) � d, where h1,
h2 and d are constants. Here, h1 may not be equal to 0,
and, when d = 0, it is clear that h2 = h1. The system
matrices:

A 2 [Am; AM ] = fA = [aij ]n�ng;
A1 2 [Am1 ; A

M
1 ] = fA1 = [a1ij ]n�ng;

B 2 [Bm; BM ] = fB = [bij ]n�pg;
B1 2 [Bm1 ; B

M
1 ] = fB1 = [b1ij ]n�qg;

E 2 [Em; EM ] = fE = [eij ]n�ng;
E1 2 [Em1 ; E

M
1 ] = fE1 = [e1ij ]n�ng;

C 2 [Cm; CM ] = fC = [cij ]n�ng;
D 2 [Dm; DM ] = fD = [dij ]n�qg:

Then, we can rewrite A;A1; B;B1; E;E1; C and D as
follows:8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

A =A0 + ~A = A0 +
Xn

i;j=1
ei~aijeTj ;

j~aij j � j�aij j;
A1 =A10 + ~A1 = A10 +

Xn

i;j=1
ei~a1ijeTj ;

j~a1ij j � j�a1ij j;
B =B0 + ~B = B0 +

Xn

i=1

Xp

j=1
ei~bijhTj ;

j~bij j � j�bij j;
B1 =B10 + ~B1 = B10 +

Xn

i=1

Xq

j=1
ei~b1ijfTj ;

j~b1ij j � j�b1ij j;
E =E0 + ~E = E0 +

Xn

i;j=1
ei~eijeTj ;

j~eij j � j�eij j;
E1 =E10 + ~E1 = E10 +

Xn

i;j=1
ei~e1ijeTj ;

j~e1ij j � j�e1ij j;
C =C0 + ~C = C0 +

Xn

i;j=1
ei~cijeTj ;

j~cij j � j�cij j;
D =D0 + ~D = D0 +

Xn

i=1

Xq

j=1
ei ~dijfTj ;

j ~dij j � j�dij j;

(2)

where ek 2 Rn; hk 2 Rp; fk 2 Rq denote the column
vector with the kth element being 1 and others being 0.

Throughout this paper, we shall use the following
de�nitions for System (1).

De�nition 1. The stochastic interval system (1),
(u(t) = 0; v(t) = 0), with interval time-varying
delay is said to be stochastically mean-square stable

if there exists �(") > 0, for any " > 0, satisfying
sup
�h�t�0

fEj'(t)jg < �("), we have:

Efjjx(t)jj2g < ";

which is said to be stochastically mean-square
asymptotically stable if, for any initial condition,
lim
t!1Efjjx(t)jj2g = 0 holds.

De�nition 2. The stochastic interval system (1),
(u(t) = 0), with interval time-varying delay is said to
be stochastically passive with dissipation rate, 
, if for
any v(t) 2 L2[0;1), under zero initial state condition,
there exists 
 > 0 such that:

E
�Z t

0
vT (s)z(s)ds

�
� �2
E

�Z t

0
vT (s)v(s)ds

�
for all t > 0:

The purpose of this paper is to design a memory-
less state feedback controller, for the given system (1)
and a prescribed dissipation rate, 
 > 0, such that the
corresponding closed-loop system is stochastically sta-
ble and stochastically passive with dissipation rate, 
.

3. Passivity for stochastic interval systems
with interval time-varying delay

First, let us give the following lemmas, which will play
an indispensable role in deriving our main results.

Lemma 1 (Schur complement). Given constant
matrices, �1, �2 and �3, with appropriate dimensions,
where �T1 = �1 and �T2 = �2, then:

�1 + �T3 ��1
2 �3 < 0;

if and only if:�
�1 �T3
�3 ��2

�
< 0 or

���2 �3
�T3 �1

�
< 0:

Lemma 2 [33]. Given appropriately dimensioned
matrices,  ;H and G, with  =  T , then:

 +HF (t)G+GTFT (t)HT < 0;

holds for all F (t), satisfying FT (t)F (t) � I if and only
if for some " > 0,

 + "HHT + "�1GTG < 0:

Lemma 3 [26]. Let M1;M2;M3 and � > 0 be given
constant matrices with appropriate dimensions. Then,
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2666666666666664

� A10X 0 S4 F5 XF1 0 H� 0 0
� �(1� d)S1 � 2S5 S5 S5 0 XF2 0 0 ~H 0
� � �S2 � S5 0 0 0 0 0 0 0
� � � �S3 � S4 � S5 0 0 0 0 0 0
� � � � �J� F3 F4 0 0 ~H�
� � � � � �J 0 0 0 0
� � � � � � � ~J 0 0 0
� � � � � � � �U 0 0
� � � � � � � � U� 0
5� � � � � � � � � � ~U�

3777777777777775
< 0: (8)

Box I

for any scalar " > 0, satisfying "I �MT
2 �M2 > 0, we

have:

(M1 +M2M3)T�(M1 +M2M3) �MT
1 (��1

� "�1M2MT
2 )�1M1 + "MT

3 M3:

Lemma 4 [34]. For any symmetric positive de�nite
matrix, R > 0, and vector function, x(t) : [0; h] !Rn,
such that the integrations concerned are well de�ned,
the following inequality holds:

�h
Z h

0
xT(s)Rx(s)ds � �

Z h

0
xT (s)ds:R:

Z h

0
x(s)ds:

For convenience, the following new state variables:

y(t) = Ax(t) +A1x(t� h(t)); (3)

f(t) = Ax(t) +A1x(t� h(t)) +B1V (t); (4)

k(t)=Ax(t)+A1x(t� h(t))+Bu(t)+B1V (t); (5)

and the following new perturbation variable:

g(t) = Ex(t) + E1x(t� h(t)); (6)

are de�ned, then System (1) can be rewritten as:

dx(t) = k(t)dt+ g(t)d!(t): (7)

3.1. Interval time-varying delay with upper
and non-zero lower bounds

In the following theorem, a delay-dependent LMI
approach is used to solve the passivity problem for the
stochastic interval system (1), (u(t) = 0), with interval
time-varying delay, and the su�cient conditions are
derived ensuring the solvability of the problem.

Theorem 1. Given scalars, h2 � h1 � 0, d > 0
and 
 > 0, the stochastic interval system (1), (u(t) =
0), with interval time-varying delay is stochastically
passive, if there exist semi-positive de�nite matrices,

X � 0, Si � 0 ( i = 1; 2; � � � ; 5); Tj � 0; Zj � 0 (j =
1; 2), and positive scalars, "1 > 0, "2 > 0, �kij>0(i; j =
1; 2; � � � ; n; k = 1; 2; � � � ; 12; 14); �kij > 0 (i =
1; 2; � � � ; n; j = 1; 2; � � � ; q; k = 13; 15; � � � ; 19),
such that the following linear matrix inequalities hold:

Relation (8) is shown in Box I,��T1 0
0 �Z1

�
� 0; (9)��T2 0

0 �Z2

�
� 0; (10)

where:
F1 [AT0 AT0 AT0 AT0 ET0 ];

F2 [AT10 AT10 AT10 AT10 ET10],

F3 [0 0 BT10 BT10 0];

F4 [BT10 BT10];

F5 B10 �XCT0 ;
J1 h�1

1 Z1 � "1I ��3 ��8;

J2 h�1
12 Z2 � "2I ��4 ��9;

J3 2h�2
1 X � h�2

1 S4 ��5 ��10 ��16,

J4 h�2
12 X � h�2

12 S5 ��6 ��11 ��17,
J5 X ��7 ��12,
J6 "1I ��18,
J7 "2I ��19,
J� 
I +D0 +DT

0 ��13 ��14 ��15,
h12 h2 � h1;
J diag fJ1; J2; J3; J4; J5g,
~J diag fJ6; J7g,
~H [HHHHHH],
H [X; :::;X| {z }

n

],
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I [I; :::; I| {z }
n

],

~H� [IIIII],
H� [HHHHHHIH],
~U diag fU1 U3 U4 U5 U6 U7g;
~U� diag fU15 U16 U17 U18 U19g,
U� diag fU2 U8 U9 U10 U11 U12g,
U diag fU1 U3 U4 U5 U6 U7 U13 U14g;
Uk diag f�k11; : : : ; �kn1; : : : ; �k1q; : : : ; �knq g

(k = 13; 15);
Uk diag f�k11; : : : ; �k1n; : : : ; �kn1; : : : ; �knn g

(k = 1; 2; � � � ; 12; 14),
Uk diagf�k11; : : : ; �k1q; : : : ; �kn1; : : : ; �knq g

(k = 16; 17; 18; 19),

�1
Pn
i;j=1 �1ij�a2

ijeieTi ;

�2
Pn
i;j=1 �2ij�a2

1ijeieTi ;

�3
Pn
i;j=1 �3ij�a2

ijeieTi ;

�4
Pn
i;j=1 �4ij�a2

ijeieTi ,

�5
Pn
i;j=1 �5ij�a2

ijeieTi ;

�6
Pn
i;j=1 �6ij�a2

ijeieTi ;

�7
Pn
i;j=1 �7ij�e2

ijeieTi ;

�8
Pn
i;j=1 �8ij�a2

1ijeieTi ;

�9
Pn
i;j=1 �9ij�a2

1ijeieTi ;

�10
Pn
i;j=1 �10ij�a2

1ijeieTi ;

�11
Pn
i;j=1 �11ij�a2

1ijeieTi ;

�12
Pn
i;j=1 �12ij�e2

1ijeieTi ,

�13
Pn
i=1
Pq
j=1 �13ij�b21ijfjfTj ;

�14
Pn
i;j=1 �14ij�c2ijeieTi ;

�15
Pn
i=1
Pq
j=1 �15ij�d2

ijfjfTj ;

�16
Pn
i=1
Pq
j=1 �16ij�b21ijeieTi ;

�17
Pn
i=1
Pq
j=1 �17ij�b21ijeieTi ;

�18
Pn
i=1
Pq
j=1 �18ij�b21ijeieTi

�19
Pn
i=1
Pq
j=1 �19ij�b21ijeieTi

and:

� =A0X +XAT0 + h1T1 + h12T2 + S1 + S2 + S3

� S4 + �1 + �2: (11)

Proof. Choose the following Lyapunov-Krasovskii
functional candidate for System (1):

V (x(t); t) =V1(x(t); t) + V2(x(t); t) + V3(x(t); t)

+ V4(x(t); t) + V5(x(t); t); (12)

with:

V1(x(t); t) = xT (t)Px(t);

V2(x(t); t) =
Z t

t�h1

xT (s)Q2x(s)ds;

V3(x(t); t) =
Z t

t�h(t)
xT (s)Q1x(s)ds

+
Z t

t�h2

xT (s)Q3x(s)ds;

V4(x(t); t) =
Z 0

�h1

Z t

t+�
yT (s)R1y(s)dsd�

+
Z 0

�h1

Z t

t+�
h1 _xT (s); Q4 _x(s)dsd�;

V5(x(t); t) =
Z h1

�h2

Z t

t+�
yT (s)R2y(s)dsd�

+
Z h1

�h2

Z t

t+�
h12 _xT (s)Q5 _x(s)dsd�;

in which P , Qi (i = 1; 2; 3; 4; 5), Rj (j = 1; 2) are all
symmetric positive de�nite matrices with appropriate
dimensions to be determined.

Then, the stochastic di�erential of V (x(t); t)
along System (1) with v(t) = 0 and u(t) = 0 can be
obtained as follows:

dV (x(t); t)=LV (x(t); t)dt+2xT (t)Pg(t)d!(t); (13)

where:

LV (x(t); t)=LV1(x(t); t)+LV2(x(t); t)+LV3(x(t); t)

+ LV4(x(t); t) + LV5(x(t); t): (14)

It is easy to know that:

LV1(x(t); t) = 2xT (t)Py(t)+gT (t)Pg(t)=xT (t)(PA

+ATP )x(t) + 2xT (t)PA1x(t� h(t))

+ [Ex(t) + E1x(t� h(t))]TP [Ex(t)

+ E1x(t� h(t))]; (15)

LV2(x(t); t)=xT (t)Q2x(t)�xT (t�h1)Q2x(t�h1);
(16)



C. Wang et al./Scientia Iranica, Transactions B: Mechanical Engineering 21 (2014) 628{646 633

LV3(x(t); t) =xT (t)Q1x(t)� (1� _h(t))xT (t

� h(t))Q1x(t� h(t)) + xT (t)Q3x(t)

� xT (t� h2)Q3x(t� h2) � xT (t)(Q1

+Q3)x(t)� (1� d)xT (t� h(t))Q1x(t

� h(t))� xT (t� h2)Q3x(t� h2); (17)

LV4(x(t); t) = h1yT (t)R1y(t)�
Z t

t�h1

yT (s)R1y(s)ds

+h2
1 _xT (t)Q4 _x(t)�

Z t

t�h1

h1 _xT(s)Q4 _x(s)ds

= h1yT (t)R1y(t)�
Z t

t�h1

yT (s)R1y(s)ds

�
Z t

t�h1

h1 _xT(s)Q4 _x(s)ds+h2
1[Ax(t)+A1x(t

� h(t))]TQ4[Ax(t)+A1x(t� h(t))]; (18)

LV5(x(t); t) = h12yT (t)R2y(t)�
Z t�h1

t�h2

yT (s)R2y(s)ds

+ h2
12 _xT (t)Q5 _x(t)

�
Z t�h1

t�h2

h12 _xT (s)Q5 _x(s)ds

=h12yT (t)R2y(t)�
Z t�h1

t�h2

yT (s)R2y(s)ds;

�
Z t�h1

t�h2

h12 _xT (s)Q5 _x(s)ds

+ h2
12[Ax(t) +A1x(t� h(t))]TQ5[Ax(t)

+A1x(t� h(t))]; (19)

Using Lemma 3 and Eq. (3), we have:

h1yT (t)R1y(t) =[Ax(t)+A1x(t� h(t))]T (h1R1)

[Ax(t) +A1x(t� h(t))] � [Ax(t)

+A1x(t�h(t))]T [(h1R1)�1

�"1I]�1[Ax(t)+A1x(t�h(t))]; (20)

h12yT (t)R2y(t) =[Ax(t)+A1x(t� h(t))]T (h12R2)

[Ax(t) +A1x(t� h(t))] � [Ax(t)

+A1x(t� h(t))]T [(h12R2)�1

� "2I]�1[Ax(t) +A1x(t� h(t))]: (21)

For Eq. (18), by Lemma 4, we can know:

�
Z t

t�h1

h1 _xT (s)Q4 _x(s)ds ��
Z t

t�h1

_xT (s)dsQ4Z t

t�h1

_x(s)ds =�(x(t)T � x(t

� h2)T )Q4(x(t)� x(t� h2)): (22)

On the other hand, we can calculate from Lemma 4
that:

�
Z t�h1

t�h2

h12 _xT (s)Q5 _x(s)Q5 _x(s)ds =

�
Z t�d(t)

t�h2

h12 _xT (s)Q12 _x(s)ds

�
Z t�h1

t�d(t)
h12 _xT (s)Q5 _x(s)ds

� �
Z t�h1

t�d(t)
_xT (s)dsQ5

Z t�h1

t�d(t)
_x(s)ds

�
Z t�d(t)

t�h2

_xT (s)dsQ5

Z t�d(t)

t�h2

_x(s)ds

� �(xT (t� d(t))� xT (t� h2))Q5(x(t

� d(t))� x(t� h2))� (xT (t� h1)

� xT (t� d(t)))Q5(x(t� h1)� x(t� d(t))):
(23)

Noticing that for any semi-positive matrices W1 � 0
and W2 � 0, the following equations hold:

h2xT (t)W1x(t)�
Z t

t�h2

xT (t)W1x(t)ds = 0; (24)

h12xT (t)W2x(t)�
Z t�h1

t�h2

xT (t)W2x(t)ds = 0: (25)

Adding the left side of Eqs. (25) and (26) and
substituting Eqs. (16)-(24) into Eq. (15), then, taking
expectation leads to:
EfLV (x(t); t)g � Ef�T (t)��(t)

+
Z t

t�h2

�T (t; s)�1�(t; s)ds

+
Z t�h1

t�h2

�T (t; s)�2�(t; s)dsg; (26)
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where:

�1=

2664�11+ ~�11 �12 0 Q4� �22 Q5 Q5� � �Q2�Q5 0
� � � �Q3�Q4�Q5

3775 ;
(27)

�1 =
��W1 0

0 �R1

�
; (28)

�2 =
��W2 0

0 �R2

�
; (29)

with:

�(t)=[xT (t); xT (t� h(t)); xT (t� h1); xT (t� h2)]T ;

�(t; s) = [xT (t); yT (s)]T ; Wi = PTiP > 0; i = 1; 2

�11 =PA+ATP + h2 W1 + h12W2 +Q1 +Q2

+Q3 �Q4;

~�11 =ETPE +AT [(h1R1)�1 � "1I]�1A

+AT [(h12R2)�1 � "2I]�1A+ h2
1A

TQ4A

+ h2
12A

TQ5A;

�12 =PA1 + ETPE1 +AT [(h1R1)�1 � "1I]�1A1

+AT [(h12R2)�1 � "2I]�1A1 + h2
1A

TQ4A1

+ h2
12A

TQ5A1;

�22 =� (1� d)Q1 � 2Q5 + ET1 PE1 +AT1 [(h1R1)�1

� "1I]�1A1 +AT1 [(h12R2)�1 � "2I]�1A1

+ h2
1A

T
1 Q4A1 + h2

12A
T
1 Q5A1: (30)

It remains to show that � < 0;�1 < 0 and �2 < 0.
Applying the Schur Complement shows that � < 0 if
and only if: (refer to Eq. (31) shown in Box II).

In addition, let P = X�1; Qi = PSiP > 0 (i =
1; 2; 3; 4; 5); Rj = Z�1

j (j = 1; 2), pre- and post-
multiplying (31) by diagfX; X; X; X; I; I; I; I; Ig
result in Relation (32), shown in Box III, with:

��11 =AX+XAT +h1T1 + h12T2 + S1 + S2 + S3�S4:

Similarly, pre- and post-multiplying �1 < 0 and �2 < 0
by diagfX;Zg yields:

��1 =
��T1 0

0 �Z1

�
< 0; ��2 =

��T2 0
0 �Z2

�
< 0:

(33)

Note that we use the shorthand <n
[(R1)i1;j1 ; (R2)i2;j2 ; � � � ; (Rr)ir;jr ] to represent a
nth-order block square matrix, whose all nonzero
blocks are the i1 j1th block R1, the i2 j2th block
R2; � � � ; the ir jrth block Rr, and all other blocks
are zero matrices. Then, matrix � can be rearranged
in Eq. (34) as shown in Box IV.

It follows from Lemma 2 and Eqs. (2) that, for any
real scalars �1ij > 0 (i; j = 1; 2; � � � ; n), the following
holds:

	1 = [X; 0; 0; 0; 0; 0; 0]T [( ~A)T ; 0; 0; 0; 0; 0; 0]

+[( ~A)T ; 0; 0; 0; 0; 0; 0]T [X; 0; 0; 0; 0; 0; 0]

=
Xn

i;j=1
f[X; 0; 0; 0; 0; 0; 0]T[(ei~ajeTj )T; 0; 0; 0; 0; 0; 0]

+[(ei~aijeTj )T ; 0; 0; 0; 0; 0; 0]T [X; 0; 0; 0; 0; 0; 0]g
=
Xn

i;j=1
f[eTj X; 0; 0; 0; 0; 0; 0]T[(ei~aij)T; 0; 0; 0; 0; 0; 0]

+[(ei~aij)T ; 0; 0; 0; 0; 0; 0]T [eTj X; 0; 0; 0; 0; 0; 0]g
�Xn

i;j=1
f��1

1ij [e
T
j X; 0; 0; 0; 0; 0; 0]T[eTj X; 0; 0; 0; 0; 0; 0]

+�1ij�a2
ij [(ei)

T ; 0; 0; 0; 0; 0; 0]T [eTi ; 0; 0; 0; 0; 0; 0]g
=<7[(�1)1;1]+[H; 0; 0; 0; 0; 0; 0]TU�1

1 [H; 0; 0; 0; 0; 0; 0]

= <7[(�1 +HTU�1
1 H)1;1]:

266666664
�11 PA1 0 Q4 AT AT AT AT ET

� �(1� d)Q1 � 2Q5 Q5 Q5 AT1 AT1 AT1 AT1 ET1� � �Q2 �Q5 0 0 0 0 0 0
� � � �Q3 �Q4 �Q5 0 0 0 0 0
� � � � "1I � (h1R1)�1 0 0 0 0
� � � � � "2I � (h12R2)�1 0 0 0
� � � � � � �(h2

1Q4)�1 0 0
� � � � � � � �(h2

12Q5)�1 0
� � � � � � � � �P�1

377777775<0

(31)

Box II
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� =

266666664
��11 A1X 0 S4 XAT XAT XAT XAT XET

� �(1� d)S1 � 2S5 S5 S5 XAT1 XAT1 XAT1 XAT1 XET1� � �S2 � S5 0 0 0 0 0 0
� � � �S3 � S4 � S5 0 0 0 0 0
� � � � "1I � h�1

1 Z1 0 0 0 0
� � � � � "2I � h�1

12 Z2 0 0 0
� � � � � � �h�2

1 Q�1
4 0 0

� � � � � � � �h2
12Q
�1
5 0

� � � � � � � � �X

377777775 < 0:
(32)

Box III

� =

26666666666664

��110 A1X 0 S4 XAT XAT XAT XAT XET
� �(1�d)S1�3S5 2S5 S5 XAT1 XAT1 XAT1 XAT1 XET1� � �S2�2S5 0 0 0 0 0 0
� � � �S3�S4�S5 0 0 0 0 0
� � � � "1I�h�1

1 Z1 0 0 0 0
� � � � � "2I�h�1

12Z2 0 0 0
� � � � � � �h�2

1 Q�1
4 0 0

� � � � � � � �h�2
12Q

�1
5 0

� � � � � � � � �X

37777777777775
+<9[(~��11)1;1]1;1 + <9[( ~A1X)1;2; (X( ~A1)T )2;1] + <9[(X( ~A)T )1;5; ( ~AX)5;1] + <9[(X( ~A)T )1;6; ( ~AX)6;1]

+<9[(X( ~A)T )1;7; ( ~AX)7;1] + <9[(X( ~A)T )1;8; ( ~AX)8;1] + <9[(X( ~E)T )1;9; ( ~EX)9;1]

+<9[(X( ~A1)T )2;5; ( ~A1X)5;2] + <9[(X( ~A1)T )2;6; ( ~A1X)6;2] + <9[(X( ~A1)T )2;7; ( ~A1X)7;2]

+<9[(X( ~A1)T )2;8; ( ~A1X)8;2] + <9[(X( ~E1)T )2;9; ( ~E1X)9;2]

= 	0 + 	1 + 	2 + 	3 + 	4 + 	5 + 	6 + 	7 + 	8 + 	9 + 	10 + 	11 + 	12; (34)

where:

��110 = A0X +XAT0 + h1T1 + h12T2 + S1 + S2 + S3 � S4; ~��11 = ~AX +X ~AT :

Box IV

�1; U1 and H were de�ned in Eq. (11).
Similarly, for any scalars, �kij > 0 (i;j = 1;

2; � � � ; n; k = 2; 3; � � � ; 12), we have:

	2 � <9[(�2)2;2]

+ [0;H; 0; 0; 0; 0; 0]TU�1
2 [0;H; 0; 0; 0; 0; 0]

= <9[(�2)1;1 + (HTU�1
2 H)2;2];

	3 � <9[(�3)5;5]

+ [H; 0; 0; 0; 0; 0; 0]TU�1
3 [H; 0; 0; 0; 0; 0; 0]

= <9[(�3)5;5 + (HTU�1
3 H)1;1];

	4 � <9[(�4)6;6]

+ [H; 0; 0; 0; 0; 0; 0]TU�1
4 [H; 0; 0; 0; 0; 0; 0]

= <9[(�4)6;6 + (HTU�1
4 H)1;1];

	5 � <9[(�5)7;7]

+ [H; 0; 0; 0; 0; 0; 0]TU�1
5 [H; 0; 0; 0; 0; 0; 0]

= <9[(�5)7;7 + (HTU�1
5 H)1;1];

	6 � <9[(�6)8;8] + [H; 0; 0; 0; 0; 0; 0]TU�1
6 [H; 0; 0; 0; 0; 0; 0]

= <9[(�6)8;8 + (HTU�1
6 H)1;1];
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~� =

266666666666666664

~�1 A10X 0 S4 XAT0 XAT0 XAT0 XAT0 XET0 ~H 0
� �(1� d)S1 � 2S5 S5 S5 XAT10 XAT10 XAT10 XAT10 XAT10 0 ~H
� � �S2 � S5 0 0 0 0 0 0 0 0
� � � �S3 � S4 � S5 0 0 0 0 0 0 0
� � � � �J1 0 0 0 0 0 0
� � � � � �J2 0 0 0 0 0
� � � � � � � ~J3 0 0 0 0
� � � � � � � � ~J4 0 0 0
� � � � � � � � �J5 0 0
� � � � � � � � � � ~U 0
� � � � � � � � � � �U�

377777777777777775
where: ~J3 = h�2

1 XS�1
4 X ��5 ��10; ~J4 = h�2

12 XS
�1
5 X ��6 ��11; and J1; J2; J5; ~H; ~U;U�were de�ned in

Eq. (11) with ~�1 = ��110 + �1 + �2:

Box V

	7 � <9[(�7)9;9]

+ [H; 0; 0; 0; 0; 0; 0]TU�1
7 [H; 0; 0; 0; 0; 0; 0]

= <9[(�7)9;9 + (HTU�1
7 H)1;1];

	8 � <9[(�8)5;5]

+ [0;H; 0; 0; 0; 0; 0]TU�1
8 [0;H; 0; 0; 0; 0; 0]

= <9[(�8)5;5 + (HTU�1
8 H)2;2];

	9 � <9[(�9)6;6]

+ [0;H; 0; 0; 0; 0; 0]TU�1
9 [0;H; 0; 0; 0; 0; 0]

= <9[(�9)6;6 + (HTU�1
9 H)2;2];

	10 � <9[(�10)7;7]

+ [0;H; 0; 0; 0; 0; 0]TU�1
10 [0;H; 0; 0; 0; 0; 0]

= <9[(�10)7;7 + (HTU�1
10 H)2;2];

	11 � <9[(�11)8;8]

+ [0;H; 0; 0; 0; 0; 0]TU�1
11 [0;H; 0; 0; 0; 0; 0]

= <9[(�11)8;8 + (HTU�1
11 H)2;2];

	12 � <9[(�12)9;9]

+ [0;H; 0; 0; 0; 0; 0]TU�1
12 [0;H; 0; 0; 0; 0; 0]

= <9[(�12)9;9 + (HTU�1
12 H)2;2]:

where �2;�3;�4;�5;�6;�7;�8;�9;�10;�11;�12; U2;
U3; U4; U5; U6; U7; U8; U9; U10; U11; U12 were de�ned in
Eq. (11).

According to the Schur Complement Lemma, � <
0 is equivalent to:

~� < 0; (35)

where: (please refer to Box V).
Condition ~� < 0 still cannot be implemented

using standard numerical software, due to the existence
of the terms XS�1

4 X and XS�1
5 X. By noticing that

S4 � 0 and S5 � 0, we have (S4 �X)S�1
4 (S4 �X) � 0

and (S5 �X)S�1
5 (S5 �X) � 0 which is equivalent to:

�XS�1
4 X � S4 � 2X;

�XS�1
5 X � S5 � 2X: (36)

By combining Relations (35) and (36), we readily
obtain the LMI by Eq. (37) as shown in Box VI.

Obviously, Condition (8) results in Relation (37).
Because Conditions (9) and (10) are satis�ed, we can
get EfLV (x(t); t)g < 0, which indicates that the
stochastic interval system (1) (v(t) = 0, u(t) = 0), with
interval time-varying delay, is stochastically mean-
square asymptotically stable.

Next, consider the stochastic passivity for
stochastic interval system (1) (u(t) = 0) with in-
terval time-varying delay; we modify the Lyapunov-
Krasovskii functional candidate (12), as:

~V (x(t); t) =V1(x(t); t) + V2(x(t); t) + V3(x(t); t);

+ ~V4(x(t); t) + ~V5(x(t); t); (38)
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266666666666666664

~�1 A10X 0 S4 XAT0 XAT0 XAT0 XAT0 XET0 ~H 0
� �(1� d)S1 � 2S5 S5 S5 XAT10 XAT10 XAT10 XAT10 XAT10 0 ~H
� � �S2 � S5 0 0 0 0 0 0 0 0
� � � �S3 � S4 � S5 0 0 0 0 0 0 0
� � � � �J1 0 0 0 0 0 0
� � � � � �J2 0 0 0 0 0
� � � � � � �J3 0 0 0 0
� � � � � � � �J4 0 0 0
� � � � � � � � �J5 0 0
� � � � � � � � � � ~U 0
� � � � � � � � � � �U�

377777777777777775
< 0;

(37)

J3; J4 were de�ned in Eq. (11).

Box VI

with:

V1(x(t); t) = xT (t)Px(t);

V2(x(t); t) =
Z t

t�h1

xT (s)Q2x(s)ds;

V3(x(t); t) =
Z t

t�h(t)
xT (s)Q1x(s)ds

+
Z t

t�h2

xT (s)Q3x(s)ds;

V4(x(t); t) =
Z 0

�h1

Z t

t+�
fT (s)R1f(s)dsd�

+
Z 0

�h1

Z t

t+�
h2 _xT (s)Q4 _x(s)dsd�;

V5(x(t); t) =
Z h1

�h2

Z t

t+�
fT (s)R2f(s)dsd�

+
Z h1

�h2

Z t

t+�
h12 _xT (s)Q5 _x(s)dsd�;

with v(t) 6= 0, it can be derived by Itô's di�erential
formula that:

d ~V (x(t); t)=L ~V (x(t); t)dt+2xT (t)Pg(t)d!(t); (39)

Using Lemma 3 and Eq. (3), we have:

h1fT (t)R1f(t) = [Ax(t) +A1x(t� h(t))

+B1v(t)]T (h1R1)[Ax(t) +A1x(t� h(t))

+B1v(t)]� [Ax(t)+A1x(t�h(t))]T [(h1R1)�1

� "1I]�1[Ax(t) +A1x(t� h(t))]

+ "�1
1 vT (t)BT1 B1v(t);

h12fT (t)R2f(t) = [Ax(t) +A1x(t� h(t))

+B1v(t)]T (h12R2)[Ax(t) +A1x(t� h(t))

+B1v(t)] � [Ax(t) +A1x(t

�h(t))]T [(h12R2)�1�"2I]�1[Ax(t)+A1x(t

� h(t))] + "�1
2 vT (t)BT1 B1v(t):

Similar to the above progress, for:

�(t)=[xT(t); xT(t�h(t)); xT(t�h1); xT(t�h2); vT(t)]T;

�(t; s) = [xT (t); fT (s)]T ;

we can obtain that:

EL ~V (x(t); t) � Ef�T (t)��(t)

+
Z t

t�h1

�T (t; s)�1�(t; s)ds

+
Z t�h1

t�h2

�T (t; s)�2�(t; s)dsg; (40)

where:

�=

264�11+~�11 �12 0 Q4 PB1+�15� �22 Q5 Q5 �25� � �Q2�Q5 0 0
� � � �Q3�Q4�Q5 0
� � � � �55

375 ;
(41)



638 C. Wang et al./Scientia Iranica, Transactions B: Mechanical Engineering 21 (2014) 628{646

with:

�15 = h2
1A

TQ4B1 + h2
12A

TQ5B1;

�25 = h2
1A

T
1 Q4B1 + h2

12A
T
1 Q5B1;

�55 =("�1
1 + "�1

2 )BT1 B1 + h2
1B

T
1 Q4B1

+ h2
12B

T
1 Q5B1;

and matrix elements �11; ~�11;�12;�22 are de�ned in
the proof process of Theorem 1.

Then, let F (t) = L ~V (x(t); t) � 2vT (t)z(t) �

vT (t)v(t). Taking expectation leads to:

EfF (t)g � Ef�T (t)
�(t)+
Z t

t�h1

�T (t; s)�1�(t; s)ds

+
Z t�h1

t�h2

�T (t; s)�2�(t; s)dsg;
where:


 =

266664
�11+ ~�11 �12 0
� �22 Q5� � �Q2�Q5� � �
� � �
Q4 PB1�CT + �15
Q5 �25
0 0

�Q3�Q4�Q5 0
� �
I�D�DT+�55

377775 : (42)

After some manipulations, using contragradient trans-
formation and the Schur Complement Lemma, the
inequality 
 < 0 can be shown to be equivalent to
� < 0, where: (please refer to Box VII).

On the other hand, from the above proving proce-
dures, by applying the Schur Complement to Relation
(8), after tedious but straightforward calculation, this
results in:

� < 0; �1 < 0; �2 < 0:

Therefore, we can conclude that EfF (t)g < 0.
Consider zero initial state conditions, for all t > 0;

we can obtain:

2Ef
Z t

0
vT (s)z(s)dsg = Ef

Z t

0
[L ~V (x(s); s)

� F (s)� 
vT (s)v(s)]dsg � Ef
Z t

0
[L ~V (x(s); s)

� 
vT (s)v(s)]dsg = Ef ~V (x(t); t)g � EfV1(0)g

� 
Ef
Z t

0
vT (s)v(s)dsg��
Ef

Z t

0
vT (s)v(s)dsg;

and it follows that the stochastic interval system (1)
(u(t) = 0) with interval time-varying delay is stochas-
tically passive.

Remark 1. Theorem 1 is delay-dependent, which
is generally less conservative than delay-independent
results. Moreover, Theorem 1 is applicable to d, not
necessarily restricted to being less than 1, as in many
works on delay systems using the Lyapunov-Krasovskii
approach. The relaxation of the condition brought
about the use of Lemma 4 and the exploitation of h(t),
h2 � h(t) and h(t)� h1.

Remark 2. When estimating LV (x(t); t), we have not
introduced any free weighting matrices, as [34], thus,
making Theorem 1 only involve the matrix variables in
the Lyapunov functional. From a mathematical point
of view, it is simple.

Remark 3. It is worth mentioning that a
much tighter bounding technology for cross terms
is adopted in the proof of Theorem 1. To re-
duce the conservatism � R t�h1

t�h2
h12 _xT (s)Q5 _x(s)ds is

not simply enlarged as � R t�h1

t�d(t) h12 _xT (s)Q5 _x(s)ds; but

� R t�d(t)
t�h2

h12 _xT (s)Q5 _x(s)ds is retained as well. Fur-
thermore, the latter is not over bounded with �(h2 �
d(t))

R t�d(t)
t�h2

h12 _xT (s)Q5 _x(s)ds, but rather �(d(t) �

� =

26666666666666666666664

�11 A1X 0 S4 B1 �XCT XAT XAT XAT XAT XET 0 0
� �(1 � d)S1 � 2S5 S5 S5 0 XAT1 XAT1 XAT1 XAT1 XET1 0 0
� � �S2 � S5 0 0 0 0 0 0 0 0 0
� � � �S3 � S4 � S5 0 0 0 0 0 0 0 0
� � � � �
I �D �DT 0 BT1 BT1 0 0 BT1 BT1
� � � � � "1I � h�1

1 Z1 0 0 0 0 0 0

� � � � � � "2I � h�1
12 Z2 0 0 0 0 0

� � � � � � � �h�2
1 Q�1

4 0 0 0 0

� � � � � � � � �h�2
12 Q

�1
5 0 0 0

� � � � � � � � � �X 0 0
� � � � � � � � � � �"1I 0
� � � � � � � � � � � �"2I

37777777777777777777775

Box VII
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h1)
R t�d(t)
t�h2

h12 _xT (s)Q5 _x(s)ds is taken into account.
Therefore, the passivity criteria derived here are ex-
pected to be less conservative. Further, Lemma 4 is
a more general and tighter bounding technology for
dealing with cross terms.

3.2. Time-varying delay with upper and zero
lower bounds

Theorem 1 considers the case of h1 � h(t) � h2. If
we do not consider the lower bound of the delay, i.e.
0 � h(t) � h2, we can draw the following corollary.

Corollary 1. Given scalars h2 > 0, d > 0 and 
 > 0,
the stochastic interval system (1) (u(t) = 0), with
interval time-varying delay is stochastically passive, if
there exist positive de�nite matrices, X > 0, Si >
0 (i = 1; 3; 5); T1 > 0; Z1 > 0, and positive scalars, "1 >
0 �kij > 0 (i; j = 1; 2; � � � ; n; k = 1; 2; � � � ; 8; 10); �kij >
0 (i = 1; 2; � � � ; n; j = 1; 2; � � � ; q; k = 9; 11; 12; 13),
such that Relation (9) and linear matrix inequality (43)
shown in Box VIII, hold:
Proof. For h1 = 0 and h12 = h2 � h1 = h2,
choose V1(x(t); t), V3(x(t); t) and V5(x(t); t) and remove
V2(x(t); t) and V4(x(t); t) from Eq. (12). Construct
�T (t) = [xT (t); xT (t� h(t)); xT (t� h2)]. According to
Lemma 4, we have:

�
Z t

t�h2

h2 _xT (s)Q5 _x(s)ds � �[x(t� h(t))� x(t

� h2)]TQ5[x(t� h(t))� x(t� h2)]

� [x(t)� x(t� h(t))]TQ5[x(t)

� x(t� h(t))]:

Then, the following proof is similar to that for Theo-
rem 1, and is omitted here.

3.3. Time-invariant delay
If the time-delay is time invariant, e.g., h(t) � h and
_h(t) = 0, then we have the following corollary

Corollary 2. Consider the stochastic interval time-
varying delay system (1) (u(t) = 0) with h(t) � h
and _h(t) = 0. Given scalars h2 > 0 and 
 >
0, the system is stochastically passive for any time-
delay satisfying 0 � h � h2, if there exist positive
de�nite matrices, X > 0, S3 > 0, S5 > 0; T1 >
0; Z1 > 0, and positive scalars "1 > 0, �kij >
0 (i; j = 1; 2; � � � ; n; k = 1; 2; � � � ; 8; 10), �kij > 0
(i = 1; 2; � � � ; n; j = 1; 2; � � � ; q; k = 9; 11; 12; 13), such
that Relation (9) and the linear matrix inequality (45)
shown in Box IX hold.

We omit the same matrices expression as in
Corollary 1.

Proof. In Eq. (44), we set d = 0. According to
Lemma 4, we re-arrange some items of the equations,
and then the LMI which is expressed by Relation (45)
can be deduced. We complete the proof.

4. Design of the passive controller for
stochastic interval systems with interval
time-varying delay

Applying Theorem 1 in this section, we aim to propose
a design procedure for a stochastic passive controller
that can achieve passivity of the closed-loop stochas-
tic interval system with interval time-varying delay.
Again, a delay-dependent LMI technique will be used
in order to obtain a less conservative condition. The
main result is given in the following theorem.

Theorem 2. Given scalars h2 � h1 � 0; d > 0
and 
 > 0. If there exist matrix Y , positive de�nite
matrices, X > 0; Si > 0 (i = 1; 2; � � � ; 5); Tj > 0; Zj >
0 (j = 1; 2), and positive scalars, "1 > 0; "2 > 0; �kij>0
(i; j = 1; 2; � � � ; n; k = 1; 2; � � � ; 12; 14); �kij > 0 (i =
1; 2; � � � ; n; j = 1; 2; � � � ; q; k = 13; 15; � � � ; 19); �kij > 0
(i = 1; 2; � � � ; n; j = 1; 2; � � � ; p; k = 20; � � � ; 24), such
that Relations (9) and (10) and the LMI, shown in
Box X, hold:

Then, with the stochastically passive controller
given by:

u(t) = Kx(t); K = Y X�1; (47)

the closed-loop system is stochastically stable and
stochastically passive. We omit the same matrices
expression as Theorem 1.

Proof. Substituting Eq. (47) into System (1) yields
the closed-loop system:

dx(t) = [(A+BK)x(t) +A1x(t� h(t))

+B1v(t)]dt+[Ex(t)+E1x(t�h(t))]d!(t): (48)

The Lyapunov-Krasovskii functional candidate is cho-
sen as:

V (x(t); t) = xT (t)Px(t) +
Z t

t�h(t)
xT (s)Q1x(s)ds

+
Z t

t�h1

xT (s)Q2x(s)ds

+
Z t

t�h2

xT (s)Q3x(s)ds

+
Z 0

�h1

Z t

t+�
h1 _xT (s)Q4 _x(s)dsd�
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26666666666664

� A10X + S5 0 F4 XF1 0 H� 0 0
� �(1� d)S1 � 2S5 �S5 0 XF2 0 0 ~H 0
� � �S3 � S5 0 0 0 0 0 0
� � � �J� F3 BT10 0 0 ~H�
� � � � �J 0 0 0 0
� � � � � �J4 0 0 0
� � � � � � �U 0 0
� � � � � � � �U� 0
� � � � � � � � � ~U�

37777777777775
< 0; (43)

where:

F1 = [AT0 A
T
0 E

T
0 ]; F2 = [AT10A

T
10E

T
10]; F3 = [0BT100]; F4 = B10 �XCT0 ; J4 = "1I ��13;

J1 = h�1
2 Z1 � "1I ��3 ��6; J2 = 2h�2

2 X � h�2
2 S4 ��4 ��7 ��12; J3 = X ��5 ��8;

J� = 
I +D0 +DT
0 ��9 ��10 ��11; ~H� [III]; H = [X; � � � ; X| {z }

n

]; I = [I; � � � ; I| {z }
n

];

~H = [HHHH]; H� = [HHHHIH]; ~U� = diag fU11; U12; U13g; J = diag fJ1; J2; J3g;
U� = diag fU2; U6; U7; U8g; U = diag fU1U3U4U5U9U10g;
Uk = diag f�k11; : : : ; �k1n; : : : ; �kn1; : : : ; �knng(k = 1; 2; � � � ; 8; 10);

Uk = diag f�k11; : : : ; �kn1; : : : ; �k1q; : : : ; �knqg(k = 9; 11);

Uk = diag f�k11; : : : ; �k1q; : : : ; �kn1; : : : ; �knqg(k = 12; 13);

�1 =
Xn

i;j=1
�1ij�a2

ijeie
T
i ; �2 =

Xn

i;j=1
�2ij�a2

1ijeie
T
i ; �3 =

Xn

i;j=1
�3ij�a2

ijeie
T
i ;

�4 =
Xn

i;j=1
�4ij�a2

ijeie
T
i ; �5 =

Xn

i;j=1
�5ij�e2

ijeie
T
i ; �6 =

Xn

i;j=1
�6ij�a2

1ijeie
T
i ;

�7 =
Xn

i;j=1
�7ij�a2

1ijeie
T
i ; �8 =

Xn

i;j=1
�8ij�e2

1ijeie
T
i ; �9 =

Xn

i=1

Xq

j=1
�9ij�b21ijfjf

T
j ;

�10 =
Xn

i;j=1
�10ij�c2ijeie

T
i ; �11 =

Xn

i=1

Xq

j=1
�11ij�d2

ijfjf
T
j ; �12 =

Xn

i=1

Xq

j=1
�12ij�b21ijeie

T
i ;

�13 =
Xn

i=1

Xq

j=1
�13ij�b21ijeie

T
i ; � = A0X +XAT0 + h2T1 + S1 + S3 � S5 + �1 + �2: (44)

Box VIII

+
Z 0

�h1

Z t

t+�
kT (s)R1k(s)dsd�

+
Z h1

�h2

Z t

t+�
h12 _xT (s)Q5 _x(s)dsd�+

+
Z h1

�h2

Z t

t+�
kT (s)R2k(s)dsd�:

Similar to the proof of Theorem 1, which is equivalent

to replacing A with A+BK in Relation (40), we have:

ELV (x(t); t) � Ef�T (t)~��(t)

+
Z t

t�h2

�T (t; s)�1�(t; s)ds

+
Z t�h1

t�h2

�T (t; s)�2�(t; s)dsg;



C. Wang et al./Scientia Iranica, Transactions B: Mechanical Engineering 21 (2014) 628{646 641

266666666664

A0X +XAT0 + h2T1 + S3 � S5 + �1 + �2 A10X + S5 F4 XF1 0 H� 0 0
� �S3 � S5 0 XF2 0 0 ~H 0
� � �J� F3 BT10 0 0 ~H�
� � � �J 0 0 0 0
� � � � �J4 0 0 0
� � � � � �U 0 0
� � � � � � �U� 0
� � � � � � � � ~U�

377777777775
< 0: (45)

Box IX

266666666666666664

~�1 A10X 0 S4 F5 XF1 + Y TBT0 0 H� 0 0 ~Y T

� �(1� d)S1 � 2S5 S5 S5 0 XF2 0 0 ~H 0 0
� � �S2 � S5 0 0 0 0 0 0 0 0
� � � �S3 � S4 � S5 0 0 0 0 0 0 0
� � � � �J� F3 F4 0 0 ~H� 0
� � � � � �J 0 0 0 0 0
� � � � � � � ~J 0 0 0 0
� � � � � � � �U 0 0 0
� � � � � � � � �U� 0 0
� � � � � � � � � � ~U� 0
� � � � � � � � � � �V

377777777777777775
<0;

(46)

where:

V = diagfU20U21U22U23U24g; ~Y = [Y TY TY TY TY T ]T ;

Uk = diagf�k11; : : : ; �k1p; : : : ; �kn1; : : : ; �knpg(k = 20; � � � ; 24); Y = [Y T ; � � � ; Y T| {z }
n

]T ;

BT0 = [BT10B
T
10B

T
10B

T
100]; �20 =

Xn

i=1

Xp

j=1
�20ij�b2ijeie

T
i ; �21 =

Xn

i=1

Xp

j=1
�21ij�b2ijeie

T
i ;

�22 =
Xn

i=1

Xp

j=1
�22ij�b2ijeie

T
i ; �23 =

Xn

i=1

Xp

j=1
�23ij�b2ijeie

T
i ; �24 =

Xn

i=1

Xp

j=1
�24ij�b2ijeie

T
i ;

	 = A0X +XAT0 +B0Y + Y TBT0 + h1T1 + h12T2 + S1 + S2 + S3 � S4 + �1 + �2 + �20:

Box X

where �1 and �2 are de�ned in Eqs. (28) and (29),
�(t; s) = [xT (t); kT (s)]T , and ~� is derived from � in
Eq. (41) by replacing A with A + BK. Similarly, we
have:

EfF (t)g �Ef�T (t)~
�(t)

+
Z t

t�h2

�T (t; s)�1�(t; s)ds

+
Z t�h1

t�h2

�T (t; s)�2�(t; s)dsg;

where ~
 is derived from 
 in Eq. (42) by replacing A
with A+BK.

Along a similar line to that in the proof of
Theorem 1, we can know from Relations (9), (10), (46)
and the expression of K in Eq. (47), that ~
 < 0, �1 <
0;�2 < 0 and, therefore, EfF (t)g < 0, which implies
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that the resulted closed-loop system is stochastically
passive with dissipation rate 
 > 0. The proof is
complete.

Similar to Section 3, when h1 = 0, Theorem 2
reduces to the following corollary.

Corollary 3. The closed-loop system (48) is stochasti-
cally stable and stochastically passive for given h2 > 0,
d > 0, h1 = 0 and 
 > 0 if there exist matrix Y , posi-
tive de�nite matrices, X > 0, Si > 0 (i = 1; 3; 5); T1 >
0; Z1 > 0, and positive scalars, "1 > 0; �kij >
0 (i; j = 1; 2; � � � ; n; k = 1; 2; � � � ; 8; 10); �kij > 0 (i =
1; 2; � � � ; n; j = 1; 2; � � � ; q; k = 9; 11; 12; 13); �kij >
0 (i = 1; 2; � � � ; n; j = 1; 2; � � � ; p; k = 14; 15; 16), such
that Relation (9) and linear matrix inequality (49), as
shown in Box XI, hold:

Then, with the stochastically passive controller
given by:

u(t) = Kx(t); K = Y X�1;

we omit the same matrices expression as Corollary 1.
When the information of the time derivative of

delay is zero, that is h(t) � h and _h(t) = 0, by
eliminating S1 and re-arranging some items of Relation
(49), we have the following result from Corollary 3.

Corollary 4. The closed-loop system (48) is stochas-
tically stable and stochastically passive for given d =
0; 0 � h � h2 and 
 > 0 if there exist matrix Y , pos-
itive de�nite matrices, X > 0; Si > 0 (i = 3; 5); T1 >
0; Z1 > 0, and positive scalars "1 > 0; "3 > 0; �kij >
0 (i; j = 1; 2; � � � ; n; k = 1; 2; � � � ; 8; 10); �kij > 0 (i =
1; 2; � � � ; n; j = 1; 2; � � � ; q; k = 9; 11; 12; 13); �kij >
0 (i = 1; 2; � � � ; n; j = 1; 2; � � � ; p; k = 14; 15; 16), such
that Relation (9) and the linear matrix inequality,
shown in Box XII, hold.

Then, with the stochastically passive controller
given by:

u(t) = Kx(t);K = Y X�1;

we omit the same matrices expression as Corollary 3.

Remark 4. When h1 = 0, Theorem 1 yields
Corollary 1 and Theorem 2 provides Corollary 3. When
h(t) = 0, Theorem 1 results in Corollary 2 and Theo-
rem 2 leads to Corollary 4. The time-invariant system
investigated in the above Corollary 2 and Corollary 4 is
also considered in [34]. Compared with the free matrix
method in [34], our method uses fewer variables while
giving less conservative results. This will be discussed
in detail in the following section.

26666666666666666664

�1 A10X + S5 0 F4 XF1 + Y TBT0 0 H� 0 0 Y T Y T Y T

� �(1� d)S1 � 2S5 S5 0 XF2 0 0 ~H 0 0 0 0
� � �S3 � S5 0 0 0 0 0 0 0 0 0
� � � �J� F3 BT10 0 0 ~H� 0 0 0
� � � � �J 0 0 0 0 0 0 0
� � � � � �J4 0 0 0 0 0 0
� � � � � � �U 0 0 0 0 0
� � � � � � � �U� 0 0 0 0
� � � � � � � � � ~U� 0 0 0
� � � � � � � � � �U14 0 0
� � � � � � � � � � �U15 0
� � � � � � � � � � � U16

37777777777777777775
< 0

(49)

where:

BT0 = [BT10B
T
100]; Uk = diagf�k11; : : : ; �k1p; : : : ; �kn1; : : : ; �knpg(k = 14; 15; 16);

J = diagfJ1 ��15; J2 ��16; J3g; Y = [Y T ; : : : ; Y T| {z }
n

]T ;

�14 =
Xn

i=1

Xp

j=1
�14ij�b2ijeie

T
i ; �15 =

Xn

i=1

Xp

j=1
�15ij�b2ijeie

T
i ; �16 =

Xn

i=1

Xp

j=1
�16ij�b2ijeie

T
i ;

� = A0X +XAT0 +B0Y + Y TBT0 + h1T1 + S1 + S3 � S4 + �1 + �2 + �14

Box XI
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~A1 A10X + S5 F4 XF1 + Y TBT0 0 H� 0 0 Y T Y T Y T

� �S3 � S5 0 XF2 0 0 ~H 0 0 0 0
� � �J� F3 BT10 0 0 ~H� 0 0 0
� � � �J 0 0 0 0 0 0 0
� � � � �J4 0 0 0 0 0 0
� � � � � �U 0 0 0 0 0
� � � � � � �U� 0 0 0 0
� � � � � � � � ~U� 0 0 0
� � � � � � � � �U14 0 0
� � � � � � � � � �U15 0
� � � � � � � � � � �U16

377777777777777775
< 0

where:

~� = A0X +XAT0 +B0Y + Y TBT0 + h1T1 + S3 � S4 + �1 + �2 + �14:

Box XII

5. Numerical examples

In this section, we use examples and compare our
results with previous ones to show the e�ectiveness
and 
exibility of the theory obtained in the previous
section.

5.1. Example 1
Consider the stochastic time-delay system with the
following parameters:

A =
��0:9 �2:2

2:2 �2

�
; A1 =

�
0 0
�2:3 0

�
; B1

�
0:99

1

�
;

B =
�
2
2

�
; E1 =

�
0:55 0:55
0:55 0:55

�
;

C = [0 2]; D = 1:05; E = �I: (50)

In order to compare our results with those in [34], we
choose a simple system as in [34]. The results are
shown in Tables 1 and 2 in terms of di�erent passivity
performance 
.

Case 1. The system in [34] is a special case of
the stochastic interval system (1) with interval time-
varying delay. If the system matrices are not interval
matrix, but known constant matrix, and h(t) � h,
_h(t) = 0, then, System (1) reduces to the systems as
in [34].

Case 2. For � = �0:45 and di�erent values of 
, we
apply Theorem 1 in [34] and Corollary 2 to calculate
the maximal allowable value, h, that guarantees the
stochastical passivity of the autonomous system (B =
[0 0]T ), of Eqs. (50). Table 1 illustrates the numerical
results for di�erent 
, respectively. It can be seen from

Table 1. Maximum upper bound of h with di�erent values of 
.

� = �0:45


 0 0.2 0.5 0.8 1

Theorem 1 in [34] 0.4258 0.435 0.4478 0.4602 0.4678

Corollary 2 0.4934 0.499 0.506 0.5117 0.515

Table 2. Maximum upper bound of h and passive controller gain with di�erent values of 
.

� = 0:55


 0 0.5 1
Theorem 2 in [34]

Feed-back gain
0.6151

[9:4585� 23:7871]
0.6158

[9:4294� 23:8194]
0.6162

[9:3676� 23:797]
Corollary 4

Feed-back gain
0.6749

[�0:6796� 2:2529]
0.6758

[�0:6848� 2:2362]
0.6764

[�0:6881� 2:2252]
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Table 1 that the maximum allowable delay, h, increases
as 
 increases. In addition, it is easy to see that our
proposed passivity criteria give less conservative results
than those in [34].

Case 3. For � = 0:5, 
 = 0, the autonomous
system of Eqs. (50) is not stochastically passive.
According to Corollary 4, we can calculate that the
close-loop system (50) is stochastically passive. That
is to say, under the passive controller, u(t) = Kx(t),
the closed-loop system (50) is stochastically stable and
stochastically passive with dissipation, 
.

Table 2 lists the results of the maximum allowable
delay bounds and the passive feed-back controller gain
derived from Corollary 4 and Theorem 2 in [34]. It is
seen from Table 2 that the results obtained from our
method are less conservative than those in [34].

5.2. Example 2
To demonstrate the e�ectiveness and passive control
results obtained in this paper, let us consider the fol-
lowing stochastic interval time-varying delay system (1)
with:

AM =
��7:9 2

0:1 2:1

�
; Am =

��8:1 2
�0:1 1:9

�
;

BM =
�
4:1 0
�2 6:1

�
; Bm =

�
3:9 0
�2 5:9

�
;

AM1 =
�
3:1 0
0 2:1

�
; Am1 =

�
2:9 0
0: 1:9

�
;

BM1 =
�
2:1 0
0 3:1

�
; Bm1 =

�
1:9 0
0 2:9

�
;

EM =
�
1:1 0:3
0:2 1:7

�
; Em =

�
0:9 �0:3
�0:2 1:3

�
;

EM1 =
�
1:1 0:1
0:2 2:1

�
; Em1 =

�
0:9 �0:1
�0:2 1:9

�
;

CM =
�
1:1 0
0 �1:4

�
; Cm =

�
0:9 0
0 �1:8

�
;

DM =
�
2 0
0 3:2

�
; Dm =

�
1:6 0
0 2:8

�
:

Suppose we know that h1 = 0:2, d = 0:2 and 
 = 0:9.
Using Matlab LMI control Toolbox to solve the LMIs
(9), (10) and (46), we obtain the maximum allowable
bound of the upper time-delay, as h2 = 0:5660. Hence,
we have the conclusion that, under the passive feed-
back controller u(t) = Kx(t), the considered system,
with 0:2 � h(t) � 0:5660, is stochastically passive.

The solution of the LMIs (9), (10) and (46) in the
case of h2 = 0:5660 are given as follows:

X =
�

0:9077 �0:0011
�0:0011 1:0087

�
; Z1 =

�
16401 1420
1420 16563

�
;

Z2 =
�
25295 2474
2474 25585

�
; S1 =

�
4:4318 �0:1549
�0:1549 2:0599

�
;

S2 =
�

0:0130 �0:0101
�0:0101 0:0215

�
; S3 =

�
0:0135 �0:0098
�0:0098 0:0206

�
;

S4 =
�

0:0094 �0:0071
�0:0071 0:0158

�
; S5 =

�
0:0035 �0:0026
�0:0026 0:0060

�
;

T1 =
�

0:0675 �0:0532
�0:0532 0:1116

�
; T2 =

�
0:0371 �0:0291
�0:0291 0:0612

�
;

Y =
��1:0796 �0:4947
�0:4428 �2:4298

�
;K=

��1:1900 �0:4917
�0:4907 �2:4094

�
;

"1 = 31274; "2 = 26820;

U1 = diag(12:5840; 26214; 16:4602; 16:4602);

U2 = diag(13:9995; 26231; 26231; 19:2736);

U3 = diag(26235; 26214; 26234; 26234);

U4 = diag(26217; 26214; 26216; 26216);

U5 = diag(68:7038; 26214; 90:6871; 90:6871);

U6 = diag(1707094; 26214; 22:7152; 22:7152);

U7 = diag(4:1417; 1:3654; 2:9554; 2:9554);

U8 = diag(26252; 26231; 26231; 26252);

U9 = diag(26234; 26231; 26231; 26233);

U10 = diag(75:1389; 26231; 26231; 98:5753);

U11 = diag(19:6683; 26231; 26231; 25:1669);

U12 = diag(4:6222; 4:6222; 3:2975; 6:6675);

U13 = diag(48:7256; 26218; 26218; 46:5574);

U14 = diag(46:6156; 26214; 26214; 20:5723);

U15 = diag(9:0414; 26086; 26086; 8:6126);

U16 = diag(36:5380; 26086; 26086; 51:9269);
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U17 = diag(7:2950; 26086; 26086; 9:6476);

U18 = diag(26100; 26086; 26086; 26100);

U19 = diag(26086; 26086; 26086; 26087);

U20 = diag(26:2988; 26841; 26841; 34:1442);

U21 = diag(26862; 26841; 26841; 26861);

U22 = diag(26844; 26841; 26841; 26843);

U23 = diag(130:5014; 26841; 26841; 167:3216);

U24 = diag(36:6324; 26841; 26841; 46:5514):

According to Theorem 2, the problem of a passive
control for a stochastic interval system with interval
time-varying delay is solvable. With the designed con-
troller gain, K, the closed-loop system is stochastically
passive.

6. Conclusion

In this paper, the delay-dependent passive control
problem has been investigated for stochastic interval
systems with interval time-varying delay. The e�ects
of both variable ranges of interval time-varying delay
and interval matrices are taken into account. A
delay-dependent LMI approach has been developed
to derive su�cient conditions under which the cor-
responding closed-loop system is stochastically stable
and stochastically passive with dissipation, 
. Based
on these conditions, a memoryless feedback passive
controller is proposed. Numerical examples are pro-
vided to demonstrate the e�ectiveness of the results
obtained.
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